Static Program Analysis
Part 3 – lattices and fixpoints

http://cs.au.dk/~amoeller/spa/

Anders Møller & Michael I. Schwartzbach
Computer Science, Aarhus University
Flow-sensitivity

• Type checking is (usually) flow-insensitive:
 – statements may be permuted without affecting typability
 – constraints are naturally generated from AST nodes

• Other analyses must be flow-sensitive:
 – the order of statements affects the results
 – constraints are naturally generated from control flow graph nodes
Sign analysis

- Determine the sign (+, -, 0) of all expressions
- The *Sign* lattice:

 - States are modeled by the map lattice $\textit{Vars} \rightarrow \textit{Sign}$
 where \textit{Vars} is the set of variables in the program

The terminology will be defined later – this is just an appetizer...

Implementation: TIP/src/tip/analysis/SignAnalysis.scala
Generating constraints

```javascript
var a, b;
a = 42;
b = a + input;
a = a - b;
```

$x_1 = [a \mapsto T, b \mapsto T]$
$x_2 = x_1[a \mapsto +]$
$x_3 = x_2[b \mapsto x_2(a)+T]$
$x_4 = x_3[a \mapsto x_3(a)-x_3(b)]$
Sign analysis constraints

• The variable \([v]\) denotes a map that gives the sign value for all variables at the program point after node \(v\)

• For variable declarations:
 \[\begin{align*}
 \llbracket \text{var } x_1, \ldots, x_n \rrbracket &= \text{JOIN}(v)[x_1 \mapsto \top, \ldots, x_n \mapsto \top] \\
 \end{align*}\]

• For assignments:
 \[\llbracket x = E \rrbracket = \text{JOIN}(v)[x \mapsto \text{eval(JOIN}(v), E)]\]

• For all other nodes:
 \[\llbracket v \rrbracket = \text{JOIN}(v)\]

where \(\text{JOIN}(v) = \bigsqcup_{w \in \text{pred}(v)} [w]\) combines information from predecessors (explained later….)
Evaluating signs

- The `eval` function is an *abstract evaluation*:
 - `eval(σ, x) = σ(x)`
 - `eval(σ, intconst) = sign(intconst)`
 - `eval(σ, E₁ op E₂) = op(eval(σ, E₁), eval(σ, E₂))`

- `σ: Vars → Sign` is an abstract state

- The `sign` function gives the sign of an integer

- The `op` function is an abstract evaluation of the given operator
Abstract operators

<table>
<thead>
<tr>
<th></th>
<th>+</th>
<th>-</th>
<th>0</th>
<th>-</th>
<th>+</th>
<th>⊤</th>
</tr>
</thead>
<tbody>
<tr>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
</tr>
<tr>
<td>0</td>
<td>⊥</td>
<td>0</td>
<td>-</td>
<td>+</td>
<td>⊤</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>⊥</td>
<td>-</td>
<td>-</td>
<td>⊤</td>
<td>⊤</td>
<td>T</td>
</tr>
<tr>
<td>+</td>
<td>⊥</td>
<td>+</td>
<td>⊤</td>
<td>+</td>
<td>⊤</td>
<td>T</td>
</tr>
<tr>
<td>⊤</td>
<td>⊥</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>-</th>
<th>0</th>
<th>-</th>
<th>+</th>
<th>⊤</th>
</tr>
</thead>
<tbody>
<tr>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
</tr>
<tr>
<td>0</td>
<td>⊥</td>
<td>0</td>
<td>+</td>
<td>-</td>
<td>T</td>
</tr>
<tr>
<td>-</td>
<td>⊥</td>
<td>-</td>
<td>T</td>
<td>-</td>
<td>T</td>
</tr>
<tr>
<td>+</td>
<td>⊥</td>
<td>+</td>
<td>+</td>
<td>⊤</td>
<td>T</td>
</tr>
<tr>
<td>⊤</td>
<td>⊥</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>*</th>
<th>0</th>
<th>-</th>
<th>+</th>
<th>⊤</th>
</tr>
</thead>
<tbody>
<tr>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
</tr>
<tr>
<td>0</td>
<td>⊥</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-</td>
<td>⊥</td>
<td>0</td>
<td>+</td>
<td>-</td>
<td>T</td>
</tr>
<tr>
<td>+</td>
<td>⊥</td>
<td>0</td>
<td>-</td>
<td>+</td>
<td>T</td>
</tr>
<tr>
<td>⊤</td>
<td>⊥</td>
<td>0</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>/</th>
<th>0</th>
<th>-</th>
<th>+</th>
<th>⊤</th>
</tr>
</thead>
<tbody>
<tr>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
</tr>
<tr>
<td>0</td>
<td>⊥</td>
<td>T</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-</td>
<td>⊥</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>+</td>
<td>⊥</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>⊤</td>
<td>⊥</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>></th>
<th>0</th>
<th>-</th>
<th>+</th>
<th>⊤</th>
</tr>
</thead>
<tbody>
<tr>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
</tr>
<tr>
<td>0</td>
<td>⊥</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>T</td>
</tr>
<tr>
<td>-</td>
<td>⊥</td>
<td>0</td>
<td>T</td>
<td>0</td>
<td>T</td>
</tr>
<tr>
<td>+</td>
<td>⊥</td>
<td>+</td>
<td>+</td>
<td>⊤</td>
<td>T</td>
</tr>
<tr>
<td>⊤</td>
<td>⊥</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>==</th>
<th>0</th>
<th>-</th>
<th>+</th>
<th>⊤</th>
</tr>
</thead>
<tbody>
<tr>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
<td>⊥</td>
</tr>
<tr>
<td>0</td>
<td>⊥</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-</td>
<td>⊥</td>
<td>0</td>
<td>T</td>
<td>0</td>
<td>T</td>
</tr>
<tr>
<td>+</td>
<td>⊥</td>
<td>0</td>
<td>0</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>⊤</td>
<td>⊥</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
Increasing precision

• Some loss of information:
 – $(2>0)\Rightarrow 1$ is analyzed as \top
 – $+/+$ is analyzed as \top, since e.g. $\frac{1}{2}$ is rounded down

• Use a richer lattice for better precision:

• Abstract operators are now 8×8 tables
Partial orders

• Given a set S, a partial order \sqsubseteq is a binary relation on S that satisfies:
 - reflexivity: $\forall x \in S: x \sqsubseteq x$
 - transitivity: $\forall x,y,z \in S: x \sqsubseteq y \land y \sqsubseteq z \Rightarrow x \sqsubseteq z$
 - anti-symmetry: $\forall x,y \in S: x \sqsubseteq y \land y \sqsubseteq x \Rightarrow x = y$

• Can be illustrated by a Hasse diagram (if finite)
Upper and lower bounds

- Let $X \subseteq S$ be a subset
- We say that $y \in S$ is an *upper* bound ($X \subseteq y$) when
 \[\forall x \in X: x \subseteq y \]
- We say that $y \in S$ is a *lower* bound ($y \subseteq X$) when
 \[\forall x \in X: y \subseteq x \]

- A *least* upper bound $\bigcup X$ is defined by
 \[X \subseteq \bigcup X \land \forall y \in S: X \subseteq y \Rightarrow \bigcup X \subseteq y \]
- A *greatest* lower bound $\bigcap X$ is defined by
 \[\bigcap X \subseteq X \land \forall y \in S: y \subseteq X \Rightarrow y \subseteq \bigcap X \]
Lattices

• A (complete) lattice is a partial order where $\sqcup X$ and $\sqcap X$ exist for all $X \subseteq S$

• A lattice must have
 – a unique largest element, $\top = \sqcup S$ \hspace{1cm} (why?)
 – a unique smallest element, $\bot = \sqcap S$

• If S is a finite set, then it defines a lattice iff
 – \top and \bot exist in S
 – $x \sqcup y$ and $x \sqcap y$ exist for all $x, y \in S$ \hspace{1cm} ($x \sqcup y$ is notation for $\sqcup \{x, y\}$)
These partial orders are lattices
These partial orders are *not* lattices
The powerset lattice

- Every finite set A defines a lattice $(2^A, \subseteq)$ where
 - $\bot = \emptyset$
 - $\top = A$
 - $x \sqcup y = x \cup y$
 - $x \sqcap y = x \cap y$
Lattice height

- The *height* of a lattice is the length of the longest path from \(\bot \) to \(T \).
- The lattice \((2^A, \subseteq) \) has height \(|A| \)
Map lattice

• If A is a set and L is a lattice, then we obtain the map lattice:

$$A \rightarrow L = \{ [a_1 \mapsto x_1, a_2 \mapsto x_2, \ldots] \mid A = \{ a_1, a_2, \ldots \} \land x_1, x_2, \ldots \in L \}$$

ordered pointwise

• \sqcup and \sqcap can be computed pointwise

• $\text{height}(A \rightarrow L) = |A| \cdot \text{height}(L)$

Example: $A \rightarrow L$ where
• A is the set of program variables
• L is the $Sign$ lattice
Product lattice

• If L_1, L_2, ..., L_n are lattices, then so is the product:

\[L_1 \times L_2 \times \cdots \times L_n = \{ (x_1, x_2, \ldots, x_n) \mid x_i \in L_i \} \]

where \sqsubseteq is defined pointwise

• Note that \sqcup and \sqcap can be computed pointwise

• $\text{height}(L_1 \times L_2 \times \cdots \times L_n) = \text{height}(L_1) + \cdots + \text{height}(L_n)$

Example:
each L_i is the map lattice $A \rightarrow L$ from the previous slide, and n is the number of CFG nodes
Flat lattice

• If A is a set, then $\text{flat}(A)$ is a lattice:

\[
\begin{array}{c}
\top \\
\downarrow \\
\downarrow \\
\downarrow \\
\bot
\end{array}
\]

ap_1 \ a_2 \ \ldots \ a_n

• $\text{height}(\text{flat}(A)) = 2$
Lift lattice

- If L is a lattice, then so is $\text{lift}(L)$, which is:

 $\text{height}(\text{lift}(L)) = \text{height}(L) + 1$

- $\text{height}(\text{lift}(L)) = \text{height}(L) + 1$
Generating constraints, again

```javascript
var a,b;
a = 42;
b = a + input;
a = a - b;
```

\[
\begin{align*}
 x_1 &= [a \mapsto \top, b \mapsto \top] \\
 x_2 &= x_1[a \mapsto +] \\
 x_3 &= x_2[b \mapsto x_2(a)+\top] \\
 x_4 &= x_3[a \mapsto x_3(a)-x_3(b)]
\end{align*}
\]
Sign analysis constraints, revisited

- The variable $⟦v⟧$ denotes a map that gives the sign value for all variables at the program point after node v

- $⟦v⟧ ∈ States$ where $States = Vars → Sign$

- For variable declarations:
 $⟦ \text{var } x_1, \ldots, x_n ⟧ = JOIN(v)[x_1 ↦ T, \ldots, x_n ↦ T]$

- For assignments:
 $⟦ x = E ⟧ = JOIN(v)[x ↦ eval(JOIN(v), E)]$

- For all other nodes:
 $⟦v⟧ = JOIN(v)$

where $JOIN(v) = \bigcup_{w ∈ pred(v)} [w]$ combines information from predecessors
• From the program being analyzed, we have constraint variables $x_1, \ldots, x_n \in L$ and a collection of constraints:

\[
\begin{align*}
x_1 &= f_1(x_1, \ldots, x_n) \\
x_2 &= f_2(x_1, \ldots, x_n) \\
\vdots \\
x_n &= f_n(x_1, \ldots, x_n)
\end{align*}
\]

• These can be collected into a single function $f: L^n \rightarrow L^n$:

\[
f(x_1, \ldots, x_n) = (f_1(x_1, \ldots, x_n), \ldots, f_n(x_1, \ldots, x_n))
\]

• How do we find the least (i.e. most precise) value of x_1, \ldots, x_n such that $x_1, \ldots, x_n = f(x_1, \ldots, x_n)$ (if that exists)???
Monotone functions

- A function \(f: L \rightarrow L \) is *monotone* when:
 \[\forall x, y \in L: x \sqsubseteq y \Rightarrow f(x) \sqsubseteq f(y) \]
- A function with several arguments is monotone if it is monotone in each argument
- Monotone functions are closed under composition
- As functions, \(\sqcup \) and \(\sqcap \) are both monotone
- A function is *extensive* when:
 \[\forall x \in L: x \subseteq f(x) \]
- Monotone is different from extensive
 - e.g. all constant functions are monotone

(why?)
Monotonicity for the sign analysis

- The \(\sqcup \) operator and map updates are monotone
- Compositions preserve monotonicity
- Are the abstract operators monotone?
- Can be verified by a tedious inspection:
 - \(\forall x, y, x' \in L: x \sqsubseteq x' \implies x \overline{op} y \sqsubseteq x' \overline{op} y \)
 - \(\forall x, y, y' \in L: y \sqsubseteq y' \implies x \overline{op} y \sqsubseteq x \overline{op} y' \)

(see Exercise 4.22)
Kleene’s fixed-point theorem

$x \in L$ is a fixed-point of $f: L \rightarrow L$ iff $f(x) = x$

In a lattice with finite height, every monotone function f has a unique least fixed-point:

$$\text{fix}(f) = \bigsqcup_{i \geq 0} f^i(\bot)$$
Proof of existence

- Clearly, $\bot \sqsubseteq f(\bot)$
- Since f is monotone, we also have $f(\bot) \sqsubseteq f^2(\bot)$
- By induction, $f^i(\bot) \sqsubseteq f^{i+1}(\bot)$
- This means that

 $\bot \sqsubseteq f(\bot) \sqsubseteq f^2(\bot) \sqsubseteq \ldots \sqsubseteq f^i(\bot) \ldots$

 is an increasing chain
- L has finite height, so for some k: $f^k(\bot) = f^{k+1}(\bot)$
- If $x \sqsubseteq y$ then $x \sqcup y = y$ (Exercise 4.2)
- So $\text{fix}(f) = f^k(\bot)$
Proof of unique least

• Assume that x is another fixed-point: $x = f(x)$
• Clearly, $\bot \sqsubseteq x$
• By induction, $f^i(\bot) \sqsubseteq f^i(x) = x$
• In particular, $\text{fix}(f) = f^k(\bot) \sqsubseteq x$, i.e. $\text{fix}(f)$ is least

• Uniqueness then follows from anti-symmetry
Computing fixed-points

The time complexity of $\text{fix}(f)$ depends on:

- the height of the lattice
- the cost of computing f
- the cost of testing equality

```scala
x = ⊥;
do {
  t = x;
  x = f(x);
} while (x ≠ t);
```

Implementation: TIP/src/tip/solvers/FixpointSolvers.scala
Intuition of monotonicity

• Recall that a function $f: L \rightarrow L$ is monotone when
 $$\forall x,y \in L: x \sqsubseteq y \Rightarrow f(x) \sqsubseteq f(y)$$

• $x \sqsubseteq y$ can be interpreted as “x is at least as precise as y”

• When f is monotone:
 “more precise input cannot lead to less precise output”
Let L be a lattice with finite height.

A *equation system* is of the form:

\[
x_1 = f_1(x_1, \ldots, x_n) \\
x_2 = f_2(x_1, \ldots, x_n) \\
\vdots \\
x_n = f_n(x_1, \ldots, x_n)
\]

where x_i are variables and each $f_i : L^n \to L$ is monotone.

Note that L^n is a product lattice.
Solving equations

• Every equation system has a *unique least solution*, which is the least fixed-point of the function \(f: \mathbb{L}^n \rightarrow \mathbb{L}^n \) defined by

\[
f(x_1, \ldots, x_n) = (f_1(x_1, \ldots, x_n), \ldots, f_n(x_1, \ldots, x_n))
\]

• A solution is always a fixed-point (for any kind of equation)
• The least one is the most precise
Solving inequations

- A *inequation system* is of the form

 \[
 x_1 \sqsubseteq f_1(x_1, \ldots, x_n) \\
 x_2 \sqsubseteq f_2(x_1, \ldots, x_n) \\
 \vdots \\
 x_n \sqsubseteq f_n(x_1, \ldots, x_n)
 \]

- Can be solved by exploiting the facts that

 \[
 x \sqsubseteq y \iff x = x \sqcap y \\
 \text{and} \\
 x \sqsupseteq y \iff x = x \sqcup y
 \]
Monotone frameworks

- A CFG to be analyzed, nodes Nodes = \{v_1, v_2, \ldots, v_n\}
- A finite-height lattice L of possible answers
 - fixed or parametrized by the given program
- A constraint variable \([v] \in L\) for every CFG node v

- A dataflow constraint for each syntactic construct
 - relates the value of \([v]\) to the variables for other nodes
 - typically a node is related to its neighbors
 - the constraints must be monotone functions:
 \([v_i] = f_i([v_1], [v_2], \ldots, [v_n])\)
Monotone frameworks

• Extract all constraints for the CFG

• Solve constraints using the fixed-point algorithm:
 – we work in the lattice L^n where L is a lattice describing abstract states
 – computing the least fixed-point of the combined function:
 $$f(x_1,...,x_n) = (f_1(x_1,...,x_n), ..., f_n(x_1,...,x_n))$$

• This solution gives an answer from L for each CFG node
Generating and solving constraints

Conceptually, we separate constraint generation from constraint solving, but in implementations, the two stages are typically interleaved.
Lattice points as answers

- The trivial, useless answer
- Our answer (the least fixed-point)
- Safe answers
- Unsafe answers
- The true answer

Conservative approximation...
The naive algorithm

\[x = (\perp, \perp, \ldots, \perp); \]
\[\text{do } \{ \]
\[\quad t = x; \]
\[\quad x = f(x); \]
\[\} \text{ while } (x \neq t); \]

- Correctness ensured by the fixed point theorem
- Does not exploit any special structure of \(L^n \) or \(f \) (i.e. \(x \in L^n \) and \(f(x_1,\ldots,x_n) = (f_1(x_1,\ldots,x_n), \ldots, f_n(x_1,\ldots,x_n)) \))

Implementation: SimpleFixpointSolver
Example: sign analysis

```plaintext
ite(n) {
    var f;
    f = 1;
    while (n>0) {
        f = f*n;
        n = n-1;
    }
    return f;
}
```

Note: some of the constraints are mutually recursive in this example.
The naive algorithm

<table>
<thead>
<tr>
<th></th>
<th>(f^0(\bot, \bot, \ldots, \bot))</th>
<th>(f^1(\bot, \bot, \ldots, \bot))</th>
<th>(\ldots)</th>
<th>(f^k(\bot, \bot, \ldots, \bot))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\bot)</td>
<td>(f^1_1(\bot, \bot, \ldots, \bot))</td>
<td>(\ldots)</td>
<td>(f^1_k(\bot, \bot, \ldots, \bot))</td>
</tr>
<tr>
<td>2</td>
<td>(\bot)</td>
<td>(f^2_1(\bot, \bot, \ldots, \bot))</td>
<td>(\ldots)</td>
<td>(f^2_k(\bot, \bot, \ldots, \bot))</td>
</tr>
<tr>
<td>...</td>
<td>(\ldots)</td>
<td>(\ldots)</td>
<td>(\ldots)</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>(n)</td>
<td>(\bot)</td>
<td>(f^n_1(\bot, \bot, \ldots, \bot))</td>
<td>(\ldots)</td>
<td>(f^n_k(\bot, \bot, \ldots, \bot))</td>
</tr>
</tbody>
</table>

Computing each new entry is done using the previous row

- Without using the entries in the current row that have already been computed!
- And many entries are likely unchanged from row to row!
Chaotic iteration

Recall that \(f(x_1, \ldots, x_n) = (f_1(x_1, \ldots, x_n), \ldots, f_n(x_1, \ldots, x_n)) \)

\[
x_1 = \perp; \ldots \ x_n = \perp;
\]

\[
\textbf{while } ((x_1, \ldots, x_n) \neq f(x_1, \ldots, x_n)) \{ \textbf{pick } i \text{ nondeterministically such that } x_i \neq f_i(x_1, \ldots, x_n) \}
\]

\[
\quad x_i = f_i(x_1, \ldots, x_n);
\]

\}

We now exploit the special structure of \(L^n \)
– may require a higher number of iterations,
but less work in each iteration
Correctness of chaotic iteration

Let x^j be the value of $x=(x_1, ..., x_n)$ in the j’th iteration of the naive algorithm.

Let \underline{x}^j be the value of $x=(x_1, ..., x_n)$ in the j’th iteration of the chaotic iteration algorithm.

By induction in j, show $\forall j: \underline{x}^j \subseteq x^j$.

Chaotic iteration eventually terminates at a fixed point.

It must be identical to the result of the naive algorithm since that is the least fixed point.
Towards a practical algorithm

• Computing \(\exists i : \ldots \) in chaotic iteration is not practical

• Idea: predict \(i \) from the analysis and the structure of the program!

• Example:
 In sign analysis, when we have processed a CFG node \(v \), process \(\text{succ}(v) \) next
The worklist algorithm (1/2)

• Essentially a specialization of chaotic iteration that exploits the special structure of \(f \)

• Most right-hand sides of \(f_i \) are quite sparse:
 – constraints on CFG nodes do not involve all others

• Use a map:

\[
dep: \text{Nodes} \rightarrow 2^{\text{Nodes}}
\]

that for \(v \in \text{Nodes} \) gives the variables \(w \) where \(v \) occurs on the right-hand side of the constraint for \(w \)
The worklist algorithm (2/2)

\[
x_1 = \bot; \ldots \ x_n = \bot;
\]
\[
W = \{v_1, \ldots, v_n\};
\]
\[
\text{while } (W \neq \emptyset) \{ \\
\quad v_i = W.\text{removeNext}(); \\
\quad y = f_i(x_1, \ldots, x_n); \\
\quad \text{if } (y \neq x_i) \{ \\
\qquad \text{for } (v_j \in \text{dep}(v_i)) W.\text{add}(v_j); \\
\qquad x_i = y; \\
\quad \}
\}
\]

Implementation: SimpleWorklistFixpointSolver
Further improvements

• Represent the worklist as a priority queue
 – find clever heuristics for priorities

• Look at the graph of dependency edges:
 – build strongly-connected components
 – solve constraints bottom-up in the resulting DAG
Transfer functions

• The constraint functions in dataflow analysis usually have this structure:

\[\llbracket v \rrbracket = t_v(JOIN(v)) \]

where \(t_v : States \rightarrow States \) is called the **transfer function** for \(v \)

• Example:

\[\llbracket x = E \rrbracket = JOIN(v)[x \mapsto eval(JOIN(v),E)] \]
\[= t_v(JOIN(v)) \]

where

\[t_v(s) = s[x \mapsto eval(s,E)] \]
Sign Analysis, continued...

• Another improvement of the worklist algorithm:
 – only add the entry node to the worklist initially
 – then let dataflow propagate through the program according to the constraints...

• Now, what if the constraint rule for variable declarations was:
 \[\llbracket \text{var } x_1, \ldots, x_n \rrbracket = \text{JOIN}(v)[x_1 \mapsto \bot, \ldots, x_n \mapsto \bot] \]
 (would make sense if we treat “uninitialized” as “no value” instead of “any value”)

• Problem: iteration would stop before the fixpoint!
• Solution: replace \(Vars \rightarrow Sign \) by \(\text{lift}(Vars \rightarrow Sign) \)
 (allows us to distinguish between “unreachable” and “all variables are non-integers”)
• This trick is also useful for context-sensitive analysis! (later...)

Implementation: WorklistFixpointSolverWithReachability, MapLiftLatticeSolver