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Agenda

• Distributive analysis
• IFDS
• IDE
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Key ideas

the function summary effect in 
interprocedural dataflow analysis

+

compact representations of distributive functions

⇓

efficient analysis algorithms
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Context sensitive dataflow analysis

Recall our context-sensitive interprocedural sign analysis:

• Lattice for abstract values: 

• Lattice for abstract states: State = Var → Sign

• Analysis lattice: (Context → lift(State))n
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Sign = 

For each CFG node v we have a map mv from call contexts to abstract states (or unreachable)
“If the current function is called in context c, then the abstract state at v is mv(c)” 

⊤

+ - 0

⊥



Example, revisited: 
interprocedural sign analysis with the functional approach
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f(z) {

var t1,t2;

t1 = z*6;

t2 = t1*7;

  return t2;

}

...

x = f(0);

y = f(87);

z = f(42);

...

Lattice for abstract states:   Context → lift(Var → Sign)
where Context = Var → Sign

[⊥[z↦0] ↦ ⊥[z↦0, t1↦0, t2↦0, result↦0],
⊥[z↦+] ↦ ⊥[z↦+, t1↦+, t2↦+, result↦+],
all other contexts ↦ unreachable ]

At this call, we can reuse the already computed 
exit abstract state of f for the context ⊥[z↦+]

The abstract state at the exit of f
can be used as a function summary 



Possibly-uninitialized variables analysis

• Let’s make an analysis to detect possibly-uninitialized variables
– remember the initialized variables analysis?*

• We want
– flow-sensitivity
– full context-sensitivity (with the functional approach)

• Lattice of abstract states:  State = P(Var)
• Analysis lattice:  (Context → lift(State))n = 

(P(Var) → lift(P(Var)))n

– as usual, n is the number of CFG nodes
– recall that the full functional approach has Context = State
– intuitively, the context is the set of possibly uninitialized variables 

at the entry of the current function

6
*) In this analysis, a variable is possibly-uninitialized if its value may be computed from an uninitialized variable

(very similar to taint analysis)



Possibly-uninitialized variables – example
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main() {

  var x,y,z;

  x = input;

  z = p(x,y);

  return z;

}

p(a,b) {

  if (a > 0) {

    b = input;

    a = a - b;

    b = p(a,b);

    output(a);

    output(b);

  }

  return b;

}

• When p is called from main, 
a is initialized and b is uninitialized

• When p is called from p, 
a and b are both initialized





• A context-insensitive analysis concludes 
that b may be uninitialized at output(b)

• A fully context-sensitive analysis concludes 
that b is definitely initialized at output(b)



Possibly-uninitialized variables analysis
A forward, may analysis – context-insensitive version:

– variable declarations, var x :   ⟦v⟧ = JOIN(v)∪{x}

– assignments, x = E:   

tv(S) =�S ∪ {x} if vars(E)∩S≠∅
S \ {x} otherwise

⟦v⟧ = tv(JOIN(v))
– function entries: 
– after-call nodes:      
– all others:  ⟦v⟧ = JOIN(v)

  where JOIN(v) = ⨆w∈pred(v) ⟦w⟧
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see SPA Section 8.1

w1    …  wn
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Possibly-uninitialized variables analysis
A forward, may analysis – context-sensitive version:

– variable declarations, var x :  ...

– assignments, x = E:

tv(S) =�S ∪ {x} if vars(E)∩S≠∅
S \ {x} otherwise

⟦v⟧(c) =� tv(JOIN(v,c)) if JOIN(v,c) ∊ State
unreachable if JOIN(v,c) = unreachable

– program entry:   ⟦v⟧(c) ≠ unreachable
– other function entries:
– after-call nodes:      
– all others:  ⟦v⟧(c) = JOIN(v,c)

  where JOIN(v,c)=⨆w∈pred(v) ⟦w⟧(c)
9

see SPA Section 8.4 w1    …  wn

tv
v



Pre-analysis
• The analysis lattice is (lift(P(Var) →P(Var)))n

• Idea: run a context-insensitive(!) analysis that computes, 
for each CFG node v, a map mv: P(Var) →P(Var) 
with the following property:

If the function containing v is executed in an initial abstract 
state where S⊆Var are the possibly-uninitialized variables at the
entry, then mv(S) is the set of possibly-uninitialized variables at v

The ‘unreachable’ element means that the function containing v 
is unreachable from the program entry

• If we have such an analysis, then we can easily compute 
the sets of possibly-uninitialized variables for all CFG nodes
(without doing a full context-sensitive analysis)

• It suffices to compute mv for CFG nodes in reachable functions
10

v

mv



Distributive functions and analyses
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Is possibly-uninitialized variables analysis distributive?



Distributive functions and analyses
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Agenda
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• Distributive analysis
• IFDS
• IDE



IFDS (Interprocedural Finite Distributive Subset problems)

• Precise Interprocedural Dataflow Analysis via Graph Reachability, 
Reps, Horwitz, Sagiv, POPL 1995

• Setting:
– lattice of abstract states: State = P(D) where D is a finite set 

(i.e., a powerset lattice)
– all transfer functions, fv: State → State, are distributive

• Great idea #1:
– such analysis constraints can be represented compactly!
– distributivity is closed under composition and least upper bound, 

so function summaries can also be represented compactly 
and without loss of precision!

• Great idea #2: 
– tabulation solver (building the mv maps)

• Bonus: can be made demand-driven
14



Compact representation
• Assume f: P(D) → P(D) where D is a finite set and f is distributive
• A naive representation of f would be a table with 2|D| entries

(if D is, for example, the set of program variables, then such a table is big!)

• f can be decomposed into a function g: (D ∪ {●}) → P(D)
– Define g(●) = f(∅) and g(d) = f({d}) \ f(∅) for d∈D
– Now f(X) = g(●) ∪ ⋃y∊X g(y)

• Can be represented compactly as a graph with 2( D +1) nodes
– Example: for D={d1, d2, d3}

means that g(●) = {d1}, g(d1)=∅, g(d2)={d3}, and g(d3)={d3} 
(the edge from ● to ● is always present)
so f(S) = {d1, d3} if d2∊S or d3∊S, and f(S) = {d1} otherwise

– In general, the edges are:
{●⤳●} ∪ {●⤳y | y∊f(∅)} ∪ {x⤳y | y∊f({x}) ∧ y∉f(∅)}

15

● d1 d2 d3

● d1 d2 d3



Compact representation
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Exercise:
For uninitialized-variables analysis,
what is the IFDS graph representation of 
1) an assignment,  X = E, or
2) a variable declaration,  var X ?



Composition and l.u.b.
• Distributivity is closed under function composition and l.u.b.

Assume fA: P(D) → P(D) and fB: P(D) → P(D) where D is a finite set
and both f and are distributive
– fA∘fB: P(D) → P(D) is also distributive (fA∘fB)(S) = fA(fB(S))

– fA⊔fB: P(D) → P(D) is also distributive   (fA⊔fB)(S) = fA(S)⊔fB(S)

• Proof? (exercise)

• With the graph representation:
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● d1 d2 d3

● d1 d2 d3

● d1 d2 d3

fB

fA

● d1 d2 d3

● d1 d2 d3

fA∘fB

(edges d2→d1 and d3→d1 could be omitted)

● d1 d2 d3

● d1 d2  d3

fB

● d1 d2 d3

● d1 d2 d3

fA

● d1 d2 d3

● d1 d2 d3

fA⊔fB

(edges d1→d1 and d3→d1 could be omitted)



Possibly-uninitialized variables analysis
• The analysis lattice is (lift(P(Var) →P(Var)))n

• For each reachable CFG node, the analysis computes an element of
P(Var) →P(Var)

• With the graph representation, all such functions can be 
represented compactly and constructed efficiently!

• Using the ordinary worklist algorithm from monotone frameworks 
amounts to propagating sets of possibly-uninitialized variables for 
different contexts  (Exercise: worst-case time complexity?)

• A smarter approach: the tabulation algorithm
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assuming we have this set of 
possibly-uninitialized variables 
at the entry of the function...

...we have this set of 
possibly-uninitialized variables at v



The IFDS Tabulation Algorithm
• The idea: with a worklist algorithm, incrementally build 

a set of path edges 〈v1,d1〉⇝〈v2,d2〉 where 
– v1 is a function entry node, v2 is a CFG node in 

the same function as v1, and d1, d2 ∊ D ∪ {●}
– the edge means: if dataflow fact d1 holds at v1 then d2 holds at v2

• Only requires function composition and l.u.b.
• At each call node, use the path edges for the return nodes of

the function being called as a function summary!
• See pseudo-code in [Reps et al., 1995]

• Worst-case time complexity: O( E ∙ D 3)
where E is the number of CFG edges

• After the table is built, it is easy to compute the dataflow facts 
for any given CFG node

19

v2

d1

d2



Example [Reps et al., 1995]
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Example [Reps et al., 1995]

Computing the 
possibly-uninitialized variables 
amounts to finding realizable 
(i.e., interprocedurally valid) paths 
in this graph!

(the paper uses 0 instead of ●)



Dataflow at function calls
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⬚ = f(E1, ..., En)

result = E

function f(b1, ..., bn)

X = ⬚

function parameter values

return values

values of 
local variables



IFDS constraint-based specification
Phase 1

• E represents the program being analyzed: 
〈v1,d1〉⤳〈v2,d2〉∊E means that v2∊succ(v1) and
if dataflow fact d1 holds at v1 then d2 holds at v2
(obtained from the graph representation of the transfer functions)

• P is the set of path edges (see slide 19)
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IFDS constraint-based specification
Phase 1

• v is a program entry node:
〈v, ●〉⇝〈v, ●〉∊P

• v is a function entry node, v1 is a call node that calls the function containing v, 
and v0 is the entry node of the function containing v1:

〈v0, d1〉⇝〈v1, d2〉∊P ∧ 〈v1, d2〉⤳〈v, d3〉∊E ⇒  〈v, d3〉⇝〈v, d3〉∊P for all d1, d2, d3
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IFDS constraint-based specification
Phase 1

• v is an after-call node belonging to a call node v’, v0 is the entry node of the 
function containing v and v’, w is the entry node of the function being called, 
and w’ is the exit node of that function:

〈v0, d1〉⇝〈vʹ, d2〉∊P ∧ 〈v’, d2〉⤳〈w, d3〉∊E ∧ 〈w, d3〉⇝〈wʹ, d4〉∊P ∧ 〈w’,d4〉⤳〈v, d5〉∊E
⇒  〈v0, d1〉⇝〈v,d5〉∊P for all d1, d2, d3, d4, d5
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IFDS constraint-based specification
Phase 1

• v is an after-call node belonging to a call node v’ 
or v is another node with a predecessor v’∊pred(v)
and v0 is the entry node of the function containing v and v’: 

〈v0, d1〉⇝〈vʹ, d2〉∊P ∧ 〈v’, d2〉⤳〈v,d3〉∊E ⇒  〈v0, d1〉⇝〈v, d3〉∊P for all d1, d2, d3
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IFDS constraint-based specification
Phase 2

〈v0, d1〉⇝〈v, d2〉∊P ⇒  d2∊⟦v⟧
where v0 is the entry node in the function containing v

⟦v⟧ now contains the set of dataflow facts that may hold at v

27



Exercise
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IFDS constraint-based specification
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Agenda
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• Distributive analysis
• IFDS
• IDE



IDE (Interprocedural Distributive Environment problems)

• Precise Interprocedural Dataflow Analysis with Applications to 
Constant Propagation, Sagiv, Reps, Horwitz, TCS 1996

• Generalization of IFDS, 
in practice more efficient also for some IFDS problems!

• Setting:
– lattice of abstract states: State = D → L where D is a finite set 

and L is a lattice (generalization of IFDS)
– all transfer functions, fv: State → State, are distributive (as with IFDS)

• Great idea #1: 
– also allows compact representation and summarization!

• Great idea #2:
– the tabulation solver can easily be generalized…

31



Copy-constant propagation analysis

• Constant propagation analysis is not distributive
• ... but copy-constant propagation analysis is!
• Like constant propagation analysis, but only handles

– constant assignments, e.g., x = 42
– copy assignments, e.g., x = y

• All other assignments just give ⊤

• A variant: linear-constant propagation analysis
• Also handles linear expressions, e.g., x = 5*y+17

32Exercise: prove that these two analyses are indeed distributive

⊤

-1 0 1 2 3-2-3

⊥



A generalization of IFDS

• The powerset lattice P(D) is isomorphic to 
the map lattice D → {T, F} where F ⊏ T T=“true”, F=“false”

• So (P(D) →P(D))n

is isomorphic to ((D → {T, F}) →(D → {T, F}))n

• In IDE we have State = D → L where D is a finite set 
and L is a (finite-height) complete lattice

• IFDS thus corresponds to the special case L = {T, F}
• We have seen how to compactly represent distributive functions

of the form f: P(D) → P(D)
• How can we generalize that to distributive functions of the form

f: (D → L) → (D → L) for arbitrary lattices?
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Compact representation
• Assume f: (D → L) → (D → L) is distributive, D is a finite set, 

and L is a complete lattice
• Define g: (D ∪ {●}) × (D ∪ {●}) → (L → L) by

g(a, b)(e) = f(⟘[a↦e])(b) for a,b∊D and e∊L
g(●, b)(e) = f(⟘)(b) for b∊D and e∊L
g(●, ●)(e) = e for e∊L
g(a, ●)(e) = ⟘ for a∊D and e∊L

• Now f(m)(b) = g(●, b) (⟘) ⊔ ⨆a∊D g(a, b)(m(a))
• Similar graph representation as in IFDS, but now each edge is 

a function L → L  (an absent edge represents the function λe.⟘)

34

● d1 d2 d3

● d1 d2 d3

f

this edge is labelled with g(d2, d3)
(a “micro-function”)

this edge is always λe.e



Compact representation
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Exercise:
What is the graph representation of an assignment x=E
for copy-constant propagation analysis?



Compact representation

• If E is a constant c:

• If E is a variable y:

• Any other expression:

• How to also handle assignments like x = 5*y+1 ?
(for linear-constant propagation analysis) 36

Exercise:
What is the graph representation of an assignment x=E
for copy-constant propagation analysis?

● ...      x      ...

● ...      x      ...    

λe.c

● ...      x       y

● ...      x       y    

● ...      x      ...

● ...      x      ...    

λe.⟙

(default edge label: λe.e)



Composition and l.u.b.

• Function composition and least upper bound can be 
performed efficiently on the graph representation
– here it is useful that ●⤳● is always labelled with λe.e

• ...assuming efficiently representable lattice elements
– for copy-constant propagation analysis we only need

the identity function and constant functions, and those are
trivially closed under composition and l.u.b.

Exercise: what about linear-constant propagation analysis? 

37
Implementation: TIP/src/tip/lattices/EdgeLattice



Example [Sagiv et al., 1996]

38(the paper uses lattices upside-down)



Example [Sagiv et al., 1996]
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IDE constraint-based specification

• Edges in E and P are now labelled with L → L functions

• denotes the label of 
the edge in P from              to  

• denotes the label of 
the edge in E from              to 

40



IDE constraint-based specification
Phase 1

41

For the program entry:



IDE constraint-based specification
Phase 1

If v is a function entry node, v1 is a call node that calls the function 
containing v, and v0 is the entry node of the function containing v1:
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IDE constraint-based specification
Phase 1

If v is an after-call node belonging to a call node v’, v0 is the entry 
node of the function containing v and v’, w is the entry node of the 
function being called, and w’ is the exit node of that function:
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IDE constraint-based specification
Phase 1

If v is an after-call node belonging to a call node v’
or v is another node with a predecessor v’∊pred(v)
and v0 is the entry node of the function containing v and v’:

44

Similar for any other node v with predecessor v’ where
v0 is the entry node of the function containing v and v’



IDE constraint-based specification
Phase 2

Combine into abstract states:                                             for
45

Computes abstract values:

Program entry:

For any node v where v0 is the entry of the function containing v:

If v is a function entry node and v1 is a call node to v:



IDE constraint-based specification
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Asymptotic running time

O( E ∙ D 3)
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Same as IFDS!

[Sagiv et al., 1996]



Copy-constant propagation analysis 
with IDE
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Implementation: TIP/src/tip/analysis/CopyConstantPropagationAnalysis



Copy-constant propagation – example
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main() {

  var x,y;

  x = p(42);

  y = p(117);

  return x + y;

}

p(a) {

  return a;

}

Context sensitive analysis with IDE 
concludes that x and y are constants
at the exit of main



IFDS vs. IDE

• IDE is more general than IFDS
• ...and sometimes faster also for IFDS problems!

Example: 
• Copy-constant propagation analysis fits into IFDS (the set of 

constants that appear as literals in the program is finite), 
but the set of dataflow facts is Var × Literal
(where Literal is the set of literals in the program)

• In contrast, IDE only needs one micro-function per CFG edge and 
program variable and a map Var → Const for each CFG node 
(where Const is the constant propagation lattice)
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Possibly-uninitialized variables analysis 
reformulated in IDE

• Lattice of abstract states:    State = P(Var) 
which is isomorphic to:                     Var → {T, F} 
...and to:                                              {⋆} → P(Var)

• The transfer function for assignments:

tx=E(S) = �S ∪ {x} if vars(E)∩S≠∅
S \ {x} otherwise

• Exercise: How can such a transfer function be 
represented using micro-functions?
– Hint: consider either of the two isomorphic lattice variants

• (Micro-functions for the other transfer functions are easy...)

52
Implementation: TIP/src/tip/analysis/PossiblyUninitializedVarsAnalysis



Demand-driven analysis

An alternative to exhaustive analysis
• IFDS: “does dataflow fact d hold at program point v?”
• IDE: “what is the abstract value of x at program point v?”

Use dynamic programming... [Reps et al., 1995], [Sagiv et al., 1996]
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Implementations

• Soot: https://github.com/Sable/heros

• WALA: https://github.com/amaurremi/IDE

• TIP: https://github.com/cs-au-dk/TIP/blob/master/src/tip/solvers/IDESolver.scala

See also:
• Nomair A. Naeem, Ondrej Lhoták, Jonathan Rodriguez: Practical Extensions to the IFDS 

Algorithm. CC 2010
• Eric Bodden: Inter-procedural Data-flow Analysis with IFDS/IDE and Soot. SOAP@PLDI 2012
• Jonathan Rodriguez, Ondrej Lhoták: Actor-Based Parallel Dataflow Analysis. CC 2011
• Steven Arzt, Eric Bodden: Reviser: Efficiently Updating IDE-/IFDS-based Data-Flow Analyses in 

Response to Incremental Program Changes. ICSE 2014
• Magnus Madsen, Ming-Ho Yee, Ondrej Lhoták: From Datalog to Flix: A Declarative Language for 

Fixed Points on Lattices. PLDI 2016
• Johannes Späth, Karim Ali, Eric Bodden: IDEal: Efficient and Precise Alias-Aware Dataflow 

Analysis. Proc. ACM Program. Lang. 1(OOPSLA): 99:1-99:27 (2017)
54

https://github.com/Sable/heros
https://github.com/amaurremi/IDE
https://github.com/cs-au-dk/TIP/blob/master/src/tip/solvers/IDESolver.scala
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