
Anders Møller & Michael I. Schwartzbach

Computer Science, Aarhus University

Static Program Analysis
Part 9 – control flow analysis

http://cs.au.dk/~amoeller/spa/

http://cs.au.dk/~amoeller/spa/

Agenda

• Control flow analysis for TIP
with first-class functions

• Control flow analysis for the
-calculus

• The cubic framework

• Control flow analysis for
object-oriented languages

2

TIP with first-class functions

3

inc(i) { return i+1; }
dec(j) { return j-1; }
ide(k) { return k; }

foo(n,f) {
var r;
if (n==0) { f=ide; }
r = f(n);
return r;

}

main() {
var x,y;
x = input;
if (x>0) { y = foo(x,inc); } else { y = foo(x,dec); }
return y;

}

Control flow complications

• First-class functions in TIP complicate CFG construction:

– several functions may be invoked at a call site

– this depends on the dataflow

– but dataflow analysis first requires a CFG

• Same situation for other features:

– function values with free variables (closures)

– a class hierarchy with objects and methods

– prototype objects with dynamic properties

4

Control flow analysis

• A control flow analysis approximates the call graph

– conservatively computes possible functions at call sites

– the trivial answer: all functions

• Control flow analysis is usually flow-insensitive:

– based on the AST

– the call graph can be used for an interprocedural CFG

– a subsequent dataflow analysis may use the CFG

• Alternative: use flow-sensitive analysis

– potentially on-the-fly, during dataflow analysis

5

CFA for TIP with first-class functions

• For a computed function call

we cannot immediately see which function is called

• A coarse but sound approximation:

– assume any function with right number of arguments

• Use CFA to get a much better result!

6

E(E1, ..., En)

CFA constraints (1/2)

• Tokens are all functions {f1, f2, ..., fk}

• For every AST node, v, we introduce the variable ⟦v⟧
denoting the set of functions to which v may evaluate

• For function definitions f(...){...}:

f  ⟦f⟧

• For assignments x = E:

⟦E⟧  ⟦x⟧

7

CFA constraints (2/2)
• For direct function calls f(E1, ..., En):

⟦Ei⟧ ⟦ai⟧ for i=1,...,n  ⟦E’⟧  ⟦f(E1, ..., En)⟧

where f is a function with arguments a1, ..., an

and return expression E’

• For computed function calls E(E1, ..., En):

f ⟦E⟧ (⟦Ei⟧  ⟦ai⟧ for i=1,...,n  ⟦E’⟧  ⟦(E)(E1, ..., En)⟧)

for every function f with arguments a1, ..., an

and return expression E’

– If we consider typable programs only:
only generate constraints for those functions f
for which the call would be type correct

8

Generated constraints

inc  ⟦inc⟧

dec  ⟦dec⟧

ide  ⟦ide⟧

⟦ide⟧  ⟦f⟧

⟦f(n)⟧  ⟦r⟧

inc  ⟦f⟧ ⟦n⟧  ⟦i⟧  ⟦i+1⟧  ⟦f(n)⟧

dec  ⟦f⟧ ⟦n⟧  ⟦j⟧  ⟦j-1⟧  ⟦f(n)⟧

ide  ⟦f⟧ ⟦n⟧  ⟦k⟧  ⟦k⟧  ⟦f(n)⟧

⟦input⟧  ⟦x⟧

⟦foo(x,inc)⟧  ⟦y⟧

⟦foo(x,dec)⟧  ⟦y⟧

foo  ⟦foo⟧

foo  ⟦foo⟧ ⟦x⟧  ⟦n⟧  ⟦inc⟧  ⟦f⟧  ⟦r⟧  ⟦foo(x,inc)⟧

foo  ⟦foo⟧ ⟦x⟧  ⟦n⟧  ⟦dec⟧  ⟦f⟧  ⟦r⟧  ⟦foo(x,dec)⟧

main  ⟦main⟧

9

(At each call we only consider functions with matching number of parameters)

assuming we do not
use the special rule
for direct calls

Least solution

⟦inc⟧ = {inc}

⟦dec⟧ = {dec}

⟦ide⟧ = {ide}

⟦f⟧ = {inc, dec, ide}

⟦foo⟧ = {foo}

⟦main⟧ = {main}

10

With this information, we can construct the call edges
and return edges in the interprocedural CFG

(the solution is the empty set for the remaining constraint variables)

Agenda

• Control flow analysis for TIP
with first-class functions

• Control flow analysis for the
-calculus

• The cubic framework

• Control flow analysis for
object-oriented languages

11

CFA for the lambda calculus

• The pure lambda calculus

• Assume all -bound variables are distinct

• An abstract closure x abstracts the function x.E
in all contexts (values of free variables)

• Goal: for each call site E1E2 determine the possible
functions for E1 from the set {x1, x2, ..., xn}

12

Exp → Id.Exp (function definition)

| Exp1 Exp2 (function application)

| Id (variable reference)

Closure analysis

A flow-insensitive analysis that tracks function values:

• For every AST node, v, we introduce a variable ⟦v⟧
ranging over subsets of abstract closures

• For x.E we have the constraint

x  ⟦x.E⟧

• For E1E2 we have the conditional constraint

x  ⟦E1⟧ (⟦E2⟧  ⟦x⟧  ⟦E⟧  ⟦E1E2⟧)

for every function x.E

13

Agenda

• Control flow analysis for TIP
with first-class functions

• Control flow analysis for the
-calculus

• The cubic framework

• Control flow analysis for
object-oriented languages

14

The cubic framework

• We have a set of tokens T={t1, t2, ..., tk}

• We have a collection of constraint variables V={x1, ..., xn}
ranging over subsets of tokens

• A collection of constraints of these forms:

▪ t  x

▪ x  y

▪ t  x y  z

• Compute the unique minimal solution

– this exists since solutions are closed under intersection

• A cubic time algorithm exists!
15

The solver data structure

• Each variable is mapped to a node in a directed graph

• Each node has a bitvector in {0,1}k

– initially set to all 0’s

• Each bit has a list of pairs of variables

– used to model conditional constraints

• The edges model inclusion constraints

• The bitvectors will at all times directly represent the
minimal solution to the constraints seen so far

16

Implementation: SimpleCubicSolver

The solver data structure

• x.sol  T: the set of tokens for x (the bitvectors)

• x.succ  V: the successors of x (the edges)

• x.cond(t)  VV: the conditional constraints for x and t

• W  TV: a worklist (initially empty)

17

Adding constraints

• t  x

• x  y

• t  x y  z

18

addToken(t, x):
if t ∉ x.sol

add t to x.sol
add (t, x) to W

addEdge(x, y):
if x ≠ y  y ∉ x.succ

add y to x.succ
for each t in x.sol

addToken(t, y)

addToken(t, x)
propagate()

addEdge(x, y)
propagate()

if t  x.sol
addEdge(y, z)
propagate()

else
add (y, z) to x.cond(t)

propagate():
while W ≠ 

pick and remove (t, x) from W
for each (y, z) in x.cond(t)

addEdge(y, z)
for each y in x.succ

addToken(t, y)

Time complexity

• O(n) functions and O(n) applications, with program size n

• O(n) singleton constraints, O(n) subset constraints,
O(n2) conditional constraints

• O(n) nodes, O(n2) edges, O(n) bits per node

• addToken takes time O(1)

• addEdge takes amortized time O(n)

• Each pair (t, x) is processed at most once by propagate

• O(n2) calls to addEdge (either immediately or via propagate)

• O(n3) calls to addToken

19

0

0

0

0

0

1

0

0

0

0

0

1

1

0

0

0

0

1

1

0

0

0

0

1

Time complexity

• Adding it all up, the upper bound is O(n3)

• This is known as the cubic time bottleneck:

– occurs in many different scenarios

– but O(n3/log n) is possible…

20

Implementation tricks

• Cycle elimination (collapse nodes if there is a cycle of inclusion constraints)

• Process worklist in topological order

• Interleaving solution propagation and constraint processing

• Shared bit vector representation

• Type filtering

• On-demand processing

• Difference propagation

• Subsumed node compaction

• ...

21

Agenda

• Control flow analysis for TIP
with first-class functions

• Control flow analysis for the
-calculus

• The cubic framework

• Control flow analysis for
object-oriented languages

22

Simple CFA for OO (1/3)

• CFA in an object-oriented language:

• Which method implementations may be invoked?

• Full CFA is a possibility...

• But the type information enables simpler solutions

23

x.m(a,b,c)

Simple CFA for OO (2/3)

• Simplest solution:

– select all methods named m with three arguments

• Class Hierarchy Analysis (CHA):

– consider only the part of the class hierarchy rooted
by the declared type of x

24

x
Collection<T> c = ...
c.add(e)

Simple CFA for OO (3/3)

• Rapid Type Analysis (RTA):

– restrict to those classes that are actually used in the program
in new expressions

– start from main, iteratively
find reachable methods

25

x

