Static Program Analysis
Part 7 – interprocedural analysis

http://cs.au.dk/~amoeller/spa/

Anders Møller & Michael I. Schwartzbach
Computer Science, Aarhus University
Interprocedural analysis

• Analyzing the body of a single function:
 – *intra*procedural analysis

• Analyzing the whole program with function calls:
 – *inter*procedural analysis

• For now, we consider TIP without functions as first-class values (so we only have direct calls)

• A naive approach:
 – analyze each function in isolation
 – be maximally pessimistic about results of function calls
 – rarely sufficient precision...
CFG for whole programs

The idea:

- construct a CFG for each function
- then glue them together to reflect function calls and returns

We need to take care of:

- parameter passing
- return values
- values of local variables across calls (including recursive functions, so not enough to assume unique variable names)
A simplifying assumption

- Assume that all function calls are of the form

\[X = f(E_1, \ldots, E_n); \]

- This can always be obtained by normalization
Split each original call node into two nodes:

\[X = f(E_1, \ldots, E_n) \]

\[\square = f(E_1, \ldots, E_n) \]

a special edge that connects the call node with its after-call node

the “call node”

the “after-call node”
Interprocedural CFGs (2/3)

Change each return node

\[\text{return } E \]

into an assignment:

\[\text{result } = E \]

(where \text{result} is a fresh variable)
Interprocedural CFGs (3/3)

Add call edges and return edges:

function \(g(a_1, \ldots, a_m) \)

\[
\begin{align*}
\Box &= f(E_1, \ldots, E_n) \\
X &= \Box \\
\text{result} &= E
\end{align*}
\]

function \(f(b_1, \ldots, b_n) \)
Constraints

• For call/entry nodes:
 – be careful to model evaluation of *all* the actual parameters before binding them to the formal parameter names (otherwise, it may fail for recursive functions)

• For after-call/exit nodes:
 – like an assignment: \[X = \text{result} \]
 – but also restore local variables from before the call using the call\(\xrightarrow{\text{after-call}}\) edge

• The details depend on the specific analysis...
Example: interprocedural sign analysis

• Recall the intraprocedural sign analysis...
• Lattice for abstract values:

\[\text{Sign} = \begin{array}{c}
\top \\
+ \\
- \\
0 \\
\bot
\end{array} \]

• Lattice for abstract states:

\[\text{Vars} \rightarrow \text{Sign} \]
Example: interprocedural sign analysis

• Constraint for entry node v of function \(f(b_1, \ldots, b_n) \):
 \[
 \llbracket v \rrbracket = \bigsqcup \bot \left[b_1 \mapsto \text{eval}(\llbracket w \rrbracket, E_1^w), \ldots, b_n \mapsto \text{eval}(\llbracket w \rrbracket, E_n^w) \right]
 \]
 \(w \in \text{pred}(v) \)
 where \(E_i^w \) is i’th argument at w

• Constraint for after-call node v labeled \(X = \square \), with call node v’:
 \[
 \llbracket v \rrbracket = \llbracket v' \rrbracket[X \mapsto \llbracket w \rrbracket(\text{result})]
 \]
 where \(w \in \text{pred}(v) \)

(Recall: no global variables, no heap, and no higher-order functions)
1) $\llbracket v \rrbracket = t_v(\bigcup_{w \in \text{pred}(v)} \llbracket w \rrbracket)$

2) $\forall w \in \text{succ}(v): t_v(\llbracket v \rrbracket) \subseteq \llbracket w \rrbracket$
 – recall “solving inequations”
 – may require fewer join operations
 if there are many CFG edges
 – more suitable for interprocedural flow
The worklist algorithm (original version)

\[x_1 = \bot; \ldots \ x_n = \bot \]

\[W = \{v_1, \ldots, v_n\} \]

while (W\(\neq\)\(\emptyset\)) {
 \[v_i = W.removeNext() \]
 \[y = f_i(x_1, \ldots, x_n) \]
 if (y\(\neq\)x_i) {
 for (v_j \(\in\) dep(v_i)) {
 W.add(v_j)
 }
 }
 \[x_i = y \]
}

The worklist algorithm (original version)
The worklist algorithm (alternative version)

\[x_1 = \perp; \ldots \; x_n = \perp \]
\[W = \{ v_1, \ldots, v_n \} \]
while (W\(\neq\)\(\emptyset\)) {
 \[v_i = W.removeNext() \]
 \[y = t_i(x_i) \]
 for (v_j \(\in\) dep(v_i)) {
 propagate(y, v_j)
 }
}

propagate(y, v_j) {
 \[z = x_j \cup y \]
 if (z\(\neq\)x_j) {
 \[x_j = z \]
 \[W.add(v_j) \]
 }
}

Implementation: worklistFixpointPropagationSolver
Agenda

• Interprocedural analysis
• Context-sensitive interprocedural analysis
Motivating example

What is the sign of the return value of \(g \)?

\[
f(z) \{
 \text{return } z*42;
\}
\]

\[
g() \{
 \text{var } x,y;
 x = f(0);
 y = f(87);
 \text{return } x + y;
\}
\]

Our current analysis says “T”
\[\square = f(E_1, \ldots, E_n) \]
\[X = \square \]

Interprocedurally invalid paths
Function cloning (alternatively, function inlining)

- Clone functions such that each function has only one callee

- Can avoid interprocedurally invalid paths 😊
- For high nesting depths, gives exponential blow-up 😞
- Doesn’t work on (mutually) recursive functions 😞

- Use heuristics to determine when to apply (trade-off between CFG size and precision)
Example, with cloning

What is the sign of the return value of \(g \)?

\[
\begin{align*}
f_1(z_1) & \{ \\
& \quad \text{return } z_1 \times 42; \\
& \}
\end{align*}
\]

\[
\begin{align*}
f_2(z_2) & \{ \\
& \quad \text{return } z_2 \times 42; \\
& \}
\end{align*}
\]

\[
\begin{align*}
g() & \{ \\
& \quad \text{var } x, y; \\
& \quad x = f_1(0); \\
& \quad y = f_2(87); \\
& \quad \text{return } x + y; \\
& \}
\end{align*}
\]
Context sensitive analysis

• Function cloning provides a kind of context sensitivity (also called polyvariant analysis)

• Instead of physically copying the function CFGs, do it logically

• Replace the lattice for abstract states, States, by

\[
\text{Contexts} \rightarrow \text{lift}(\text{States})
\]

where Contexts is a set of call contexts

– the contexts are abstractions of the state at function entry
– Contexts must be finite to ensure finite height of the lattice
– the bottom element of lift(States) represents “unreachable” contexts

• Different strategies for choosing the set Contexts...
Constraints for CFG nodes that do not involve function calls and returns

Easily adjusted to the new lattice Contexts \rightarrow lift(States)

Example if v is an assignment node $x = E$ in sign analysis:

$\llbracket v \rrbracket = \text{JOIN}(v)[x \mapsto \text{eval}($ \text{JOIN}(v),E)]$

becomes

$\llbracket v \rrbracket(c) = \begin{cases}
 s[x \mapsto \text{eval}(s,E)] & \text{if } s = \text{JOIN}(v,c) \in \text{States} \\
 \text{unreachable} & \text{if } \text{JOIN}(v,c) = \text{unreachable}
\end{cases}$

and $\text{JOIN}(v) = \biguplus_{w \in \text{pred}(v)} \llbracket w \rrbracket$

becomes $\text{JOIN}(v,c) = \biguplus_{w \in \text{pred}(v)} \llbracket w \rrbracket(c)$
One-level cloning

• Let c_1, \ldots, c_n be the call nodes in the program
• Define Contexts=$\{c_1, \ldots, c_n\} \cup \{\varepsilon\}$
 – each call node now defines its own “call context”
 (using ε to represent the call context at the main function)
 – the context is then like the return address of the top-most stack frame in the call stack
• Same effect as one-level cloning, but without actually copying the function CFGs
• Usually straightforward to generalize the constraints for a context insensitive analysis to this lattice
• (Example: context-sensitive sign analysis – later...)
The call string approach

• Let c_1, \ldots, c_n be the call nodes in the program
• Define Contexts as the set of strings over \{c_1, \ldots, c_n\} of length $\leq k$
 – such a string represents the top-most k call locations on the call stack
 – the empty string ε again represents the initial call context at the main function
• For $k=1$ this amounts to one-level cloning

Implementation: CallStringSignAnalysis
Example:
interprocedural sign analysis with call strings (k=1)

Lattice for abstract states: Contexts \rightarrow lift(Vars \rightarrow Sign)
where Contexts=$\{\varepsilon, c_1, c_2\}$

```plaintext
f(z) {
    var t1,t2;
    t1 = z*6;
    t2 = t1*7;
    return t2;
}
...
x = f(0); // c1
y = f(87); // c2
...
```

[$\varepsilon \mapsto$ unreachable, $c_1 \mapsto \bot[z\mapsto0, t1\mapsto0, t2\mapsto0], c_2 \mapsto \bot[z\mapsto+, t1\mapsto+, t2\mapsto+]$]

What is an example program that requires $k=2$
to avoid loss of precision?
Context sensitivity with call strings
function entry nodes, for \(k=1 \)

Constraint for entry node \(v \) of function \(f(b_1, \ldots, b_n) \):
(if not ‘main’)

\[
\llbracket v \rrbracket(c) = \bigsqcup \ s_w^{c'}
\]

\(w \in \text{pred}(v) \land c = w \land c' \in \text{Contexts} \)

\(s_w^{c'} = \begin{cases}
\text{unreachable} & \text{if } \llbracket w \rrbracket(c') = \text{unreachable} \\
\bot [b_1 \rightarrow \text{eval}(\llbracket w \rrbracket(c'), E_1^w), \ldots, b_n \rightarrow \text{eval}(\llbracket w \rrbracket(c'), E_n^w)] & \text{otherwise}
\end{cases} \)
Context sensitivity with call strings
after-call nodes, for k=1

Constraint for after-call node v labeled $X = \square$, with call node v' and exit node \(w \in \text{pred}(v) \):

\[
\llbracket v \rrbracket(c) = \begin{cases}
\text{unreachable} & \text{if } \llbracket v' \rrbracket(c) = \text{unreachable} \\
\llbracket v' \rrbracket(c)[X\rightarrow\llbracket w \rrbracket(v')(\text{result})] & \text{otherwise}
\end{cases}
\]
The functional approach

• The call string approach considers *control flow*
 – but why distinguish between two different call sites if their abstract states are the same?
• The functional approach instead considers *data*
• In the most general form, choose
 \[\text{Contexts} = \text{States} \]
 (requires States to be finite)
• Each element of the lattice \([\text{States} \rightarrow \text{lift}(|\text{States}|)]\) is now a map \(m\) that provides an element \(m(x)\) from States (or “unreachable”) for each possible \(x\) where \(x\) describes the state at function entry
Example:
interprocedural sign analysis with the functional approach

Lattice for abstract states: Contexts → lift(Vars → Sign)
where Contexts = Vars → Sign

```
f(z) {
    var t1, t2;
    t1 = z*6;
    t2 = t1*7;
    return t2;
}

...  
x = f(0);
y = f(87);
...  
```

[⊥[z↦0] ↦ ⊥[z↦0, t1↦0, t2↦0],
 ⊥[z↦+] ↦ ⊥[z↦+, t1↦+, t2↦+],
 all other contexts ↦ unreachable]
Another example: interprocedural sign analysis with the functional approach

Lattice for abstract states: \(\text{Contexts} \rightarrow \text{lift} (\text{Vars} \rightarrow \text{Sign}) \)

where \(\text{Contexts} = \text{Vars} \rightarrow \text{Sign} \)

\[
\begin{align*}
&f(z) \{ \\
&\quad \text{var } t1, t2; \\
&\quad t1 = z*6; \\
&\quad t2 = t1*7; \\
&\quad \text{return } t2; \\
&\}\ \\
&g(a) \{ \\
&\quad \text{return } f(a); \\
&\}\ \\
&\ldots \\
x = g(0); \\
y = g(87); \\
\end{align*}
\]

\[
\begin{align*}
&[\perp[z\mapsto0] \mapsto \perp[z\mapsto0, t1\mapsto0, t2\mapsto0], \\
&\perp[z\mapsto+] \mapsto \perp[z\mapsto+, t1\mapsto+, t2\mapsto+], \\
&\text{all other contexts } \mapsto \text{unreachable}]
\end{align*}
\]
The functional approach

- The lattice element for a function exit node is thus a function summary that maps abstract function input to abstract function output.
- This can be exploited at call nodes!
- When entering a function with abstract state x:
 - consider the function summary s for that function
 - if $s(x)$ already has been computed, use that to model the entire function body, then proceed directly to the after-call node
- Avoids the problem with interprocedurally invalid paths!
- ...but may be expensive if States is large

Implementation: FunctionalSignAnalysis
Example:
interprocedural sign analysis with the functional approach

Lattice for abstract states: \(\text{Contexts} \rightarrow \text{lift} (\text{Vars} \rightarrow \text{Sign}) \)
where Contexts = Vars \rightarrow \text{Sign}

\[
f(z) \{
\text{var } t1, t2;
\text{t1} = z*6;
\text{t2} = t1*7;
\text{return } t2;
\}
\]

...
x = f(0);
y = f(87);
z = f(42);
...

The abstract state at the exit of \(f \)
can be used as a function summary

\[
[\bot[z\mapsto0] \mapsto \bot[z\mapsto0, t1\mapsto0, t2\mapsto0, \text{result}\mapsto0],
\bot[z\mapsto+] \mapsto \bot[z\mapsto+, t1\mapsto+, t2\mapsto+, \text{result}\mapsto+],
\text{all other contexts} \mapsto \text{unreachable}]
\]

At this call, we can reuse the already computed exit abstract state of \(f \) for the context \(\bot[z\mapsto+] \)
Context sensitivity with the functional approach

function entry nodes

Constraint for entry node v of function $f(b_1, \ldots, b_n)$:

(if not ‘main’)

$$\mathcal{[v]}(c) = \bigcup_{w \in \text{pred}(v)} s_w^{c'}$$

where $s_w^{c'}$ is defined as before

only consider the call node w if the abstract state from that node matches the context c
Context sensitivity with the functional approach after-call nodes

Constraint for after-call node \(v \) labeled \(X = \text{	extbar} \), with call node \(v' \) and exit node \(w \in \text{pred}(v) \):

\[
\llbracket v \rrbracket(c) = \begin{cases}
\text{unreachable} & \text{if } \llbracket v' \rrbracket(c) = \text{unreachable} \land \llbracket w \rrbracket(s_{v'}^c) = \text{unreachable} \\
\llbracket v' \rrbracket(c)[X \mapsto \llbracket w \rrbracket(s_{v'}^c)(\text{result})] & \text{otherwise}
\end{cases}
\]
Choosing the right context sensitivity strategy

• The call string approach is expensive for \(k > 1 \)
 – solution: choose \(k \) adaptively for each call site

• The functional approach is expensive if States is large
 – solution: only consider selected parts of the abstract state as context, for example abstract information about the function parameter values (called \textit{parameter sensitivity}), or, in object-oriented languages, abstract information about the receiver object ‘this’ (called \textit{object sensitivity} or \textit{type sensitivity})