Static Program Analysis
Part 4 – flow sensitive analyses

http://cs.au.dk/~amoeller/spa/

Anders Møller & Michael I. Schwartzbach
Computer Science, Aarhus University
Agenda

- Constant propagation analysis
- Live variables analysis
- Available expressions analysis
- Very busy expressions analysis
- Reaching definitions analysis
- Initialized variables analysis
Constant propagation optimization

```javascript
var x, y, z;
x = 27;
y = input;
z = 2*x+y;
if (x<0) { y = z-3; } else { y = 12 }
output y;
```

```javascript
var x, y, z;
x = 27;
y = input;
if (0) { y = z-3; } else { y = 12 }
output y;
```

```javascript
var y;
y = input;
output 12;
```
Constant propagation analysis

• Determine variables with a constant value
• Flat lattice:
Constraints for constant propagation

• Essentially as for the Sign analysis...

• Abstract operator for addition:

\[
\oplus(n,m) = \begin{cases}
\bot & \text{if } n=\bot \lor m=\bot \\
T & \text{else if } n=T \lor m=T \\
n+m & \text{otherwise}
\end{cases}
\]
Agenda

- Constant propagation analysis
- **Live variables analysis**
- Available expressions analysis
- Very busy expressions analysis
- Reaching definitions analysis
- Initialized variables analysis
Liveness analysis

• A variable is live at a program point if its current value may be read in the remaining execution

• This is clearly undecidable, but the property can be conservatively approximated

• The analysis must only answer “dead” if the variable is really dead
 – no need to store the values of dead variables
A lattice for liveness

A powerset lattice of program variables

```python
var x, y, z;
x = input;
while (x>1) {
    y = x/2;
    if (y>3) x = x-y;
    z = x-4;
    if (z>0) x = x/2;
    z = z-1;
}
output x;
```

\[L = (2^{\{x,y,z\}, \subseteq}) \]

the trivial answer
The control flow graph

\[
\begin{align*}
x &= \text{input} \\
x &> 1 \\
y &= x/2 \\
y &> 3 \\
x &= x - y \\
\text{var } x, y, z \\
z &= x - 4 \\
z &> 0 \\
x &= x/2 \\
z &= z - 1 \\
\text{output } x
\end{align*}
\]
Setting up

• For every CFG node, v, we have a variable $[v]$:
 – the subset of program variables that are live at the program point before v

• Since the analysis is conservative, the computed sets may be *too large*

• Auxiliary definition:

$$JOIN(v) = \bigcup_{w \in succ(v)} [w]$$
Liveness constraints

- For the exit node:
 \[\text{[exit]} = \emptyset \]

- For conditions and output:
 \[\text{[if (} E \text{)} \text{]} = \text{[output } E \text{]} = JOIN(v) \cup vars(E) \]

- For assignments:
 \[\text{[} x = E \text{]} = JOIN(v) \setminus \{x\} \cup vars(E) \]

- For variable declarations:
 \[\text{[var } x_1, \ldots, x_n \text{]} = JOIN(v) \setminus \{x_1, \ldots, x_n\} \]

- For all other nodes:
 \[\text{[} v \text{]} = JOIN(v) \]

\(vars(E) = \text{variables occurring in } E \)

Right-hand sides are monotone since \(JOIN \) is monotone, and ...
Generated constraints

\[
\begin{align*}
\lbrack \text{var } x, y, z \rbrack &= \lbrack z=\text{input} \rbrack \setminus \{x, y, z\} \\
\lbrack x=\text{input} \rbrack &= \lbrack x>1 \rbrack \setminus \{x\} \\
\lbrack x>1 \rbrack &= (\lbrack y=x/2 \rbrack \cup \lbrack \text{output } x \rbrack) \cup \{x\} \\
\lbrack y=x/2 \rbrack &= (\lbrack y>3 \rbrack \setminus \{y\}) \cup \{x\} \\
\lbrack y>3 \rbrack &= \lbrack x=x-y \rbrack \cup \lbrack z=x-4 \rbrack \cup \{y\} \\
\lbrack x=x-y \rbrack &= (\lbrack z=x-4 \rbrack \setminus \{x\}) \cup \{x, y\} \\
\lbrack z=x-4 \rbrack &= (\lbrack z>0 \rbrack \setminus \{z\}) \cup \{x\} \\
\lbrack z>0 \rbrack &= \lbrack x=x/2 \rbrack \cup \lbrack z=z-1 \rbrack \cup \{z\} \\
\lbrack x=x/2 \rbrack &= (\lbrack z=z-1 \rbrack \setminus \{x\}) \cup \{x\} \\
\lbrack z=z-1 \rbrack &= (\lbrack x>1 \rbrack \setminus \{z\}) \cup \{z\} \\
\lbrack \text{output } x \rbrack &= \lbrack \text{exit} \rbrack \cup \{x\} \\
\lbrack \text{exit} \rbrack &= \emptyset
\end{align*}
\]
Many non-trivial answers!
Optimizations

• Variables y and z are never simultaneously live
 ⇒ they can share the same variable location
• The value assigned in \(z = z - 1 \) is never read
 ⇒ the assignment can be skipped

```plaintext
var x, yz;
x = input;
while (x > 1) {
  yz = x / 2;
  if (yz > 3) x = x - yz;
  yz = x - 4;
  if (yz > 0) x = x / 2;
}
output x;
```

- better register allocation
- a few clock cycles saved
Time complexity (for the naive algorithm)

• With n CFG nodes and k variables:
 – the lattice L^n has height $k \cdot n$
 – so there are at most $k \cdot n$ iterations

• Subsets of Vars (the variables in the program) can be represented as bitvectors:
 – each element has size k
 – each \cup, \setminus, = operation takes time $O(k)$

• Each iteration uses $O(n)$ bitvector operations:
 – so each iteration takes time $O(k \cdot n)$

• Total time complexity: $O(k^2n^2)$

• Exercise: what is the complexity for the worklist algorithm?
Agenda

- Constant propagation analysis
- Live variables analysis
- Available expressions analysis
- Very busy expressions analysis
- Reaching definitions analysis
- Initialized variables analysis
Available expressions analysis

• A (nontrivial) expression is *available* at a program point if its current value has already been computed earlier in the execution

• The approximation generally includes *too few* expressions
 – the analysis can only report “*available*” if the expression is definitely available
 – no need to re-compute available expressions (e.g. common subexpression elimination)
A lattice for available expressions

A reverse powerset lattice of nontrivial expressions

```javascript
var x, y, z, a, b;
z = a + b;
y = a * b;
while (y > a + b) {
  a = a + 1;
  x = a + b;
}

L = (2^{\{a+b, a*b, y>a+b, a+1\}}, \subseteq)
```
Reverse powerset lattice

∅

{a+b} {a*b} {y>a+b} {a+1}

{a+b, a*b} {a+b, y>a+b} {a+b, a+1} {a*b, y>a+b} {a*b, a+1} {y>a+b, a+1}

{a+b, a*b, y>a+b} {a+b, a*b, a+1} {a+b, y>a+b, a+1} {a*b, y>a+b, a+1}

{a+b, a*b, y>a+b, a+1}
The flow graph

var x, y, z, a, b

z = a + b

y = a * b

y > a + b

a = a + 1

x = a + b
Setting up

• For every CFG node, v, we have a variable $[v]$:
 – the subset of program variables that are available at the program point after v

• Since the analysis is conservative, the computed sets may be too small

• Auxiliary definition:

$$JOIN(v) = \bigcap_{w \in pred(v)} [w]$$
Auxiliary functions

- The function $X \downarrow x$ removes all expressions from X that contain a reference to the variable x.

- The function $\text{exps}(E)$ is defined as:
 - $\text{exps}(\text{intconst}) = \emptyset$
 - $\text{exps}(x) = \emptyset$
 - $\text{exps}(\text{input}) = \emptyset$
 - $\text{exps}(E_1 \text{ op } E_2) = \{E_1 \text{ op } E_2\} \cup \text{exps}(E_1) \cup \text{exps}(E_2)$
 but don’t include expressions containing input
Availability constraints

• For the *entry* node:
 \[[\text{entry}] = \emptyset \]

• For conditions and output:
 \[[\text{if } (E)] = [\text{output } E] = JOIN(v) \cup \text{exps}(E) \]

• For assignments:
 \[[x = E] = (JOIN(v) \cup \text{exps}(E)) \downarrow x \]

• For any other node \(v \):
 \[[v] = JOIN(v) \]
Generated constraints

\[
\begin{aligned}
\text{[entry]} & = \emptyset \\
\text{[var} & \ x , y , z , a , b \text{]} = \text{[entry]} \\
\text{[z=a+b]} & = \text{exps}(a+b) \downarrow z \\
\text{[y=a*b]} & = (\text{[z=a+b]} \cup \text{exps}(a*b)) \downarrow y \\
\text{[y>a+b]} & = (\text{[y=a*b]} \cap \text{[x=a+b]} \cup \text{exps}(y>a+b)) \\
\text{[a=a+1]} & = (\text{[y>a+b]} \cup \text{exps}(a+1)) \downarrow a \\
\text{[x=a+b]} & = (\text{[a=a+1]} \cup \text{exps}(a+b)) \downarrow x \\
\text{[exit]} & = \text{[y>a+b]} \\
\end{aligned}
\]
Again, many nontrivial answers!
Optimizations

• We notice that \(a+b \) is available before the loop
• The program can be optimized (slightly):

```javascript
var x,y,x,a,b,aplusb;
aplusb = a+b;
z = aplusb;
y = a*b;
while (y > aplusb) {
a = a+1;
aplusb = a+b;
x = aplusb;
}
```
• Constant propagation analysis
• Live variables analysis
• Available expressions analysis
• Very busy expressions analysis
• Reaching definitions analysis
• Initialized variables analysis
Very busy expressions analysis

• A (nontrivial) expression is very busy if it will definitely be evaluated before its value changes.

• The approximation generally includes too few expressions:
 – the answer "very busy" must be the true one
 – very busy expressions may be pre-computed (e.g. loop hoisting)

• Same lattice as for available expressions.
An example program

```javascript
var x,a,b;
x = input;
a = x-1;
b = x-2;
while (x > 0) {
    output a*b\-x;
    x = x\-1;
}
output a*b;
```

The analysis shows that a*b is very busy
Code hoisting

```javascript
var x,a,b;
x = input;
a = x-1;
b = x-2;
while (x > 0) {
    output a*b-x;
    x = x-1;
}
output a*b;
```

```javascript
var x,a,b,atimesb;
x = input;
a = x-1;
b = x-2;
atimesb = a*b;
while (x > 0) {
    output atimesb-x;
    x = x-1;
}
output atimesb;
```
Setting up

• For every CFG node, v, we have a variable $\llbracket v \rrbracket$:
 – the subset of program variables that are very busy at the program point before v

• Since the analysis is conservative, the computed sets may be too small

• Auxiliary definition:

$$JOIN(v) = \bigcap_{w \in \text{succ}(v)} \llbracket w \rrbracket$$
Very busy constraints

• For the *exit* node:
 \[[exit] = \emptyset \]

• For conditions and output:
 \[[\text{if } (E)] = [\text{output } E] = JOIN(v) \cup \text{exps}(E) \]

• For assignments:
 \[[x = E] = JOIN(v) \downarrow x \cup \text{exps}(E) \]

• For all other nodes:
 \[[v] = JOIN(v) \]
Agenda

- Constant propagation analysis
- Live variables analysis
- Available expressions analysis
- Very busy expressions analysis
- Reaching definitions analysis
- Initialized variables analysis
Reaching definitions analysis

- The *reaching definitions* for a program point are those assignments that may define the current values of variables.

- The conservative approximation may include *too many* possible assignments.
A lattice for reaching definitions

The powerset lattice of assignments

\[L = (2\{x=\text{input}, y=x/2, x=x-y, z=x-4, x=x/2, z=z-1\}, \subseteq) \]

```javascript
var x,y,z;
x = input;
while (x > 1) {
y = x/2;
if (y>3) x = x-y;
z = x-4;
if (z>0) x = x/2;
z = z-1;
}
output x;
```
Reaching definitions constraints

- For assignments:
 \[\llbracket x = E \rrbracket = \text{JOIN}(v) \downarrow x \cup \{ x = E \} \]

- For all other nodes:
 \[\llbracket v \rrbracket = \text{JOIN}(v) \]

- Auxiliary definition:
 \[\text{JOIN}(v) = \bigcup_{w \in \text{pred}(v)} \llbracket w \rrbracket \]

- The function \(X \downarrow x \) removes assignments to \(x \) from \(X \)
Def-use graph

Reaching definitions define the def-use graph:
– like a CFG but with edges from def to use nodes
– basis for dead code elimination and code motion

```plaintext
x = input

x > 1

y = x / 2

y > 3

x = x - y

z = x - 4

z > 0

x = x / 2

z = z - 1

output x
```
• A *forward* analysis:
 – computes information about the *past* behavior
 – examples: available expressions, reaching definitions

• A *backward* analysis:
 – computes information about the *future* behavior
 – examples: liveness, very busy expressions
May vs. must

• A *may* analysis:
 – describes information that is *possibly* true
 – an *over*-approximation
 – examples: liveness, reaching definitions

• A *must* analysis:
 – describes information that is *definitely* true
 – an *under*-approximation
 – examples: available expressions, very busy expressions
Classifying analyses

<table>
<thead>
<tr>
<th>may</th>
<th>forward</th>
<th>backward</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>example: reaching definitions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[v] describes state after (v)</td>
<td>[v] describes state before (v)</td>
</tr>
<tr>
<td></td>
<td>(\text{JOIN}(v) = \bigcup_{w \in \text{pred}(v)} \bigcup [w] = \bigcup_{w \in \text{pred}(v)} \bigcup [w])</td>
<td>(\text{JOIN}(v) = \bigcup_{w \in \text{succ}(v)} \bigcup [w] = \bigcup_{w \in \text{succ}(v)} \bigcup [w])</td>
</tr>
<tr>
<td>must</td>
<td>example: available expressions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[v] describes state after (v)</td>
<td>[v] describes state before (v)</td>
</tr>
<tr>
<td></td>
<td>(\text{JOIN}(v) = \bigcup_{w \in \text{pred}(v)} \bigcap [w] = \bigcap_{w \in \text{pred}(v)} \bigcap [w])</td>
<td>(\text{JOIN}(v) = \bigcup_{w \in \text{succ}(v)} \bigcap [w] = \bigcap_{w \in \text{succ}(v)} \bigcap [w])</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Agenda

- Constant propagation analysis
- Live variables analysis
- Available expressions analysis
- Very busy expressions analysis
- Reaching definitions analysis
- Initialized variables analysis
Initialized variables analysis

• Compute for each program point those variables that have \textit{definitely} been initialized in the \textit{past}
• (Called \textit{definite assignment} analysis in Java and C#)
• \(\Rightarrow\) \textit{forward must analysis}
• Reverse powerset lattice of all variables

\[
JOIN(v) = \bigcap_{w \in pred(v)} [w]
\]

• For assignments: \([x = E] = JOIN(v) \cup \{x\}\)
• For all others: \([v] = JOIN(v)\)