Static Program Analysis
Part 4 – flow sensitive analyses

http://cs.au.dk/~amoeller/spa/

Anders Møller & Michael I. Schwartzbach
Computer Science, Aarhus University
Agenda

- Constant propagation analysis
- Live variables analysis
- Available expressions analysis
- Very busy expressions analysis
- Reaching definitions analysis
- Initialized variables analysis
Constant propagation optimization

```javascript
var x, y, z;
x = 27;
y = input;
z = 2*x+y;
if (x<0) { y=z-3; } else { y=12; }
output y;
```

```javascript
var x, y, z;
x = 27;
y = input;
z = 2*x+y;
if (x<0) { y=z-3; } else { y=12; }
output y;
```

```javascript
var y;
y = input;
output 12;
```
Constant propagation analysis

- Determine variables with a constant value
- Flat lattice:
Constraints for constant propagation

• Essentially as for the Sign analysis...

• Abstract operator for addition:

\[\top(n, m) = \begin{cases}
\bot & \text{if } n = \bot \lor m = \bot \\
T & \text{else if } n = T \lor m = T \\
n + m & \text{otherwise}
\end{cases} \]
Agenda

- Constant propagation analysis
- **Live variables analysis**
- Available expressions analysis
- Very busy expressions analysis
- Reaching definitions analysis
- Initialized variables analysis
Liveness analysis

• A variable is *live* at a program point if its current value may be read in the remaining execution

• This is clearly undecidable, but the property can be conservatively approximated

• The analysis must only answer “*dead*” if the variable is really dead
 – no need to store the values of dead variables
A lattice for liveness

A powerset lattice of program variables

```plaintext
var x, y, z;
x = input;
while (x > 1) {
y = x / 2;
if (y > 3) x = x - y;
z = x - 4;
if (z > 0) x = x / 2;
z = z - 1;
}
output x;
```

L = (\(P\{x, y, z\}\), \(\subseteq\))

the trivial answer
The control flow graph

\[x = \text{input} \]
\[x > 1 \]
\[y = x/2 \]
\[y > 3 \]
\[x = x - y \]
\[z = x - 4 \]
\[z > 0 \]
\[z = z - 1 \]
\[x = x/2 \]
\[\text{output } x \]

\text{var } x, y, z
Setting up

• For every CFG node, \(v \), we have a variable \(\llbracket v \rrbracket \):
 – the set of program variables that are live at the program point before \(v \)

• Since the analysis is conservative, the computed sets may be too large

• Auxiliary definition:

\[
JOIN(v) = \bigcup_{w \in \text{succ}(v)} \llbracket w \rrbracket
\]
Liveness constraints

- For the exit node:
 \[[exit] = \emptyset \]
- For conditions and output:
 \[[\text{if } (E)] = [\text{output } E] = \text{JOIN}(v) \cup \text{vars}(E) \]
- For assignments:
 \[[x = E] = \text{JOIN}(v) \setminus \{x\} \cup \text{vars}(E) \]
- For variable declarations:
 \[[\text{var } x_1, ..., x_n] = \text{JOIN}(v) \setminus \{x_1, ..., x_n\} \]
- For all other nodes:
 \[[v] = \text{JOIN}(v) \]

\text{vars}(E) = \text{variables occurring in } E

right-hand sides are monotone since \text{JOIN} is monotone, and ...
[\text{var\ x, y, z}] = [x=\text{input}] \setminus \{x, y, z\}
[\text{x=\text{input}}] = [x>1] \setminus \{x\}
[\text{x>1}] = ([y=x/2] \cup [\text{output x}]) \cup \{x\}
[\text{y=x/2}] = ([y>3] \setminus \{y\}) \cup \{x\}
[\text{y>3}] = [x=x-y] \cup [z=x-4] \cup \{y\}
[\text{x=x-y}] = ([z=x-4] \setminus \{x\}) \cup \{x, y\}
[\text{z=x-4}] = ([z>0] \setminus \{z\}) \cup \{x\}
[\text{z>0}] = [x=x/2] \cup [z=z-1] \cup \{z\}
[\text{x=x/2}] = ([z=z-1] \setminus \{x\}) \cup \{x\}
[\text{z=z-1}] = ([x>1] \setminus \{z\}) \cup \{z\}
[\text{output x}] = [\text{exit}] \cup \{x\}
[\text{exit}] = \emptyset
Least solution

Many non-trivial answers!
Optimizations

• Variables \(y \) and \(z \) are never simultaneously live
 \(\Rightarrow \) they can share the same variable location

• The value assigned in \(z = z - 1 \) is never read
 \(\Rightarrow \) the assignment can be skipped

```plaintext
var x, yz;
x = input;
while (x>1) {
  yz = x/2;
  if (yz>3) x = x-yz;
  yz = x-4;
  if (yz>0) x = x/2;
}
output x;
```

• better register allocation
• a few clock cycles saved
Time complexity
(for the naive algorithm)

• With n CFG nodes and k variables:
 – the lattice L^n has height $k \cdot n$
 – so there are at most $k \cdot n$ iterations

• Subsets of Vars (the variables in the program) can be represented as bitvectors:
 – each element has size k
 – each \cup, \setminus, = operation takes time $O(k)$

• Each iteration uses $O(n)$ bitvector operations:
 – so each iteration takes time $O(k \cdot n)$

• Total time complexity: $O(k^2 n^2)$

• Exercise: what is the complexity for the worklist algorithm?
Agenda

- Constant propagation analysis
- Live variables analysis
- Available expressions analysis
- Very busy expressions analysis
- Reaching definitions analysis
- Initialized variables analysis
Available expressions analysis

• A (nontrivial) expression is \textit{available} at a program point if its current value has already been computed earlier in the execution

• The approximation generally includes \textit{too few} expressions
 – the analysis can only report \textit{“available”} if the expression is definitely available
 – no need to re-compute available expressions (e.g. common subexpression elimination)
A lattice for available expressions

A reverse powerset lattice of nontrivial expressions

\[L = (\mathcal{P}(\{a+b, a*b, y>a+b, a+1\}), \supseteq) \]

```javascript
var x, y, z, a, b;
z = a+b;
y = a*b;
while (y > a+b) {
    a = a+1;
    x = a+b;
}
```
Reverse powerset lattice

∅

{a+b} {a*b} {y>a+b} {a+1}

{a+b, a*b} {a+b, y>a+b} {a+b, a+1} {a*b, y>a+b} {a*b, a+1} {y>a+b, a+1}

{a+b, a*b, y>a+b} {a+b, a*b, a+1} {a+b, y>a+b, a+1} {a*b, y>a+b, a+1}

{a+b, a*b, y>a+b, a+1}
The control flow graph

- `var x, y, z, a, b`
- `z = a + b`
- `y = a * b`
- `y > a + b`
- `a = a + 1`
- `x = a + b`
Setting up

• For every CFG node, v, we have a variable $⟦v⟧$:
 – the set of expressions that are available at the program point after v

• Since the analysis is conservative, the computed sets may be 	extit{too small}

• Auxiliary definition:

\[
JOIN(v) = \bigcap_{w \in pred(v)} ⟦w⟧
\]
Auxiliary functions

• The function $S\downarrow x$ removes all expressions that contain the variable x from the set S

• The function $\text{exps}(E)$ is defined as:

 - $\text{exps}($intconst$) = \emptyset$
 - $\text{exps}(x) = \emptyset$
 - $\text{exps}($input$) = \emptyset$
 - $\text{exps}(E_1 \text{ op } E_2) = \{E_1 \text{ op } E_2\} \cup \text{exps}(E_1) \cup \text{exps}(E_2)$

 but don’t include expressions containing input
Availability constraints

- For the *entry* node:
 \[
 \llbracket entry \rrbracket = \emptyset
 \]

- For conditions and output:
 \[
 \llbracket \text{if (} E \text{)} \rrbracket = \llbracket \text{output } E \rrbracket = JOIN(v) \cup \text{exps}(E)
 \]

- For assignments:
 \[
 \llbracket x := E \rrbracket = (JOIN(v) \cup \text{exps}(E))\downarrow x
 \]

- For any other node \(v \):
 \[
 \llbracket v \rrbracket = \text{JOIN}(v)
 \]
Generated constraints

\[
\begin{align*}
\text{[entry]} &= \emptyset \\
\text{[var } x, y, z, a, b \text{]} &= \text{[entry]} \\
\text{[z =a +b]} &= \text{exp}(a +b) \downarrow z \\
\text{[y =a* b]} &= (\text{[z =a +b]} \cup \text{exp}(a* b)) \downarrow y \\
\text{[y >a +b]} &= (\text{[y =a* b]} \cap \text{[x =a +b]}) \cup \text{exp}(y >a +b) \\
\text{[a =a +1]} &= (\text{[y >a +b]} \cup \text{exp}(a +1)) \downarrow a \\
\text{[x =a +b]} &= (\text{[a =a +1]} \cup \text{exp}(a +b)) \downarrow x \\
\text{[exit]} &= \text{[y >a +b]}
\end{align*}
\]
Least solution

<table>
<thead>
<tr>
<th>entry</th>
<th>$=} \emptyset$</th>
</tr>
</thead>
<tbody>
<tr>
<td>var x, y, z, a, b</td>
<td>$=} \emptyset$</td>
</tr>
<tr>
<td>z = a + b</td>
<td>$= {a + b}$</td>
</tr>
<tr>
<td>y = a * b</td>
<td>$= {a + b, a \times b}$</td>
</tr>
<tr>
<td>y > a + b</td>
<td>$= {a + b, y > a + b}$</td>
</tr>
<tr>
<td>a = a + 1</td>
<td>$=} \emptyset$</td>
</tr>
<tr>
<td>x = a + b</td>
<td>$= {a + b}$</td>
</tr>
<tr>
<td>exit</td>
<td>$=} {a + b}$</td>
</tr>
</tbody>
</table>

Again, many nontrivial answers!
Optimizations

• We notice that $a+b$ is available before the loop
• The program can be optimized (slightly):

```javascript
var x, y, x, a, b, aplusb;
aplusb = a+b;
z = aplusb;
y = a*b;
while (y > aplusb) {
a = a+1;
aplusb = a+b;
x = aplusb;
}
```
Agenda

- Constant propagation analysis
- Live variables analysis
- Available expressions analysis
- **Very busy expressions analysis**
- Reaching definitions analysis
- Initialized variables analysis
Very busy expressions analysis

• A (nontrivial) expression is very busy if it will definitely be evaluated before its value changes

• The approximation generally includes too few expressions
 – the answer “very busy” must be the true one
 – very busy expressions may be pre-computed (e.g. loop hoisting)

• Same lattice as for available expressions
An example program

```
var x, a, b;
x = input;
a = x-1;
b = x-2;
while (x > 0) {
    output a*b-x;
    x = x-1;
}
output a*b;
```

The analysis shows that $a*b$ is very busy right before the while loop
Code hoisting

```javascript
var x, a, b;
x = input;
a = x - 1;
b = x - 2;
while (x > 0) {
    output a*b - x;
    x = x - 1;
}
output a*b;
```

```javascript
var x, a, b, atimesb;
x = input;
a = x - 1;
b = x - 2;
atimesb = a*b;
while (x > 0) {
    output atimesb - x;
    x = x - 1;
}
output atimesb;
```
Setting up

• For every CFG node, v, we have a variable $[[v]]$:
 - the set of expressions that are very busy at the program point before v

• Since the analysis is conservative, the computed sets may be too small

• Auxiliary definition:

$$JOIN(v) = \bigcap_{w \in succ(v)} [[w]]$$
Very busy constraints

- For the *exit* node:
 \[
 \llbracket \text{exit} \rrbracket = \emptyset
 \]

- For conditions and output:
 \[
 \llbracket \text{if } (E) \rrbracket = \llbracket \text{output } E \rrbracket = \text{JOIN}(v) \cup \text{exps}(E)
 \]

- For assignments:
 \[
 \llbracket x = E \rrbracket = \text{JOIN}(v) \downarrow x \cup \text{exps}(E)
 \]

- For all other nodes:
 \[
 \llbracket v \rrbracket = \text{JOIN}(v)
 \]

same \downarrow \text{operator as for available expressions analysis}
Agenda

- Constant propagation analysis
- Live variables analysis
- Available expressions analysis
- Very busy expressions analysis
- Reaching definitions analysis
- Initialized variables analysis
Reaching definitions analysis

• The *reaching definitions* for a program point are those assignments that may define the current values of variables

• The conservative approximation may include *too many* possible assignments
A lattice for reaching definitions

The powerset lattice of assignments

\[L = (\mathcal{P}(\{x\leftarrow \text{input}, y=x/2, x\leftarrow x-y, z\leftarrow x-4, x\leftarrow x/2, z\leftarrow z-1\}), \subseteq) \]

```java
var x, y, z;
x = input;
while (x > 1) {
    y = x/2;
    if (y > 3) x = x - y;
    z = x - 4;
    if (z > 0) x = x/2;
    z = z - 1;
}
output x;
```
Reaching definitions constraints

• For assignments:

 \[
 \llbracket x = E \rrbracket = \text{JOIN}(v) \downarrow x \cup \{ x = E \}
 \]

• For all other nodes:

 \[
 \llbracket v \rrbracket = \text{JOIN}(v)
 \]

• Auxiliary definition:

 \[
 \text{JOIN}(v) = \bigcup_{w \in \text{pred}(v)} \llbracket w \rrbracket
 \]

• The function \(S \downarrow x \) removes assignments to \(x \) from the set \(S \)
Def-use graph

Reaching definitions define the def-use graph:

- like a CFG but with edges from *def* to *use* nodes
- basis for *dead code elimination* and *code motion*

```
x = input

x > 1
y = x / 2
y > 3
x = x - y
z = x - 4
z > 0
x = x / 2

x > 1
y = x / 2
y > 3
x = x - y
z = x - 4
z > 0
x = x / 2

x = output
```
Forward vs. backward

- A *forward* analysis:
 - computes information about the *past* behavior
 - examples: available expressions, reaching definitions

- A *backward* analysis:
 - computes information about the *future* behavior
 - examples: liveness, very busy expressions
May vs. must

• A *may* analysis:
 – describes information that is *possibly* true
 – an *over*-approximation
 – examples: liveness, reaching definitions

• A *must* analysis:
 – describes information that is *definitely* true
 – an *under*-approximation
 – examples: available expressions, very busy expressions
Classifying analyses

<table>
<thead>
<tr>
<th></th>
<th>forward</th>
<th>backward</th>
</tr>
</thead>
<tbody>
<tr>
<td>may</td>
<td>example: reaching definitions</td>
<td>example: liveness</td>
</tr>
<tr>
<td></td>
<td>$\llbracket v \rrbracket$ describes state after v</td>
<td>$\llbracket v \rrbracket$ describes state before v</td>
</tr>
<tr>
<td></td>
<td>$\text{JOIN}(v) = \bigcup_{w \in \text{pred}(v)} \llbracket w \rrbracket = \bigcup_{w \in \text{pred}(v)} \llbracket w \rrbracket$</td>
<td>$\text{JOIN}(v) = \bigcup_{w \in \text{succ}(v)} \llbracket w \rrbracket = \bigcup_{w \in \text{succ}(v)} \llbracket w \rrbracket$</td>
</tr>
<tr>
<td>must</td>
<td>example: available expressions</td>
<td>example: very busy expressions</td>
</tr>
<tr>
<td></td>
<td>$\llbracket v \rrbracket$ describes state after v</td>
<td>$\llbracket v \rrbracket$ describes state before v</td>
</tr>
<tr>
<td></td>
<td>$\text{JOIN}(v) = \bigcup_{w \in \text{pred}(v)} \llbracket w \rrbracket = \bigcap_{w \in \text{pred}(v)} \llbracket w \rrbracket$</td>
<td>$\text{JOIN}(v) = \bigcup_{w \in \text{succ}(v)} \llbracket w \rrbracket = \bigcap_{w \in \text{succ}(v)} \llbracket w \rrbracket$</td>
</tr>
</tbody>
</table>
Agenda

• Constant propagation analysis
• Live variables analysis
• Available expressions analysis
• Very busy expressions analysis
• Reaching definitions analysis
• Initialized variables analysis
Initialized variables analysis

- Compute for each program point those variables that have *definitely* been initialized in the *past*
- (Called *definite assignment* analysis in Java and C#)
- \(\Rightarrow \) *forward must analysis*
- Reverse powerset lattice of all variables

\[
JOIN(v) = \bigcap_{w \in \text{pred}(v)} [w]
\]

- For assignments: \([x = E] = JOIN(v) \cup \{x\} \)
- For all others: \([v] = JOIN(v) \)