Static Program Analysis
Part 9 — control flow analysis

http://cs.au.dk/~amoeller/spa/

Anders Mgller & Michael |. Schwartzbach
Computer Science, Aarhus University

http://cs.au.dk/~amoeller/spa/

Agenda

Control flow analysis for TIP
with first-class functions

Control flow analysis for the
A-calculus

The cubic framework

Control flow analysis for
object-oriented languages

TIP with first-class functions

inc(i) { return i+1l; }
dec(3) { return j-1; }
ide(k) { return k; }

foo(n,f) {
var r;
if (n==0) { f=ide; }
r = f(n);
return r;

}
main() {

var Xx,y;

X = 1nput;

if (x>0) { y = foo(x,inc); } else { y = foo(x,dec); }
return y;

Control flow complications

* First-class functions in TIP complicate CFG construction:
— several functions may be invoked at a call site
— this depends on the dataflow
— but dataflow analysis first requires a CFG

* Same situation for other features:
— function values with free variables (closures)
— a class hierarchy with objects and methods
— prototype objects with dynamic properties

Control flow analysis

* A control flow analysis approximates the call graph
— conservatively computes possible functions at call sites

— the trivial answer: all functions

e Control flow analysis is usually flow-insensitive:
— based on the AST
— the call graph can be used for an interprocedural CFG
— a subsequent dataflow analysis may use the CFG

e Alternative: use flow-sensitive analysis

— potentially on-the-fly, during dataflow analysis

CFA for TIP with first-class functions

* For a computed function call

ECE,, ..., E)

we cannot immediately see which function is called

* A coarse but sound approximation:

— assume any function with right number of arguments

e Use CFA to get a much better result!

CFA constraints (1/2)

Tokens are all functions {f,, f,, ..., fi}

For every AST node, v, we introduce the variable V]
denoting the set of functions to which v may evaluate

For function definitions f(...) {... }:
f e [lfl
For assignments x = E:

[E] < [Ix]

CFA constraints (2/2)

* For direct function calls f(E,, ..., E,):
[E] < [[a] fori=1,...,n A [E'] < [fCE;, ..., E,)]
where fis a function with arguments a,, ..., a,
and return expression E’

* For computed function calls ECE,, ..., E,):

f e[E] = ([E] < [a] for i=1,...n A [E] < [(E) (&4, .. EDT)
for every function f with arguments a, ..., a,

and return expression E’

— If we consider typable programs only:

only generate constraints for those functions f
for which the call would be type correct

Generated constraints

inc e [inc]

dec e [dec]

ide e [1de]

[1de] c [f]

[fCn)I<r]
ince[fl=[n]c[i]A[i+1] < [f(n)]
dec e [f]=[n] c[JIA[J-1] < [f(n)]
ide e [f] = [n] < [K] A [k] < [f(n)]
[input] < [X]

[foo(x,inc)] < [y]

[foo(x,dec)] c[y]

foo € [foo]

foo e [foo] = [x] c [n] A[inc] c [f] A [r] < [foo(x,inc)] } assuming we do not
foo e [foo] = [x] c [n] A [dec] < [f] A [r] < [foo(x,dec)] use the special rule
main e [main] for direct calls

(At each call we only consider functions with matching number of parameters)

Least solution

[1nc] ={1nc}
[dec] = {dec}

[1de] ={1de}

[f] ={1nc, dec, 1de}
[foo] ={foo}
[main] ={main}

(the solution is the empty set for the remaining constraint variables)

With this information, we can construct the call edges
and return edges in the interprocedural CFG

10

Agenda

Control flow analysis for TIP
with first-class functions

Control flow analysis for the
A-calculus

The cubic framework

Control flow analysis for
object-oriented languages

11

CFA for the lambda calculus

The pure lambda calculus

Exp — Ald.Exp (function definition)
| Exp, Exp, (function application)
| Id (variable reference)

Assume all A-bound variables are distinct

An abstract closure A\x abstracts the function Ax.E
in all contexts (values of free variables)

Goal: for each call site E,E, determine the possible
functions for E; from the set {Ax,, Ax,, ..., AX,}

12

Closure analysis

A flow-insensitive analysis that tracks function values:

* For every AST node, v, we introduce a variable V]
ranging over subsets of abstract closures

* For Ax.E we have the constraint
Ax € [[AX.E]
* For E,E, we have the conditional constraint
Mx € [E] = ([E,] < [¥] A [E] < [E,E,])
for every function Ax.E

13

Agenda

Control flow analysis for TIP
with first-class functions

Control flow analysis for the
A-calculus

The cubic framework

Control flow analysis for
object-oriented languages

14

The cubic framework

We have a set of tokens T={t,, t,, ..., t;}

We have a collection of constraint variables V={x,, ..., x,}
ranging over subsets of tokens

A collection of constraints of these forms:

" tex
" XCYy

" tex=SycCz

Compute the unique minimal solution

— this exists since solutions are closed under intersection

A cubic time algorithm exists!

15

The solver data structure

Each variable is mapped to a node in a directed graph
Each node has a bitvector in {0,1}¢
— initially set to all O’s

Each bit has a list of pairs of variables

— used to model conditional constraints
The edges model inclusion constraints

The bitvectors will at all times directly represent the
minimal solution to the constraints seen so far

Implementation: SimpleCubicSolver

16

The solver data structure

x.solcT:

X.succ c V:

the set of tokens for x (the bitvectors)
the successors of x (the edges)

x.cond(t) < VxV: the conditional constraints for x and t

W c TxV:

a worklist (initially empty)

17

Adding constraints

e tex

addToken(t, x)
propagate()

* XCy

addEdge(x, y)
propagate()

ctex=ycCz
if t € x.sol
addEdge(y, z)
propagate()
else
add (y, z) to x.cond(t)

addToken(t, x):
if t € x.sol
add t to x.sol
add (t, x) to W

addEdge(x, y):
if X #y Ay €& x.succ
add y to x.succ
for each t in x.sol
addToken(t, y)

propagate():
while W # &
pick and remove (t, x) from W
for each (y, z) in x.cond(t)
addEdge(y, z)
for each y in x.succ
addToken(t, y)

18

Time complexity

O(n) functions and O(n) applications, with program size n

O(n) singleton constraints, O(n) subset constraints,
O(n?) conditional constraints

O(n) nodes, O(n?) edges, O(n) bits per node

addToken takes time O(1)

addEdge takes amortized time O(n)

Each pair (t, x) is processed at most once by propagate
O(n?) calls to addEdge (either immediately or via propagate)
O(n3) calls to addToken

R |lO|lOO|O|O|PF

R|lO|lOO|O|O|PFR

19

Time complexity

* Adding it all up, the upper bound is O(n?3)

 This is known as the cubic time bottleneck:

— occurs in many different scenarios

— but O(n3/log n) is possible...

20

Implementation tricks

Cycle elimination (collapse nodes if there is a cycle of inclusion constraints)
Process worklist in topological order

Interleaving solution propagation and constraint processing
Shared bit vector representation

Type filtering

On-demand processing

Difference propagation

Subsumed node compaction

21

Agenda

Control flow analysis for TIP
with first-class functions

Control flow analysis for the
A-calculus

The cubic framework

Control flow analysis for
object-oriented languages

22

Simple CFA for OO0 (1/3)

CFA in an object-oriented language:
x.m(a,b,c)
Which method implementations may be invoked?

Full CFA is a possibility...
But the type information enables simpler solutions

23

Simple CFA for 00 (2/3)

e Simplest solution:

— select all methods named m with three arguments

e Class Hierarchy Analysis (CHA):

— consider only the part of the class hierarchy rooted
by the declared type of X

Collection<T> Cc = ...
c.add(e)

[

Simple CFA for OO0 (3/3)

e Rapid Type Analysis (RTA):
— restrict to those classes that are actually used in the program
In New expressions

— start from main, iteratively
find reachable methods

25

