Static Program Analysis
Part 8 — distributive analysis frameworks

https://cs.au.dk/~amoeller/spa/

Anders Mgller
Computer Science, Aarhus University

https://cs.au.dk/%7Eamoeller/spa/

Key ideas

the function summary effect in
interprocedural dataflow analysis

+

compact representations of distributive functions
U

efficient analysis algorithms

Context sensitive dataflow analysis

Recall our context-sensitive interprocedural sign analysis:

T
e Lattice for abstract values: Sign= + - 0

1
e Lattice for abstract states: State = Var — Sign

* Analysis lattice: (Context — lift(State))"

/

For each CFG node v we have a map m, from call contexts to abstract states (or unreachable)

“If the current function is called in context c, then the abstract state at v is m(c)”
4

Example, revisited:
interprocedural sign analysis with the functional approach

Lattice for abstract states: Context — lift(Var — Sign)
where Context = Var — Sign

f(z2) {
var tl,t2: The abstract state at the exit of T
tl = z%6; can be used as a function summary
t2 = tl1*7;

_ [J_[ZI—>O] — 1[z~0, t1~0, t2-0, result~0],
FRENT T20 - T L[ze+] - L[zw+, tlH+, T2+, resul t—+],

! all other contexts = unreachable]
x = £(0);
y = £(87);

N . At this call, we can reuse the already computed
2 f(42) ’ T exit abstract state of T for the context L[z—>+]

Possibly-uninitialized variables analysis

(very similar to taint analysis)

e Let’s make an analysis to detect possibly-uninitialized variables
— remember the initialized variables analysis?*
* We want
— flow-sensitivity
— full context-sensitivity (with the functional approach)
* Lattice of abstract states: State = P(Var)
e Analysis lattice: (Context — lift(State))" =
(P(var) — lift(P(var)))"

— as usual, nis the number of CFG nodes

— recall that the full functional approach has Context = State

— intuitively, the context is the set of possibly uninitialized variables
at the entry of the current function

*) In this analysis, a variable is possibly-uninitialized if its value may be computed from an uninitialized variable

Possibly-uninitialized variables — example

main() {
var X,VY,Z;
X = 1nput; _
z = p(X,y): * When pis called from ma1n,
= PUGY a is initialized and b is uninitialized
return z; * When p is called from p,
} a and b are both initialized
pCa,b) {
1if (a > 0) { I U
I i * A context-insensitive analysis concludes
b = input; that b may be uninitialized at output (b) ®
a =a - b;
b = p(a,b); e A fully context-sensitive analysis concludes ©
output(a); that b is definitely initialized at output(b)
output(b);
}
return b;

Possibly-uninitialized variables analysis

A forward, may analysis — context-insensitive version:
— variable declarations, var x: [v] = JOIN(v)U{x}

— assignments, X = E:

£(S) = S U {x} if vars(E)NS#Q
VIS \ {x} otherwise

[v] = t,JOIN(v)

— function entries:
see SPA Section 8.1
— after-call nodes:

— all others: [[v] = JOIN(v)

where JOIN(v) = LI, c prediv) [W] ; & ;

Possibly-uninitialized variables analysis

A forward, may analysis — context-sensitive version:
— variable declarations, var x: ...

— assignments, X = E:

£ (S) = S U {x} if vars(E)NS#Q
VIS \ {x} otherwise

t (JOIN(v,c)) ifJOIN(v,c) € State
unreachable if JOIN(v,c) = unreachable

o]

— program entry: [v](c) # unreachable
— other function entries:
see SPA Section 8.4

— after-call nodes: & 4
— all others: [v](c) = JOIN(v,c) Vé
where JOIN(v,c)=Ll,,c preqr) [WI(C)

Pre-analysis n

The analysis lattice is (lift(ZP(Var) = P(Var)))"
Idea: run a context-insensitive(!) analysis that computes,

for each CFG node v, a map m,: P(Var) = P(Var)
with the following property:

If the function containing v is executed in an initial abstract
state where SC\Var are the possibly-uninitialized variables at the
entry, then m,(S) is the set of possibly-uninitialized variables at v

The ‘unreachable’ element means that the function containing v
is unreachable from the program entry

If we have such an analysis, then we can easily compute
the sets of possibly-uninitialized variables for all CFG nodes
(without doing a full context-sensitive analysis)

It suffices to compute m, for CFG nodes in reachable functions

10

Distributive functions and analyses

Exercise 4.20: A function f: L1 — L, where L, and L are lattices is distribu-
tive whenVz,y € Li: f(x)U f(y) = f(xUy).
(a) Show that every distributive function is also monotone.

(b) Show that not every monotone function is also distributive.

Exercise 5.26: An analysis is distributive if all its constraint functions are
distributive according to the definition from Exercise 4.20. Show that live
variables analysis is distributive.

Is possibly-uninitialized variables analysis distributive?

11

Distributive functions and analyses

Exercise 5.34: Which among the following analyses are distributive, if any?
(a) Available expressions analysis.

(b) Very busy expressions analysis.

)
(c) Reaching definitions analysis.
(d) Sign analysis.
(e) Constant propagation analysis.

Exercise 11.6: Recall from Exercise 5.26 that an analysis is distributive if all
its constraint functions are distributive. Show that Andersen’s analysis is not
distributive. (Hint: consider the constraint for the statement x=*y or *x=y.)

12

13

I F DS (Interprocedural Finite Distributive Subset problems)

Precise Interprocedural Dataflow Analysis via Graph Reachability,

Reps, Horwitz, Sagiv, POPL 1995

Setting:
— lattice of abstract states: State = P(D) where D is a finite set
(i.e., a powerset lattice)

— all transfer functions, f : State — State, are distributive

Great idea #1:

— such analysis constraints can be represented compactly!

— distributivity is closed under composition and least upper bound,
so function summaries can also be represented compactly
and without loss of precision!

Great idea #2:

— tabulation solver (building the m, maps)

Bonus: can be made demand-driven

14

Compact representation
Assume f: P(D) — P(D) where D is a finite set and f is distributive

A naive representation of f would be a table with 2!Pl entries
(if D is, for example, the set of program variables, then such a table is big!)
f can be decomposed into a function g: (D U {e}) = P(D)
— Define g(®) = (@) and g(d) = f({d}) \ f(@) for d€ED
— Now f(X) = g(e) U U, ,&(y)
Can be represented compactly as a graph with 2(|D|+1) nodes
— Example: e d; d, d; for D={d,, d,, d;}
NN
e d, d, d,

means that g(e) = {d,}, g(d,)=0, g(d,)={d5}, and g(d;)={d.}
(the edge from @ to e is always present)
so f(S) = {d,, d;} if d,€S or d;€S, and f(S) = {d,} otherwise

— In general, the edges are:
{e~e}U {e~y | yef(D)} U {x~>y | yef({x}) A y&f(D)}

15

Compact representation

Exercise:

For uninitialized-variables analysis,

what is the IFDS graph representation of
1) an assignment, X = E, or

2) a variable declaration, var X ?

16

Composition and l.u.b.

* Distributivity is closed under function composition and |l.u.b.
Assume f,: P(D) — P(D) and f;: (D) — P(D) where D is a finite set
and both f and are distributive

— f,ofg: P(D) = P(D) is also distributive (frof5)(S) = fA(Fa(S))
— f,Ufg: P(D) = P(D) is also distributive (f,LIf,)(S) = f,(S)LIf4(S)

* Proof? (exercise)

* With the graph representation:

e d, d, d, e d, d, d,

N

d, d, d, d, e d, d, d,

e d; d, dj °
Dt e\
faots” e d; d, d;
—¢ ¢/ | PN

d, d, d, -e d; d, d; e d; d, d
(edges d,—>d; and d;—>d, could be omitted) (edges d;—>d; and d;—>d, could be omitted)
17

Possibly-uninitialized variables analysis

The analysis lattice is (lift(P(Var) = P(Var)))"

For each reachable CFG node, the analysis computes an element of
P(var) - P(Var)

——

assuming we have this set of __we have this set of

possibly-uninitialized variables possibly-uninitialized variables at v
at the entry of the function...

With the graph representation, all such functions can be
represented compactly and constructed efficiently!

Using the ordinary worklist algorithm from monotone frameworks
amounts to propagating sets of possibly-uninitialized variables for
different contexts (Exercise: worst-case time complexity?)

A smarter approach: the tabulation algorithm

18

The IFDS Tabulation Algorithm /

The idea: with a worklist algorithm, incrementally build
a set of path edges (v,,d,)»(v,,d,) where

v, dZ

— v, is a function entry node, v, is a CFG node in
the same function asv;, and d;, d,€ D U {e}

— the edge means: if dataflow fact d, holds at v, then d, holds at v,
Only requires function composition and l.u.b.

At each call node, use the path edges for the return nodes of
the function being called as a function summary!

See pseudo-code in [Reps et al., 1995]
Worst-case time complexity: O(|E|-|D|3)
where |E| is the number of CFG edges

After the table is built, it is easy to compute the dataflow facts
for any given CFG node

19

Example [Reps et al., 1995]

declare g: integer

program main
begin
declare x: integer
read(x)
call P(x)
end

procedure P (value a : integer)
begin
if (¢ > 0) then
read(g)
a=a-g
call P(a)
print(a. g)
fi

end

AS. {x.g}

AS.S-{x}

AS.S-{g}

rS.S

g main
ENTER main

e
main

EXIT main

A S.S<x/a
PN |
‘p
ENTER P
ASS
Y
n4
IFa>0
\?Li.S
n3
READ(g)
\ AS.S ¢ AS.8-1g)
rSSY
¢ ne
a:=a-g
¢ AS.if (ae S)or (zeS)
then SU {a}
n7 else S-{a}
CALLP
{ AS.S-{g)
= ns
’ RETURN
. FROM P
AS.S-{al ¢ 1SS
i n9
AS.S-{a} i PRINT(a,g)
/RS.S

| Exite

Figure 1. An example program and its supergraph G . The supergraph is annotated with the dataflow functions for the “possibly-
uninitialized variables™ problem. The notation S<x/a> denotes the set S with x renamed to a.

20

Example [Reps et al., 1995]

|

) 5L
main 7 g -

ENTER main ENTER P

E?n»mr':ll
EXIT main |- n8 0

RETURN
FROM P

|

ng
PRINT({a,g)

Computing the
possibly-uninitialized variables
amounts to finding realizable

(i.e., interprocedurally valid) paths
in this graph!

e

Figure 2. The exploded supergmph that corresponds to the instance of the possibly-uninitialized variables problem shown in Figure 1.
Closed circles represent nodes of Gy that are reachable along realizable paths from (s,,.;, 0). Open circles represent nodes not reachable

along such paths. (the paper uses 0 instead of 0)

Dataflow at function calls

function parameter values

function f(by, .., b,)

values of , i3 = f(Ey, .y Eo)
local variables

/

= => X = i Tt = E
\ ‘\&=

return values

IFDS constraint-based specification
Phase 1

* E represents the program being analyzed:
(vy,d;)>(v,,d,)€E means that v,esucc(v,) and
if dataflow fact d; holds at v, then d, holds at v,
(obtained from the graph representation of the transfer functions)

* Pisthe set of path edges (see slide 19)

23

IFDS constraint-based specification
Phase 1

Vv is a program entry node:
(v, ®)w>(v, ®)€P

v is a function entry node, v, is a call node that calls the function containing v,
and v is the entry node of the function containing v;:

(vg, d)(vy, d,)EP A (vy, d,))>(v, d;)€E = (v, d;)w(v, d;)eP foralld,, d,, d;

24

IFDS constraint-based specification

S

am—-—

- -
-

/

Phase 1

v is an after-call node belonging to a call node V’, v, is the entry node of the
function containing v and Vv, w is the entry node of the function being called,

and w’ is the exit node of that function:

(Vo dy) (v, d)EP A V', dy) (W, d3)€E A (w, dy) (W', d,)EP A (W', d,)~>(y, ds)eE

= (Vp, dp)»>(v,d5)€P

foralld,, d,, d;, d,, d

25

IFDS constraint-based specification

Phase 1

v is an after-call node belonging to a call node v’
or v is another node with a predecessor v’ epred(v)
and v, is the entry node of the function containing v and v’:

(Vor dp)w(V', d,)€P A (V/, d,)>(v,d3)EE = (v, dy)>(v, d;)€P

foralld,, d,, d;

26

IFDS constraint-based specification
Phase 2

(Vo d)wo(v, d;)eP = d,&[v]
where v, is the entry node in the function containing v

[v] now contains the set of dataflow facts that may hold at v

27

Exercise

Exercise 9.19: Explain step-by-step how IFDS-based possibly-uninitialized
variables analysis runs on the example programs from Exercise 9.3 and Exer-
cise 9.17.

28

IFDS constraint-based specification

PathEdge(d1, m, d3) :—
CFG(n, m),
PathEdge(d1, n, d2),
d3 <— eshIntra(n, d2).
PathEdge(d1, m, d3) :—
CFG(n, m),
PathEdge(d1, n, d2),
SummaryEdge(n, d2, d3).
PathEdge(d3, start, d3) :—
PathEdge(d1, call, d2),
CallGraph(call, target),
EshCallStart(call, d2, target, d3),
StartNode(target, start).
SummaryEdge(call, d4, d5) :—
CallGraph(call, target),
StartNode(target, start),
EndNode(target, end),
EshCallStart(call, d4, target, di),
PathEdge(d1, end, d2),
d5 <— eshEndReturn(target, d2, call).

EshCallStart(call, d, target, d2) :—
PathEdge(_, call, d),
CallGraph(call, target),
d2 <— eshCallStart(call, d, target).

Result(n, d2) :—
PathEdge(_, n, d2).

Figure 5. FLIX implementation of the IFDS analysis

29

30

I D E (Interprocedural Distributive Environment problems)

Precise Interprocedural Dataflow Analysis with Applications to
Constant Propagation, Sagiv, Reps, Horwitz, TCS 1996

Generalization of IFDS,
in practice more efficient also for some IFDS problems!

Setting:

— lattice of abstract states: State = D —» L where D is a finite set
and L is a lattice (generalization of IFDS)

— all transfer functions, f,: State — State, are distributive (as with IFDS)

Great idea #1:

— also allows compact representation and summarization!

Great idea #2:

— the tabulation solver can easily be generalized...

31

Copy-constant propagation analysis

IS
-3-2-10 1 2 3
|
1

Constant propagation analysis is not distributive

... but copy-constant propagation analysis is!

Like constant propagation analysis, but only handles
— constant assignments, e.g., x =42
— Ccopy assignments, e.g., X =y

All other assignments just give T

A variant: linear-constant propagation analysis
Also handles linear expressions, e.g., x = 5*y+17

Exercise: prove that these two analyses are indeed distributive

32

A generalization of IFDS

The powerset lattice P(D) is isomorphic to
the map lattice D = {T, F} where FC= T T="true”, F=“false”

So (P(D) »P(D))"
is isomorphic to ((D = {T, F}) =(D — {T, F}))"

In IDE we have State = D — L where D is a finite set
and L is a (finite-height) complete lattice

IFDS thus corresponds to the special case L = {T, F}

We have seen how to compactly represent distributive functions
of the form f: (D) —» P(D)

How can we generalize that to distributive functions of the form
f:(D—> L) = (D — L) for arbitrary lattices?

33

Compact representation

e Assumef: (D — L) = (D — L) is distributive, D is a finite set,
and L is a complete lattice

e Defineg: (DU {®})x (DU {®})—=(L—1L)by
g(a, b)(e) = f(L[a—e])(b) for a,beD and e€L
g(e, b)(e) = f(_L)(b) for beD and e€L
g(e, ®)(e) = e for eelL
g(a, ®)(e) = 1 for aeD and e€L

* Now f(m)(b) = g(e, b) (L) U Ll 8(a, b)(m(a))
* Similar graph representation as in IFDS, but now each edge is
a function L = L (an absent edge represents the function Ae.)

e d, d, d, this edge is labelled with g(d,, d;)
£ { ‘l'\ \((a “micro-function”)
e \d; d, ds

e

this edge is always Ae.e 34

Compact representation

Exercise:
What is the graph representation of an assignment x=E
for copy-constant propagation analysis?

35

Compact representation

Exercise:
What is the graph representation of an assignment x=E
for copy-constant propagation analysis?

o X
* If Eis a constant c: S o
I i) A (default edge label: Le.e)
* If Eis avariabley: | /l efault edge label: he.e
o X y

re T
* Any other expression: l\%

 How to also handle assignments like x = 5*y+1 ?
(for linear-constant propagation analysis) i

Composition and l.u.b.

* Function composition and least upper bound can be
performed efficiently on the graph representation

— here it is useful that e~e is always labelled with Ae.e

e ...assuming efficiently representable lattice elements

— for copy-constant propagation analysis we only need
the identity function and constant functions, and those are
trivially closed under composition and l.u.b.

Exercise: what about linear-constant propagation analysis?

Implementation: TIP/src/tip/lattices/EdgeLattice

37

Example [Sagiv et al., 1996]

declare x: integer
program main

begin *p
call P(7) Aenv.emv [a 7] ENTER P
print (x) /* xis a constant here */ l
end Y
s IF a>0
0 main
procedure P (value a : integer) ENTER main
begin /* a is not a constant here */ Lemv.emv[x >L]
if a > 0 then
a:=a— 2 n n5
a=a-2
call P (a) CALLP(7)
a:=a-+ 2 N [x I=T] pemvenv|a t>envia)-2
~ env.env|x
h n
x:==-2%a+5 m CALL P(a)
/* x is not a constant here */ RETURN - -
FROM P henv.env|x
end
hemvenv|a =T nf
RETURN
= FROM P
PRINT(x)
8
= a:=a+2
main
EXIT main

renv.envla b env(a)+2

n9
X:=-2"a+5h

renv.envla =T]

renv.env|x = 2zenvia) + 5]

€p

EXITP

Figure 1: An example program and its labeled supergraph G*. The environment transformer for all

unlabeled edges is Aenv.env.

(the paper uses lattices upside-down)

38

Example [Sagiv et al., 1996]

S
P

ENTERP

!

n4

s
mam

ENTER main

e
main

EXIT main

Figure 4: The labeled exploded supergraph for the running example program for the linear-constant-
propagation problem. The edge functions are all M.l except where indicated.

39

IDE constraint-based specification

 Edgesin E and P are now labelled with L — L functions

e [(vi.dy) ~ (v2.d2)]p: L — L denotes the label of
the edge in P from (v1.d1) to (v2.d2)

o [(v1,d1)—(v2,d2)]g: L = L denotes the label of
the edge in E from (v1.d1) to (v2.ds2)

40

IDE constraint-based specification
Phase 1

For the program entry:

d [[<€??'trgfmain: .> e CE?nt'rymain.‘ .>IP

41

IDE constraint-based specification
Phase 1

If v is a function entry node, v, is a call node that calls the function
containing v, and v, is the entry node of the function containing v;:

Vd17d27d3: [K'U()adﬁ ~ <'U17d2>ﬂP 7& 1L A {<1”17d2>_><v5d3>}E ?é 1
— id T [(o.da) ~ (v d)]p

42

IDE constraint-based specification
Phase 1

If v is an after-call node belonging to a call node Vv’, v, is the entry
node of the function containing v and v/, w is the entry node of the
function being called, and w’ is the exit node of that function:
Vdi.do.ds,dy, ds:

my = [(vo,d1) ~ (V' do)]p # L A ma = [(V,d2) > (w,d3)]g # L

A mgz = [(w,d3) ~ (W' dy)]p #L A my =[(w,dy)— (v,d5)]g # L

—> maomzomeomy C [(vo,dy) ~ (v.ds)]p

f

’
’
r
1
]
1
1
m
1
'
]
v

-

' ms3
I

Uo
*7d
‘ 1
.’
!
!
my
1
= —
d>
A
e 11
ds

43

my dy

IDE constraint-based specification
Phase 1

If v is an after-call node belonging to a call node v’
or v is another node with a predecessor v’ epred(v)
and v, is the entry node of the function containing v.and v':

le,dg, dg: my = [[("Uo, d1> D <"U,, d;g)ﬂp ;é 1 A Mmoo = [('l?,, (]2) —> <’l.-‘, d:g)]E ?é 1
— mo omy C [(vo,d1) ~ (v,d3)]p

Similar for any other node v with predecessor v’ where
V, is the entry node of the function containing v and v’

44

IDE constraint-based specification
Phase 2

Computes abstract values: [(v.d)] € lift(L)

Program entry: Vd: [{entryy.in, d)] # unreachable
For any node v where v, is the entry of the function containing v:
Vdy,d: [(vo,dy)] # unreachable A m = [(vg.dp) ~ (v, d)]p

—> m([(vo,do)]) C [{(v,d)]

If v is a function entry node and v, is a call node to v:
Vdy.d: [(vi,d1)] # unreachable A m = [(vi,di) = (v. d)|E
= m([(v1,d)]) E [(v,d)]

Combine into abstract states: [v],(d) = [(v.d)] € L for d € D

L

45

IDE constraint-based specification

JumpFn(d1, m, d3, comp(long, short)) :—
CFG(n, m),
JumpFn(d1, n, d2, long),
(d3, short) <— eshIntra(n, d2).
JumpFn(d1, m, d3, comp(caller, summary)) :—
CFG(n, m),
JumpFn(d1, n, d2, caller),
SummaryFn(n, d2, d3, summary).
JumpFn(d3, start, d3, identity()) :—
JumpFn(d1, call, dz, _),
CallGraph(call, target),
EshCallStart(call, d2, target, d3, _),
StartNode(target, start),
SummaryFn(call, d4, d5, comp(comp(cs, se), er)) :—
CallGraph(call, target),
StartNode(target, start),
EndNode(target, end),
EshCallStart(call, d4, target, di1, cs),
JumpFn(d1, end, d2, se),
(d5, er) <— eshEndReturn(target, d2, call).

EshCallStart(call, d, target, d2, cs) :—
JumpFn(_, call, d, _),
CallGraph(call, target),
(d2, cs) <— eshCallStart(call, d, target).

InProc(p, start) :— StartNode(p, start).
InProc(p, m) :— InProc(p, n), CFG(n, m).

Result(n, d, apply(fn, vp)) :—
ResultProc(proc, dp, vp),
InProc(proc, n),
JumpFn(dp, n, d, fn).

ResultProc(proc, dp, apply(cs, v)) :—
Result(call, d, v),
EshCallStart(call, d, proc, dp, cs).

Figure 6. FLIX implementation of the IDE analysis

Asymptotic running time

O(|E|-[D|3)
Same as IFDS!

[Sagiv et al., 1996]

48

Copy-constant propagation analysis
with IDE

Implementation: TIP/src/tip/analysis/CopyConstantPropagationAnalysis

49

Copy-constant propagation — example

main() {
var X,Vy;
x = p(42);
y = p(117); Context sensitive analysis with IDE

return X + y; concludes that X and y are constants
) at the exit of main

pCa) {

return a;

}

50

IFDS vs. IDE

* IDE is more general than IFDS
e ...and sometimes faster also for IFDS problems!

Example:

* Copy-constant propagation analysis fits into IFDS (the set of
constants that appear as literals in the program is finite),
but the set of dataflow facts is Var x Literal
(where Literal is the set of literals in the program)

* In contrast, IDE only needs one micro-function per CFG edge and
program variable and a map Var — Const for each CFG node
(where Const is the constant propagation lattice)

51

Possibly-uninitialized variables analysis
reformulated in IDE

 Lattice of abstract states: State = P(Var)
which is isomorphic to: Var — {T, F}
...and to: {x} - P(Vvar)

* The transfer function for assignments:
S U {x} if vars(E)NS+#®
C(s) = { (E)

S\ {x} otherwise
e Exercise: How can such a transfer function be
represented using micro-functions?
— Hint: consider either of the two isomorphic lattice variants
e (Micro-functions for the other transfer functions are easy...)

Implementation: TIP/src/tip/analysis/PossiblyuninitializedvarsAnalysis

Demand-driven analysis

An alternative to exhaustive analysis
* IFDS: “does dataflow fact d hold at program point v?”
* |IDE: “what is the abstract value of x at program point v?”

Use dynamic programming... [Reps et al., 1995], [Sagiv et al., 1996]

53

Implementations

e Soot: https://github.com/Sable/heros

 WALA: https://github.com/amaurremi/IDE

e TIP: https://github.com/cs-au-dk/TIP/blob/master/src/tip/solvers/IDESolver.scala

See also:

Nomair A. Naeem, Ondrej Lhotak, Jonathan Rodriguez: Practical Extensions to the IFDS
Algorithm. CC 2010

Eric Bodden: Inter-procedural Data-flow Analysis with IFDS/IDE and Soot. SOAP@PLDI 2012
Jonathan Rodriguez, Ondrej Lhotak: Actor-Based Parallel Dataflow Analysis. CC 2011

Steven Arzt, Eric Bodden: Reviser: Efficiently Updating IDE-/IFDS-based Data-Flow Analyses in
Response to Incremental Program Changes. ICSE 2014

Magnus Madsen, Ming-Ho Yee, Ondrej Lhotak: From Datalog to Flix: A Declarative Language for
Fixed Points on Lattices. PLDI 2016

Johannes Spath, Karim Ali, Eric Bodden: IDE?: Efficient and Precise Alias-Aware Dataflow

Analysis. Proc. ACM Program. Lang. 1(OOPSLA): 99:1-99:27 (2017)
54

https://github.com/Sable/heros
https://github.com/amaurremi/IDE
https://github.com/cs-au-dk/TIP/blob/master/src/tip/solvers/IDESolver.scala

	Slide Number 1
	Agenda
	Key ideas
	Context sensitive dataflow analysis
	Example, revisited: �interprocedural sign analysis with the functional approach
	Possibly-uninitialized variables analysis
	Possibly-uninitialized variables – example
	Possibly-uninitialized variables analysis
	Possibly-uninitialized variables analysis
	Pre-analysis
	Distributive functions and analyses
	Distributive functions and analyses
	Agenda
	IFDS (Interprocedural Finite Distributive Subset problems)
	Compact representation
	Compact representation
	Composition and l.u.b.
	Possibly-uninitialized variables analysis
	The IFDS Tabulation Algorithm
	Example [Reps et al., 1995]
	Example [Reps et al., 1995]
	Dataflow at function calls
	IFDS constraint-based specification�Phase 1
	IFDS constraint-based specification�Phase 1
	IFDS constraint-based specification�Phase 1
	IFDS constraint-based specification�Phase 1
	IFDS constraint-based specification�Phase 2
	Exercise
	IFDS constraint-based specification�
	Agenda
	IDE (Interprocedural Distributive Environment problems)
	Copy-constant propagation analysis
	A generalization of IFDS
	Compact representation
	Compact representation
	Compact representation
	Composition and l.u.b.
	Example [Sagiv et al., 1996]
	Example [Sagiv et al., 1996]
	IDE constraint-based specification
	IDE constraint-based specification�Phase 1
	IDE constraint-based specification�Phase 1
	IDE constraint-based specification�Phase 1
	IDE constraint-based specification�Phase 1
	IDE constraint-based specification�Phase 2
	IDE constraint-based specification�
	Asymptotic running time
	Copy-constant propagation analysis with IDE
	Copy-constant propagation – example
	IFDS vs. IDE
	Possibly-uninitialized variables analysis reformulated in IDE
	Demand-driven analysis
	Implementations

