Static Program Analysis Part 8 – distributive analysis frameworks

https://cs.au.dk/~amoeller/spa/

Anders Møller Computer Science, Aarhus University

• Distributive analysis

- IFDS
- IDE

the function summary effect in interprocedural dataflow analysis

+

compact representations of distributive functions

↓

efficient analysis algorithms

Context sensitive dataflow analysis

Recall our context-sensitive interprocedural sign analysis:

• Lattice for abstract values:

• Lattice for abstract states:

 $\textit{State} = \textit{Var} \rightarrow \textit{Sign}$

• Analysis lattice:

```
(Context \rightarrow lift(State))^n
```

For each CFG node v we have a map m_v from call contexts to abstract states (or *unreachable*) "If the current function is called in context c, then the abstract state at v is $m_v(c)$ "

Example, revisited:

interprocedural sign analysis with the functional approach

Lattice for abstract states: Context \rightarrow lift(Var \rightarrow Sign) where Context = Var \rightarrow Sign

Possibly-uninitialized variables analysis

(very similar to taint analysis)

- Let's make an analysis to detect possibly-uninitialized variables
 - remember the initialized variables analysis?*
- We want
 - flow-sensitivity
 - full context-sensitivity (with the functional approach)
- Lattice of abstract states: State = $\mathcal{P}(Var)$
- Analysis lattice: $(Context \rightarrow lift(State))^n =$ $(\mathcal{P}(Var) \rightarrow lift(\mathcal{P}(Var)))^n$
 - as usual, n is the number of CFG nodes
 - recall that the full functional approach has Context = State
 - intuitively, the context is the set of possibly uninitialized variables at the entry of the current function

Possibly-uninitialized variables – example

```
main() {
  var x,y,z;
  x = input;
  z = p(x,y);
  return z;
}
p(a,b) {
  if (a > 0) {
    b = input;
    a = a - b;
    b = p(a,b);
    output(a);
    output(b);
  }
  return b;
}
```

- When p is called from main, a is initialized and b is uninitialized
- When p is called from p, a and b are both initialized

- A context-insensitive analysis concludes
 that b may be uninitialized at output(b)
- A fully context-sensitive analysis concludes that b is definitely initialized at output(b)

 (\mathbf{R})

Possibly-uninitialized variables analysis

A forward, may analysis – context-insensitive version:

- variable declarations, var x: $[v] = JOIN(v) \cup \{x\}$

- assignments, x = E:
 - $t_{v}(S) = \begin{cases} S \cup \{x\} & \text{if } vars(E) \cap S \neq \emptyset \\ S \setminus \{x\} & \text{otherwise} \end{cases}$ $\llbracket v \rrbracket = t_v(JOIN(v))$
- function entries:
 see SPA Section 8.1
 after-call nodes:

- all others: [v] = JOIN(v)

where $JOIN(v) = \bigsqcup_{w \in pred(v)} \llbracket w \rrbracket$

Possibly-uninitialized variables analysis

A forward, may analysis – context-sensitive version:

- variable declarations, var x : ...

- assignments, x = E: $t_{v}(S) = \begin{cases} S \cup \{x\} & \text{if } vars(E) \cap S \neq \emptyset \\ S \setminus \{x\} & \text{otherwise} \end{cases}$ $\llbracket v \rrbracket(c) = \begin{cases} t_v(JOIN(v,c)) & \text{if } JOIN(v,c) \in State \\ \text{unreachable} & \text{if } JOIN(v,c) = \text{unreachable} \end{cases}$
- program entry: $[v](c) \neq$ unreachable
- other function entries:
 after-call nodes:

- all others: [v](c) = JOIN(v,c)

where $JOIN(v,c) = \bigsqcup_{w \in pred(v)} \llbracket w \rrbracket (c)$

Pre-analysis

- The analysis lattice is $(lift(\mathcal{P}(Var) \rightarrow \mathcal{P}(Var)))^n$
- *Idea:* run a *context-insensitive*(!) analysis that computes, for each CFG node v, a map $m_v: \mathcal{P}(Var) \rightarrow \mathcal{P}(Var)$ with the following property:

If the function containing v is executed in an initial abstract state where $S \subseteq Var$ are the possibly-uninitialized variables at the entry, then $m_v(S)$ is the set of possibly-uninitialized variables at v

The 'unreachable' element means that the function containing v is unreachable from the program entry

- If we have such an analysis, then we can easily compute the sets of possibly-uninitialized variables for all CFG nodes (without doing a full context-sensitive analysis)
- It suffices to compute m_v for CFG nodes in reachable functions

m,

Distributive functions and analyses

Exercise 4.20: A function $f: L_1 \to L_2$ where L_1 and L_2 are lattices is *distributive* when $\forall x, y \in L_1: f(x) \sqcup f(y) = f(x \sqcup y)$.

(a) Show that every distributive function is also monotone.

(b) Show that not every monotone function is also distributive.

Exercise 5.26: An analysis is distributive if all its constraint functions are distributive according to the definition from Exercise 4.20. Show that live variables analysis is distributive.

Is possibly-uninitialized variables analysis distributive?

Distributive functions and analyses

Exercise 5.34: Which among the following analyses are distributive, if any?

- (a) Available expressions analysis.
- (b) Very busy expressions analysis.
- (c) Reaching definitions analysis.
- (d) Sign analysis.
- (e) Constant propagation analysis.

Exercise 11.6: Recall from Exercise 5.26 that an analysis is distributive if all its constraint functions are distributive. Show that Andersen's analysis is *not* distributive. (Hint: consider the constraint for the statement x=*y or *x=y.)

• Distributive analysis

- IFDS
- IDE

IFDS (Interprocedural Finite Distributive Subset problems)

- Precise Interprocedural Dataflow Analysis via Graph Reachability, Reps, Horwitz, Sagiv, POPL 1995
- Setting:
 - lattice of abstract states: State = $\mathcal{P}(D)$ where D is a finite set (i.e., a powerset lattice)
 - all transfer functions, f_v : *State* \rightarrow *State*, are distributive
- Great idea #1:
 - such analysis constraints can be represented compactly!
 - distributivity is closed under composition and least upper bound, so function summaries can also be represented compactly and without loss of precision!
- Great idea #2:
 - tabulation solver (building the m_v maps)
- Bonus: can be made demand-driven

- Assume f: $\mathcal{P}(D) \rightarrow \mathcal{P}(D)$ where D is a finite set and f is distributive
- A naive representation of f would be a table with 2^{|D|} entries (if D is, for example, the set of program variables, then such a table is big!)
- f can be decomposed into a function g: $(D \cup \{\bullet\}) \rightarrow \mathcal{P}(D)$
 - − Define $g(\bullet) = f(\emptyset)$ and $g(d) = f({d}) \setminus f(\emptyset)$ for $d \in D$
 - Now $f(X) = g(\bullet) \cup \bigcup_{y \in X} g(y)$
- Can be represented compactly as a graph with 2(|D|+1) nodes
 - <u>Example:</u> d_1 d_2 d_3 for D={ d_1 , d_2 , d_3 } d_1 d_2 d_3

means that $g(\bullet) = \{d_1\}, g(d_1) = \emptyset, g(d_2) = \{d_3\}, and g(d_3) = \{d_3\}$ (the edge from \bullet to \bullet is always present) so $f(S) = \{d_1, d_3\}$ if $d_2 \in S$ or $d_3 \in S$, and $f(S) = \{d_1\}$ otherwise

In general, the edges are:
 {●→●} ∪ {●→y | y∈f(Ø)} ∪ {x→y | y∈f({x}) ∧ y∉f(Ø)}

Exercise:

For uninitialized-variables analysis, what is the IFDS graph representation of 1) an assignment, X = E, or 2) a variable declaration, var X?

Composition and I.u.b.

- Distributivity is closed under function composition and l.u.b. Assume $f_A: \mathcal{P}(D) \to \mathcal{P}(D)$ and $f_B: \mathcal{P}(D) \to \mathcal{P}(D)$ where D is a finite set and both f and are distributive
 - $f_A \circ f_B : \mathcal{P}(D) \rightarrow \mathcal{P}(D)$ is also distributive
 - $f_A \sqcup f_B: \mathcal{P}(D) \rightarrow \mathcal{P}(D)$ is also distributive

$$(f_A \circ f_B)(S) = f_A(f_B(S))$$

$$(f_{A} \sqcup f_{B})(S) = f_{A}(S) \sqcup f_{B}(S)$$

- Proof? (exercise)
- With the graph representation:

(edges $d_2 \rightarrow d_1$ and $d_3 \rightarrow d_1$ could be omitted)

(edges $d_1 \rightarrow d_1$ and $d_3 \rightarrow d_1$ could be omitted)

Possibly-uninitialized variables analysis

- The analysis lattice is $(lift(\mathcal{P}(Var) \rightarrow \mathcal{P}(Var)))^n$
- For each reachable CFG node, the analysis computes an element of $\mathcal{P}(Var) \rightarrow \mathcal{P}(Var)$

assuming we have this set of possibly-uninitialized variables at the entry of the function...

...we have this set of possibly-uninitialized variables at v

- With the graph representation, all such functions can be represented compactly and constructed efficiently!
- Using the ordinary worklist algorithm from monotone frameworks amounts to propagating sets of possibly-uninitialized variables for different contexts (Exercise: worst-case time complexity?)
- A smarter approach: the tabulation algorithm

The IFDS Tabulation Algorithm

- The idea: with a worklist algorithm, incrementally build a set of *path edges* (v₁,d₁) ····> (v₂,d₂) where
 - − v_1 is a function entry node, v_2 is a CFG node in the same function as v_1 , and d_1 , $d_2 \in D \cup \{\bullet\}$
 - the edge means: if dataflow fact d₁ holds at v₁ then d₂ holds at v₂
- Only requires function composition and l.u.b.
- At each call node, use the path edges for the return nodes of the function being called as a function summary!
- See pseudo-code in [Reps et al., 1995]
- Worst-case time complexity: O(|E|·|D|³) where |E| is the number of CFG edges
- After the table is built, it is easy to compute the dataflow facts for any given CFG node

 d_1

 d_2

 V_2

Example [Reps et al., 1995]

Figure 1. An example program and its supergraph G^* . The supergraph is annotated with the dataflow functions for the "possibly-uninitialized variables" problem. The notation $S \le x/a \ge d$ enotes the set *S* with *x* renamed to *a*.

Figure 2. The exploded supergraph that corresponds to the instance of the possibly-uninitialized variables problem shown in Figure 1. Closed circles represent nodes of $G_{IP}^{\#}$ that are reachable along realizable paths from $\langle s_{main}, 0 \rangle$. Open circles represent nodes not reachable along such paths. (the paper uses 0 instead of •)

Dataflow at function calls

- E represents the program being analyzed: (v₁,d₁)→(v₂,d₂)∈E means that v₂∈succ(v₁) and if dataflow fact d₁ holds at v₁ then d₂ holds at v₂ (obtained from the graph representation of the transfer functions)
- P is the set of path edges (see slide 19)

• v is a program entry node:

 $\langle \vee, \bullet \rangle \rightsquigarrow \langle \vee, \bullet \rangle \in \mathbf{P}$

v is a function entry node, v₁ is a call node that calls the function containing v, and v₀ is the entry node of the function containing v₁:
 (v₀, d₁)→(v₁, d₂)∈P ∧ (v₁, d₂)→(v, d₃)∈E ⇒ (v, d₃)→(v, d₃)∈P for all d₁, d₂, d₃

 v is an after-call node belonging to a call node v', v₀ is the entry node of the function containing v and v', w is the entry node of the function being called, and w' is the exit node of that function:

 $\langle \mathsf{v}_0, \mathsf{d}_1 \rangle \rightsquigarrow \langle \mathsf{v}', \mathsf{d}_2 \rangle \in \mathbf{P} \land \langle \mathsf{v}', \mathsf{d}_2 \rangle \rightarrow \langle \mathsf{w}, \mathsf{d}_3 \rangle \in \mathbf{E} \land \langle \mathsf{w}, \mathsf{d}_3 \rangle \rightsquigarrow \langle \mathsf{w}', \mathsf{d}_4 \rangle \in \mathbf{P} \land \langle \mathsf{w}', \mathsf{d}_4 \rangle \rightarrow \langle \mathsf{v}, \mathsf{d}_5 \rangle \in \mathbf{E}$ $\Rightarrow \langle \mathsf{v}_0, \mathsf{d}_1 \rangle \rightsquigarrow \langle \mathsf{v}, \mathsf{d}_5 \rangle \in \mathbf{P} \quad \text{for all } \mathsf{d}_1, \mathsf{d}_2, \mathsf{d}_3, \mathsf{d}_4, \mathsf{d}_5$

 v is an after-call node belonging to a call node v' or v is another node with a predecessor v'∈pred(v) and v₀ is the entry node of the function containing v and v': (v₀, d₁)-w→(v', d₂)∈P ∧ (v', d₂)→(v,d₃)∈E ⇒ (v₀, d₁)-w→(v, d₃)∈P for all d₁, d₂, d₃

$\langle v_0, d_1 \rangle \rightsquigarrow \langle v, d_2 \rangle \in \mathbf{P} \implies d_2 \in \llbracket v \rrbracket$ where v_0 is the entry node in the function containing v

 $[\![v]\!]$ now contains the set of dataflow facts that may hold at v

Exercise 9.19: Explain step-by-step how IFDS-based possibly-uninitialized variables analysis runs on the example programs from Exercise 9.3 and Exercise 9.17.

```
PathEdge(d1, m, d3) :-
    CFG(n, m),
    PathEdge(d1, n, d2),
    d3 <- eshIntra(n, d2).
PathEdge(d1, m, d3) :-
    CFG(n, m),
    PathEdge(d1, n, d2),
    SummaryEdge(n, d2, d3).
PathEdge(d3, start, d3) :-
    PathEdge(d1, call, d2),
    CallGraph(call, target),
    EshCallStart(call, d2, target, d3),
    StartNode(target, start).
SummaryEdge(call, d4, d5) :-
    CallGraph(call, target),
    StartNode(target, start),
    EndNode(target, end),
    EshCallStart(call, d4, target, d1),
    PathEdge(d1, end, d2),
    d5 <- eshEndReturn(target, d2, call).
EshCallStart(call, d, target, d2) :-
    PathEdge(_, call, d),
    CallGraph(call, target),
    d2 <- eshCallStart(call, d, target).</pre>
Result(n, d2) :-
    PathEdge(_, n, d2).
```

Figure 5. FLIX implementation of the IFDS analysis

Agenda

- Distributive analysis
- IFDS
- IDE

IDE (Interprocedural Distributive Environment problems)

- Precise Interprocedural Dataflow Analysis with Applications to Constant Propagation, Sagiv, Reps, Horwitz, TCS 1996
- Generalization of IFDS, in practice more efficient also for some IFDS problems!
- Setting:
 - lattice of abstract states: State = D → L where D is a finite set and L is a lattice (generalization of IFDS)
 - all transfer functions, $f_v: State \rightarrow State$, are distributive (as with IFDS)
- Great idea #1:
 - also allows compact representation and summarization!
- Great idea #2:
 - the tabulation solver can easily be generalized...

Copy-constant propagation analysis

- Constant propagation analysis is not distributive
- ... but copy-constant propagation analysis is!
- Like constant propagation analysis, but only handles
 - constant assignments, e.g., x = 42
 - copy assignments, e.g., x = y
- All other assignments just give T

- A variant: *linear-constant propagation analysis*
- Also handles linear expressions, e.g., x = 5*y+17

Exercise: prove that these two analyses are indeed distributive

A generalization of IFDS

- The powerset lattice P(D) is isomorphic to the map lattice D → {T, F} where F ⊏ T T="true", F="false"
- So $(\mathcal{P}(D) \rightarrow \mathcal{P}(D))^n$ is isomorphic to $((D \rightarrow \{T, F\}) \rightarrow (D \rightarrow \{T, F\}))^n$
- In IDE we have State = D → L where D is a finite set and L is a (finite-height) complete lattice
- IFDS thus corresponds to the special case L = {T, F}
- We have seen how to compactly represent distributive functions of the form f: $\mathcal{P}(D) \rightarrow \mathcal{P}(D)$
- How can we generalize that to distributive functions of the form f: $(D \rightarrow L) \rightarrow (D \rightarrow L)$ for arbitrary lattices?

- Assume f: (D → L) → (D → L) is distributive, D is a finite set, and L is a complete lattice
- Define g: $(D \cup \{\bullet\}) \times (D \cup \{\bullet\}) \rightarrow (L \rightarrow L)$ by g(a, b)(e) = f(\perp [a \mapsto e])(b) for a,b \in D and e \in L g(\bullet , b)(e) = f(\perp)(b) for b \in D and e \in L g(\bullet , \bullet)(e) = e for e \in L g(a, \bullet)(e) = \perp for a \in D and e \in L
- Now $f(m)(b) = g(\bullet, b) (\bot) \sqcup \bigsqcup_{a \in D} g(a, b)(m(a))$
- Similar graph representation as in IFDS, but now each edge is a function $L \rightarrow L$ (an absent edge represents the function $\lambda e. \bot$)

Exercise:

What is the graph representation of an assignment x=E for copy-constant propagation analysis?

Exercise:

What is the graph representation of an assignment x=E for copy-constant propagation analysis?

• If E is a constant c:

• If E is a variable y:

(default edge label: $\lambda e.e$)

• Any other expression:

 How to also handle assignments like x = 5*y+1 ? (for linear-constant propagation analysis)

Composition and I.u.b.

- Function composition and least upper bound can be performed efficiently on the graph representation
 - here it is useful that $\bullet\!\!\rightarrow\!\!\bullet$ is always labelled with $\lambda e.e$
- ...assuming efficiently representable lattice elements
 - for copy-constant propagation analysis we only need the identity function and constant functions, and those are trivially closed under composition and l.u.b.

Exercise: what about linear-constant propagation analysis?

Implementation: TIP/src/tip/lattices/EdgeLattice

Example [Sagiv et al., 1996]

Figure 1: An example program and its labeled supergraph G^* . The environment transformer for all unlabeled edges is $\lambda env.env$.

38

Figure 4: The labeled exploded supergraph for the running example program for the linear-constantpropagation problem. The edge functions are all $\lambda l.l$ except where indicated.

- Edges in **E** and **P** are now labelled with $L \rightarrow L$ functions
- [⟨v₁, d₁⟩ → ⟨v₂, d₂⟩]_P: L → L denotes the label of the edge in P from ⟨v₁, d₁⟩ to ⟨v₂, d₂⟩.
- $[\langle v_1, d_1 \rangle \rightarrow \langle v_2, d_2 \rangle]_{\mathbf{E}} : L \rightarrow L$ denotes the label of the edge in **E** from $\langle v_1, d_1 \rangle$ to $\langle v_2, d_2 \rangle$.

For the program entry:

$$id \sqsubseteq \llbracket \langle entry_{main}, \bullet \rangle \rightsquigarrow \langle entry_{main}, \bullet \rangle \rrbracket_{\mathbf{P}}$$

If v is a function entry node, v_1 is a call node that calls the function containing v, and v_0 is the entry node of the function containing v_1 :

 $\forall d_1, d_2, d_3 \colon \llbracket \langle v_0, d_1 \rangle \rightsquigarrow \langle v_1, d_2 \rangle \rrbracket_{\mathbf{P}} \neq \bot \land \llbracket \langle v_1, d_2 \rangle \rightarrow \langle v, d_3 \rangle \rrbracket_{\mathbf{E}} \neq \bot$ $\Longrightarrow id \sqsubseteq \llbracket \langle v, d_3 \rangle \rightsquigarrow \langle v, d_3 \rangle \rrbracket_{\mathbf{P}}$

If v is an after-call node belonging to a call node v', v_0 is the entry node of the function containing v and v', w is the entry node of the function being called, and w' is the exit node of that function:

 $\forall d_1, d_2, d_3, d_4, d_{\pi}$

$$m_{1} = \llbracket \langle v_{0}, d_{1} \rangle \rightsquigarrow \langle v', d_{2} \rangle \rrbracket_{\mathbf{P}} \neq \bot \land m_{2} = [\langle v', d_{2} \rangle \rightarrow \langle w, d_{3} \rangle]_{\mathbf{E}} \neq \bot$$

$$\land m_{3} = \llbracket \langle w, d_{3} \rangle \rightsquigarrow \langle w', d_{4} \rangle \rrbracket_{\mathbf{P}} \neq \bot \land m_{4} = [\langle w', d_{4} \rangle \rightarrow \langle v, d_{5} \rangle]_{\mathbf{E}} \neq \bot$$

$$\implies m_{4} \circ m_{3} \circ m_{2} \circ m_{1} \sqsubseteq \llbracket \langle v_{0}, d_{1} \rangle \rightsquigarrow \langle v, d_{5} \rangle \rrbracket_{\mathbf{P}}$$

If v is an after-call node belonging to a call node v' or v is another node with a predecessor $v' \in pred(v)$ and v_0 is the entry node of the function containing v and v':

 $\forall d_1, d_2, d_3 \colon m_1 = \llbracket \langle v_0, d_1 \rangle \rightsquigarrow \langle v', d_2 \rangle \rrbracket_{\mathbf{P}} \neq \bot \land m_2 = \llbracket \langle v', d_2 \rangle \rightarrow \langle v, d_3 \rangle \rrbracket_{\mathbf{E}} \neq \bot$ $\implies m_2 \circ m_1 \sqsubseteq \llbracket \langle v_0, d_1 \rangle \rightsquigarrow \langle v, d_3 \rangle \rrbracket_{\mathbf{P}}$

Similar for any other node v with predecessor v' where v_0 is the entry node of the function containing v and v'

Computes abstract values: $[\![\langle v, d \rangle]\!] \in lift(L)$

Program entry: $\forall d: [\![\langle entry_{main}, d \rangle]\!] \neq unreachable$

For any node v where v_0 is the entry of the function containing v: $\forall d_0, d: [\![\langle v_0, d_0 \rangle]\!] \neq unreachable \land m = [\![\langle v_0, d_0 \rangle \rightsquigarrow \langle v, d \rangle]\!]_P$ $\implies m([\![\langle v_0, d_0 \rangle]\!]) \sqsubseteq [\![\langle v, d \rangle]\!]$

If v is a function entry node and v_1 is a call node to v: $\forall d_1, d: [\![\langle v_1, d_1 \rangle]\!] \neq \text{unreachable} \land m = [\langle v_1, d_1 \rangle \rightarrow \langle v, d \rangle]_{\mathbf{E}}$ $\implies m([\![\langle v_1, d_1 \rangle]\!]) \sqsubseteq [\![\langle v, d \rangle]\!]$

Combine into abstract states: $\llbracket v \rrbracket_2(d) = \llbracket \langle v, d \rangle \rrbracket \in L$ for $d \in D$

```
JumpFn(d1, m, d3, comp(long, short)) :-
    CFG(n, m),
    JumpFn(d1, n, d2, long),
    (d3, short) \le eshIntra(n, d2).
JumpFn(d1, m, d3, comp(caller, summary)) :-
    CFG(n, m),
    JumpFn(d1, n, d2, caller),
    SummaryFn(n, d2, d3, summary).
JumpFn(d3, start, d3, identity()) :-
    JumpFn(d1, call, d2, _),
    CallGraph(call, target),
    EshCallStart(call, d2, target, d3, _),
    StartNode(target, start),
SummaryFn(call, d4, d5, comp(comp(cs, se), er)) :-
    CallGraph(call, target),
    StartNode(target, start),
    EndNode(target, end),
    EshCallStart(call, d4, target, d1, cs),
    JumpFn(d1, end, d2, se),
    (d5, er) <- eshEndReturn(target, d2, call).</pre>
EshCallStart(call, d, target, d2, cs) :-
    JumpFn(_, call, d, _),
    CallGraph(call, target),
    (d2, cs) <- eshCallStart(call, d, target).</pre>
InProc(p, start) := StartNode(p, start).
InProc(p, m) := InProc(p, n), CFG(n, m).
Result(n, d, apply(fn, vp)) :-
    ResultProc(proc, dp, vp),
    InProc(proc, n),
    JumpFn(dp, n, d, fn).
ResultProc(proc, dp, apply(cs, v)) :-
    Result(call, d, v),
    EshCallStart(call, d, proc, dp, cs).
```

Figure 6. FLIX implementation of the IDE analysis

Asymptotic running time

$O(|E| \cdot |D|^3)$

Same as IFDS!

[Sagiv et al., 1996]

Copy-constant propagation analysis with IDE

Implementation: TIP/src/tip/analysis/CopyConstantPropagationAnalysis

Copy-constant propagation – example

```
main() {
    var x,y;
    x = p(42);
    y = p(117);
    return x + y;
}
p(a) {
    return a;
}
```

Context sensitive analysis with IDE concludes that x and y are constants at the exit of main

IFDS vs. IDE

- IDE is more general than IFDS
- ...and sometimes faster also for IFDS problems!

Example:

- Copy-constant propagation analysis fits into IFDS (the set of constants that appear as literals in the program is finite), but the set of dataflow facts is Var × Literal (where Literal is the set of literals in the program)
- In contrast, IDE only needs one micro-function per CFG edge and program variable and a map Var → Const for each CFG node (where Const is the constant propagation lattice)

Possibly-uninitialized variables analysis reformulated in IDE

- Lattice of abstract states: State = $\mathcal{P}(Var)$ which is isomorphic to: $Var \rightarrow \{T, F\}$...and to: $\{\star\} \rightarrow \mathcal{P}(Var)$
- The transfer function for assignments: $t_{x=E}(S) = \begin{cases} S \cup \{x\} \text{ if } vars(E) \cap S \neq \emptyset \\ S \setminus \{x\} \text{ otherwise} \end{cases}$
- Exercise: How can such a transfer function be represented using micro-functions?

- Hint: consider either of the two isomorphic lattice variants

• (Micro-functions for the other transfer functions are easy...)

Implementation: TIP/src/tip/analysis/PossiblyUninitializedVarsAnalysis

Demand-driven analysis

An alternative to exhaustive analysis

- IFDS: "does dataflow fact d hold at program point v?"
- IDE: "what is the abstract value of x at program point v?"

Use dynamic programming... [Reps et al., 1995], [Sagiv et al., 1996]

Implementations

- Soot: <u>https://github.com/Sable/heros</u>
- WALA: <u>https://github.com/amaurremi/IDE</u>
- TIP: <u>https://github.com/cs-au-dk/TIP/blob/master/src/tip/solvers/IDESolver.scala</u>

See also:

- Nomair A. Naeem, Ondrej Lhoták, Jonathan Rodriguez: *Practical Extensions to the IFDS Algorithm*. CC 2010
- Eric Bodden: Inter-procedural Data-flow Analysis with IFDS/IDE and Soot. SOAP@PLDI 2012
- Jonathan Rodriguez, Ondrej Lhoták: Actor-Based Parallel Dataflow Analysis. CC 2011
- Steven Arzt, Eric Bodden: *Reviser: Efficiently Updating IDE-/IFDS-based Data-Flow Analyses in Response to Incremental Program Changes*. ICSE 2014
- Magnus Madsen, Ming-Ho Yee, Ondrej Lhoták: From Datalog to Flix: A Declarative Language for Fixed Points on Lattices. PLDI 2016
- Johannes Späth, Karim Ali, Eric Bodden: *IDE^{al}: Efficient and Precise Alias-Aware Dataflow Analysis*. Proc. ACM Program. Lang. 1(OOPSLA): 99:1-99:27 (2017)