# Static Program Analysis Part 3 - lattices and fixpoints 

http://cs.au.dk/~amoeller/spa/

Anders Møller \& Michael I. Schwartzbach
Computer Science, Aarhus University

## Flow-sensitivity

- Type checking is (usually) flow-insensitive:
- statements may be permuted without affecting typability
- constraints are naturally generated from AST nodes
- Other analyses must be flow-sensitive:
- the order of statements affects the results
- constraints are naturally generated from control flow graph nodes


## Sign analysis

- Determine the sign (,,+- 0 ) of all expressions
- The Sign lattice:

"not of type number" $\qquad$ $\perp$

The terminology will be defined later - this is just an appetizer... (or, "unreachable code")

- States are modeled by the map lattice Vars $\rightarrow$ Sign where Vars is the set of variables in the program


## Generating constraints

1 var $a, b$;
2 a $=42$;
$3 \mathrm{~b}=\mathrm{a}+\mathrm{i}$ put;
$4 a=a-b ;$


$$
\begin{aligned}
& x_{1}=[a \mapsto T, b \mapsto T] \\
& x_{2}=x_{1}[a \mapsto+] \\
& x_{3}=x_{2}\left[b \mapsto x_{2}(a)+T\right] \\
& x_{4}=x_{3}\left[a \mapsto x_{3}(a)-x_{3}(b)\right]
\end{aligned}
$$

## Sign analysis constraints

- The variable $\llbracket v \rrbracket$ denotes a map that gives the sign value for all variables at the program point after CFG node v
- For assignments:

$$
\llbracket x=E \rrbracket=\operatorname{JOIN}(\mathrm{v})[x \mapsto e \operatorname{eval}(\operatorname{JOIN}(\mathrm{v}), E)]
$$

- For variable declarations:

$$
\llbracket \operatorname{var} x_{1}, \ldots, x_{n} \rrbracket=\operatorname{JOIN}(v)\left[x_{1} \mapsto T, \ldots, x_{n} \mapsto T\right]
$$

- For all other nodes:


$$
\llbracket v \rrbracket=\operatorname{JOIN}(\mathrm{v})
$$

where $\operatorname{JOIN}(\mathrm{v})=\sqcup \llbracket \mathrm{w} \rrbracket$ $\mathrm{w} \in \operatorname{pred}(\mathrm{v})$
$\longleftarrow$ combines information from predecessors (explained later...)

## Evaluating signs

- The eval function is an abstract evaluation:
- eval( $\sigma, x$ ) $=\sigma(x)$
- eval( $\sigma$, intconst $)=\operatorname{sign}($ intconst $)$
- eval( $\sigma, E_{1}$ op $\left.E_{2}\right)=\overline{\mathrm{Op}}\left(\operatorname{eval}\left(\sigma, E_{1}\right)\right.$, eval $\left.\left(\sigma, E_{2}\right)\right)$
- $\sigma:$ Vars $\rightarrow$ Sign is an abstract state
- The sign function gives the sign of an integer
- The $\overline{\mathrm{OP}}$ function is an abstract evaluation of the given operator op


## Abstract operators

| + | $\perp$ | 0 | - | + | T |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\perp$ | $\perp$ | $\perp$ | $\perp$ | $\perp$ | $\perp$ |
| $\mathbf{0}$ | $\perp$ | 0 | - | + | T |
| - | $\perp$ | - | - | T | T |
| + | $\perp$ | + | T | + | T |
| T | $\perp$ | T | T | T | T |


| - | $\perp$ | 0 | - | + | $T$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\perp$ | $\perp$ | $\perp$ | $\perp$ | $\perp$ | $\perp$ |
| 0 | $\perp$ | 0 | + | - | $T$ |
| - | $\perp$ | - | $T$ | - | $T$ |
| + | $\perp$ | + | + | $T$ | $T$ |
| T | $\perp$ | T | T | T | T |


| $*$ | $\perp$ | 0 | - | + | $T$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\perp$ | $\perp$ | $\perp$ | $\perp$ | $\perp$ | $\perp$ |
| 0 | $\perp$ | 0 | 0 | 0 | 0 |
| - | $\perp$ | 0 | + | - | $T$ |
| + | $\perp$ | 0 | - | + | $T$ |
| $T$ | $\perp$ | 0 | $T$ | $T$ | $T$ |


| $\perp$ | $\perp$ | 0 | - | + | T |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\perp$ | $\perp$ | $\perp$ | $\perp$ | $\perp$ | $\perp$ |
| 0 | $\perp$ | $\perp$ | 0 | 0 | T |
| - | $\perp$ | $\perp$ | T | T | T |
| + | $\perp$ | $\perp$ | T | T | T |
| T | $\perp$ | $\perp$ | T | T | T |


| $\perp$ | $\perp$ | 0 | - | + | $T$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\perp$ | $\perp$ | $\perp$ | $\perp$ | $\perp$ | $\perp$ |
| 0 | $\perp$ | 0 | + | 0 | $T$ |
| - | $\perp$ | 0 | $T$ | 0 | $T$ |
| + | $\perp$ | + | + | $T$ | $T$ |
| $T$ | $\perp$ | $T$ | $T$ | $T$ | $T$ |


| = | $\perp$ | 0 | - | + | T |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\perp$ | $\perp$ | $\perp$ | $\perp$ | $\perp$ | $\perp$ |
| 0 | $\perp$ | + | 0 | 0 | T |
| - | $\perp$ | 0 | T | 0 | T |
| + | $\perp$ | 0 | 0 | T | T |
| T | $\perp$ | T | T | T | T |

(assuming the subset of TIP with only integer values)

## Increasing precision

- Some loss of information:
$-(2>0)=1$ is analyzed as T
-++ is analyzed as $T$, since e.g. $1 / 2$ is rounded down
- Use a richer lattice for better precision:

- Abstract operators are now $8 \times 8$ tables


## Partial orders

- Given a set S, a partial order $\sqsubseteq$ is a binary relation on $S$ that satisfies:
- reflexivity:
- transitivity:
- anti-symmetry:

$$
\begin{aligned}
& \forall x \in S: x \sqsubseteq x \\
& \forall x, y, z \in S: x \sqsubseteq y \wedge y \sqsubseteq z \Rightarrow x \sqsubseteq z \\
& \forall x, y \in S: x \sqsubseteq y \wedge y \sqsubseteq x \Rightarrow x=y
\end{aligned}
$$

- Can be illustrated by a Hasse diagram (if finite) T



## Upper and lower bounds

- Let $X \subseteq S$ be a subset
- We say that $\mathrm{y} \in \mathrm{S}$ is an upper bound $(\mathrm{X} \subseteq \mathrm{y})$ when

$$
\forall x \in X: x \sqsubseteq y
$$

- We say that $y \in S$ is a lower bound $(y \sqsubseteq X)$ when

$$
\forall x \in X: y \subseteq x
$$

- A least upper bound $\sqcup X$ is defined by

$$
x \sqsubseteq \sqcup X \wedge \forall y \in S: X \sqsubseteq y \Rightarrow \sqcup X \subseteq y
$$

- A greatest lower bound $\Pi \mathrm{X}$ is defined by

$$
\Pi \mathrm{X} \subseteq \mathrm{X} \wedge \forall \mathrm{y} \in \mathrm{~S}: \mathrm{y} \subseteq \mathrm{X} \Rightarrow \mathrm{y} \subseteq \square \mathrm{X}
$$

## Lattices

- A lattice is a partial order where $x \sqcup y$ and $x П y$ exist for all $x, y \in S$
( $x \sqcup y$ is notation for $\bigsqcup\{x, y\}$ )
- A complete lattice is a partial order where $\sqcup X$ and $\Pi X$ exist for all $X \subseteq S$
- A complete lattice must have
- a unique largest element, $\mathrm{T}=\mathrm{L} \mathrm{S}$
(exercise)
- a unique smallest element, $\perp=\Pi$ S
- A finite lattice is complete if $T$ and $\perp$ exist


## These partial orders are lattices



## These partial orders are not lattices



## The powerset lattice

- Every finite set $A$ defines a complete lattice $(\mathcal{P}(A), \subseteq)$ where

for $A=\{0,1,2,3\}$


## Lattice height

- The height of a lattice is the length of the longest path from $\perp$ to $T$
- The lattice $(\mathcal{P}(\mathrm{A}), \subseteq)$ has height $|\mathrm{A}|$



## Map lattice

- If $A$ is a set and $L$ is a complete lattice, then we obtain a complete lattice called a map lattice:

$$
A \rightarrow L=\left\{\left[a_{1} \mapsto x_{1}, a_{2} \mapsto x_{2}, \ldots\right] \mid A=\left\{a_{1}, a_{2}, \ldots\right\} \wedge x_{1}, x_{2}, \ldots \in L\right\}
$$

ordered pointwise

Example: $A \rightarrow L$ where

- A is the set of program variables
- $L$ is the Sign lattice
- $\sqcup$ and $\Pi$ can be computed pointwise
- height $(\mathrm{A} \rightarrow \mathrm{L})=|\mathrm{A}| \cdot h e i g h t(\mathrm{~L})$


## Product lattice

- If $\mathrm{L}_{1}, \mathrm{~L}_{2}, \ldots, \mathrm{~L}_{n}$ are complete lattices, then so is the product:

$$
L_{1} \times L_{2} \times \ldots \times L_{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid x_{i} \in L_{i}\right\}
$$

where $\subseteq$ is defined pointwise

- Note that $\sqcup$ and $\Pi$ can be computed pointwise
- $\operatorname{height}\left(\mathrm{L}_{1} \times \mathrm{L}_{2} \times \ldots \times \mathrm{L}_{\mathrm{n}}\right)=\operatorname{height}\left(\mathrm{L}_{1}\right)+\ldots+\operatorname{height}\left(\mathrm{L}_{\mathrm{n}}\right)$

> Example:
> each $L_{i}$ is the map lattice $A \rightarrow L$ from the previous slide, and $n$ is the number of CFG nodes

## Flat lattice

- If A is a set, then $f l a t(\mathrm{~A})$ is a complete lattice:

- height(flat(A)) $=2$


## Lift lattice

- If L is a complete lattice, then so is lift( L ), which is:

- height(lift(L)) = height(L)+1


## Sign analysis constraints, revisited

- The variable $\llbracket v \rrbracket$ denotes a map that gives the sign value for all variables at the program point after CFG node v
- $\llbracket \mathrm{v} \rrbracket \in$ States where States $=$ Vars $\rightarrow$ Sign
- For assignments:

$$
\llbracket x=E \rrbracket=\operatorname{JOIN}(\mathrm{v})[x \mapsto \operatorname{eval} /(\operatorname{JO} / N(\mathrm{v}), E)]
$$

- For variable declarations:


$$
\llbracket \operatorname{var} x_{1}, \ldots, x_{n} \rrbracket=\operatorname{JOIN}(\mathrm{v})\left[x_{1} \mapsto T, \ldots, x_{n} \mapsto T\right]
$$

- For all other nodes:

$$
\llbracket v \rrbracket=\operatorname{JOIN}(\mathrm{v})
$$

$$
\text { where } \operatorname{JOIN}(\mathrm{v})=\underset{\mathrm{w} \in \operatorname{pred}(\mathrm{v})}{\llbracket \mathrm{w} \rrbracket}
$$

$\longleftarrow$ combines information from predecessors
var $a, b, c$ ；
a $=42$ ；
b $=87$ ；
if（input）\｛

$$
c=a+b ;
$$

\} el se \{

$$
c=a-b ;
$$

\}

## Generating constraints



【entry】 $=\perp$
$\llbracket \operatorname{var} \mathrm{a}, \mathrm{b}, \mathrm{c} \rrbracket=\llbracket e n t r y \rrbracket[\mathrm{a} \mapsto \mathrm{T}, \mathrm{b} \mapsto \mathrm{T}, \mathrm{c} \mapsto \mathrm{T}]$
$\llbracket \mathrm{a}=42 \rrbracket=\llbracket \mathrm{var} \mathrm{a}, \mathrm{b}, \mathrm{c} \rrbracket[\mathrm{a} \mapsto+]$
$\llbracket b=87 \rrbracket=\llbracket a=42 \rrbracket[b \mapsto+]$
【i nput 】＝【b＝87】
$\llbracket c=a+b \rrbracket=\llbracket i \operatorname{nput} \rrbracket[c \mapsto \llbracket i$ nput $\rrbracket(\mathrm{a})+\llbracket \mathrm{i}$ nput $\rrbracket(\mathrm{b})]$
$\llbracket c=a-b \rrbracket=\llbracket i \operatorname{nput} \rrbracket[c \mapsto \llbracket i \operatorname{nput} \rrbracket(\mathrm{a})-\llbracket \mathrm{i}$ nput $\rrbracket(\mathrm{b})]$
using l．u．b．$\longrightarrow \llbracket e x i t \rrbracket=\llbracket c=a+b \rrbracket \sqcup \llbracket c=a-b \rrbracket$

## Constraints

- From the program being analyzed, we have constraint variables $x_{1}, \ldots, x_{n} \in L$ and a collection of constraints:

$$
\begin{aligned}
& x_{1}=f_{1}\left(x_{1}, \ldots, x_{n}\right) \\
& x_{2}=f_{2}\left(x_{1}, \ldots, x_{n}\right) \\
& \ldots \\
& x_{n}=f_{n}\left(x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

Note that $\mathrm{L}^{\mathrm{n}}$ is
a product lattice

- These can be collected into a single function $f: L^{n} \rightarrow L^{n}$ :

$$
f\left(x_{1}, \ldots, x_{n}\right)=\left(f_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, f_{n}\left(x_{1}, \ldots, x_{n}\right)\right)
$$

- How do we find the least (i.e. most precise) value of $x_{1}, \ldots, x_{n}$ such that $\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{1}, \ldots, x_{n}\right)$ (if that exists)???


## Monotone functions

- A function $f: L \rightarrow L$ is monotone when

$$
\forall x, y \in L: x \sqsubseteq y \Rightarrow f(x) \sqsubseteq f(y)
$$

- A function with several arguments is monotone if it is monotone in each argument
- Monotone functions are closed under composition
- As functions, $\sqcup$ and $\Pi$ are both monotone
- $x \sqsubseteq y$ can be interpreted as " $x$ is at least as precise as $y$ "
- When $f$ is monotone:
"more precise input cannot lead to less precise output"


## Monotonicity for the sign analysis

Example, constraints for assignments:
$\llbracket x=E \rrbracket=\operatorname{JoIN}(\mathrm{v})[x \mapsto e v a /(\operatorname{JOIN}(\mathrm{v}), E)]$

- The $\sqcup$ operator and map updates are monotone
- Compositions preserve (exercises) monotonicity
- Are the abstract operators monotone?
- Can be verified by a tedious inspection:
$-\forall x, y, x^{\prime} \in \mathrm{L}: x \sqsubseteq x^{\prime} \Rightarrow x \overline{\mathrm{OP}} y \sqsubseteq x^{\prime} \overline{\mathrm{OP}} y$
$-\forall x, y, y^{\prime} \in \mathrm{L}: y \sqsubseteq y^{\prime} \Rightarrow x \overline{\mathrm{OP}} y \sqsubseteq x \overline{\mathrm{OP}} y^{\prime}$


## Kleene's fixed-point theorem

$x \in L$ is a fixed point of $f: L \rightarrow L$ iff $f(x)=x$

In a complete lattice with finite height, every monotone function f has a unique least fixed-point:

$$
\operatorname{lfp}(f)=\bigsqcup_{i \geq 0} f^{i}(\perp)
$$

## Proof of existence

- Clearly, $\perp$ ㄷ́f( $\perp$ )
- Since $f$ is monotone, we also have $f(\perp) \sqsubseteq f^{2}(\perp)$
- By induction, $\mathrm{f}^{\mathrm{i}}(\perp) \subseteq \mathrm{f}^{\mathrm{f}+1}(\perp)$
- This means that

$$
\perp \subseteq f(\perp) \subseteq f^{2}(\perp) \subseteq \ldots f^{i}(\perp) \ldots
$$

is an increasing chain

- L has finite height, so for some $k: f^{k}(\perp)=f^{k+1}(\perp)$
- If $x \sqsubseteq y$ then $x \sqcup y=y \quad$ (exercise)
- Solfp(f) $=f^{k}(\perp)$


## Proof of unique least

- Assume that $x$ is another fixed-point: $x=f(x)$
- Clearly, $\perp \sqsubseteq x$
- By induction and monotonicity, $\mathrm{f}^{\mathrm{f}}(\perp) \sqsubseteq \mathrm{f}^{i}(x)=x$
- In particular, $l f p(f)=f^{k}(\perp) \subseteq x$, i.e. $I f p(f)$ is least
- Uniqueness then follows from anti-symmetry


## Computing fixed-points

The time complexity of $I f p(f)$ depends on:

- the height of the lattice
- the cost of computing f
- the cost of testing equality

$$
\begin{aligned}
& x=\perp ; \\
& \text { do }\{ \\
& \quad \mathrm{t}=\mathrm{x} \\
& \quad \mathrm{x}=\mathrm{f}(\mathrm{x}) \\
& \text { \} while }(\mathrm{x} \neq \mathrm{t})
\end{aligned}
$$

## Summary: lattice equations

- Let L be a complete lattice with finite height
- An equation system is of the form:

$$
\begin{aligned}
& x_{1}=f_{1}\left(x_{1}, \ldots, x_{n}\right) \\
& x_{2}=f_{2}\left(x_{1}, \ldots, x_{n}\right) \\
& \ldots \\
& x_{n}=f_{n}\left(x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

where $x_{i}$ are variables and each $f_{i}: L^{n} \rightarrow L$ is monotone

- Note that $\mathrm{L}^{\mathrm{n}}$ is a product lattice


## Solving equations

- Every equation system has a unique least solution, which is the least fixed-point of the function $f: L^{n} \rightarrow L^{n}$ defined by

$$
f\left(x_{1}, \ldots, x_{n}\right)=\left(f_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, f_{n}\left(x_{1}, \ldots, x_{n}\right)\right)
$$

- A solution is always a fixed-point (for any kind of equation)
- The least one is the most precise


## Solving inequations

- An inequation system is of the form

$$
\begin{array}{ll}
x_{1} \sqsubseteq f_{1}\left(x_{1}, \ldots, x_{n}\right) & x_{1} \sqsupseteq f_{1}\left(x_{1}, \ldots, x_{n}\right) \\
x_{2} \sqsubseteq f_{2}\left(x_{1}, \ldots, x_{n}\right) & \text { or } \\
\ldots & x_{2} \sqsupseteq f_{2}\left(x_{1}, \ldots, x_{n}\right) \\
x_{n} \sqsubseteq f_{n}\left(x_{1}, \ldots, x_{n}\right) & \ldots \\
x_{n} \sqsupseteq f_{n}\left(x_{1}, \ldots, x_{n}\right)
\end{array}
$$

- Can be solved by exploiting the facts that

$$
x \sqsubseteq y \Leftrightarrow x=x \sqcap y
$$

and

$$
x \supseteq y \Leftrightarrow x=x \sqcup y
$$

## Monotone frameworks

- A CFG to be analyzed, nodes Nodes $=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$
- A finite-height complete lattice $L$ of possible answers
- fixed or parametrized by the given program
- A constraint variable $\llbracket v \rrbracket \in L$ for every CFG node v
- A dataflow constraint for each syntactic construct
- relates the value of $\llbracket v \rrbracket$ to the variables for other nodes
- typically a node is related to its neighbors
- the constraints must be monotone functions:

$$
\llbracket v_{i} \rrbracket=f_{i}\left(\llbracket v_{1} \rrbracket, \llbracket v_{2} \rrbracket, \ldots, \llbracket v_{n} \rrbracket\right)
$$

## Monotone frameworks

- Extract all constraints for the CFG
- Solve constraints using the fixed-point algorithm:
- we work in the lattice $L^{n}$ where $L$ is a lattice describing abstract states
- computing the least fixed-point of the combined function:

$$
f\left(x_{1}, \ldots, x_{n}\right)=\left(f_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, f_{n}\left(x_{1}, \ldots, x_{n}\right)\right)
$$

- This solution gives an answer from L for each CFG node


## Generating and solving constraints


fixed－point solver

$\llbracket \mathrm{p} \rrbracket=$ \＆int
$\llbracket q \rrbracket=$ \＆int【alloc 0】＝\＆int $\llbracket x \rrbracket=\phi$【foo】 $=\phi$ $\llbracket f o o \rrbracket=\phi$
$\llbracket \& n \rrbracket=$ \＆int【main】＝（）－＞int
solution
constraints


Conceptually，we separate constraint generation from constraint solving， but in implementations，the two stages are typically interleaved

## Lattice points as answers

the trivial, useless answer


Conservative approximation...

## The naive algorithm

$$
\begin{aligned}
& x=(\perp, \perp, \ldots, \perp) ; \\
& \text { do }\{ \\
& \quad \mathrm{t}=\mathrm{x} ; \\
& \quad \mathrm{x}=\mathrm{f}(\mathrm{x}) \text {; } \\
& \text { \} whi le }(\mathrm{x} \neq \mathrm{t}) \text {; }
\end{aligned}
$$

- Correctness ensured by the fixed point theorem
- Does not exploit any special structure of $L^{n}$ or $f$ (i.e. $x \in L^{n}$ and $f\left(x_{1}, \ldots, x_{n}\right)=\left(f_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, f_{n}\left(x_{1}, \ldots, x_{n}\right)\right)$ )

Implementation: Si mpl eFi xpoi nt Sol ver

## Example: sign analysis



Note: some of the constraints are mutually recursive in this example

## The naive algorithm

|  | $f^{0}(\perp, \perp, \ldots, \perp)$ | $f^{1}(\perp, \perp, \ldots, \perp)$ | $\ldots$ | $f_{k}(\perp, \perp, \ldots, \perp)$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | $\ldots$ | $f_{1}(\perp, 1, \ldots, \perp)$ | $\ldots$ | $\ldots$ |
| 2 | $\perp$ | $f_{2}(\perp, \perp, \ldots, \perp)$ | $\ldots$ | $\ldots$ |
| $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ |  |
| $n$ | $\ldots$ | $f_{n}(\perp, \perp, \ldots, \perp)$ | $\ldots$ | $\ldots$ |

Computing each new entry is done using the previous column

- Without using the entries in the current column that have already been computed!
- And many entries are likely unchanged from one column to the next!


## Chaotic iteration

Recall that $f\left(x_{1}, \ldots, x_{n}\right)=\left(f_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, f_{n}\left(x_{1}, \ldots, x_{n}\right)\right)$

$$
\begin{aligned}
& x_{1}=\perp ; \ldots x_{n}=\perp ; \\
& \text { while }\left(\left(x_{1}, \ldots, x_{n}\right) \neq f\left(x_{1}, \ldots, x_{n}\right)\right) \quad\{
\end{aligned}
$$

pick $i$ nondeterministically such that $x_{i} \neq f_{i}\left(x_{1}, \ldots, x_{n}\right)$
$x_{i}=f_{i}\left(x_{1}, \ldots, x_{n}\right)$;
\}

We now exploit the special structure of $L^{n}$

- may require a higher number of iterations, but less work in each iteration


## Correctness of chaotic iteration

- Let $x^{j}$ be the value of $x=\left(x_{1}, \ldots, x_{n}\right)$ in the $j^{\prime}$ th iteration of the naive algorithm
- Let $\underline{x^{j}}$ be the value of $x=\left(x_{1}, \ldots, x_{n}\right)$ in the $j^{\prime}$ th iteration of the chaotic iteration algorithm
- By induction in j , show $\forall \mathrm{j}$ : $\underline{x}^{\mathrm{j}} \subseteq \mathrm{x}^{\mathrm{j}}$
- Chaotic iteration eventually terminates at a fixed point
- It must be identical to the result of the naive algorithm since that is the least fixed point


## Towards a practical algorithm

- Computing $\exists \mathrm{i}$ : ... in chaotic iteration is not practical
- Idea: predict i from the analysis and the structure of the program!
- Example:

In sign analysis, when we have processed a CFG node v, process succ(v) next

## The worklist algorithm (1/2)

- Essentially a specialization of chaotic iteration that exploits the special structure of $f$
- Most right-hand sides of $f_{i}$ are quite sparse:
- constraints on CFG nodes do not involve all others
- Use a map:

$$
\text { dep: Nodes } \rightarrow 2^{\text {Nodes }}
$$

that for $v \in$ Nodes gives the set of nodes (i.e. constraint variables) $w$ where $v$ occurs on the right-hand side of the constraint for w

## The worklist algorithm (2/2)

$$
\begin{aligned}
& \mathrm{x}_{1}=\perp ; \ldots \mathrm{x}_{\mathrm{n}}=\perp ; \\
& \mathrm{W}=\left\{\mathrm{v}_{1}, \ldots . \mathrm{v}_{\mathrm{n}}\right\} ; \\
& \text { Whil } \mathrm{e}(\mathrm{~W} \neq \varnothing)\{ \\
& \mathrm{v}_{\mathrm{i}}=\mathrm{W} \text { removeNext }() ; \\
& \mathrm{y}=\mathrm{f}_{\mathrm{i}}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) ; \\
& \text { if }\left(\mathrm{y} \neq \mathrm{x}_{\mathrm{i}}\right) \text { \{ } \\
& \quad \mathrm{for}\left(\mathrm{v}_{\mathrm{j}} \in \operatorname{dep}\left(\mathrm{v}_{\mathrm{i}}\right)\right) \mathrm{W} \text { add }\left(\mathrm{v}_{\mathrm{j}}\right) ; \\
& \quad \mathrm{x}_{\mathrm{i}}=\mathrm{y} ; \\
& \}
\end{aligned}
$$

## Further improvements

- Represent the worklist as a priority queue
- find clever heuristics for priorities
- Look at the graph of dependency edges:
- build strongly-connected components
- solve constraints bottom-up in the resulting DAG



## Transfer functions

- The constraint functions in dataflow analysis usually have this structure:

$$
\llbracket v \rrbracket=\mathrm{t}_{v}(J O I N(v))
$$

where $\mathrm{t}_{v}$ : States $\rightarrow$ States is called the transfer function for $v$


- Example:

$$
\begin{aligned}
\llbracket x=E \rrbracket & =\operatorname{JOIN}(v)[x \mapsto \operatorname{eval}(\operatorname{JOIN}(v), E) \rrbracket \\
& =\mathrm{t}_{v}(\operatorname{JOIN}(\mathrm{v}))
\end{aligned}
$$

where

$$
\mathrm{t}_{v}(s)=s[x \mapsto e v a l(s, E)]
$$

## Sign Analysis, continued

- Another improvement of the worklist algorithm:
- only add the entry node to the worklist initially
- then let dataflow propagate through the program according to the constraints...
- Now, what if the constraint rule for variable declarations was:
$\llbracket \operatorname{var} x_{1}, \ldots, x_{n} \rrbracket=\operatorname{JOIN}(\mathrm{v})\left[x_{1} \mapsto \perp, \ldots, x_{n} \mapsto \perp\right]$
(would make sense if we treat "uninitialized" as "no value" instead of "any value")
- Problem: iteration would stop before the fixpoint!
- Solution: replace Vars $\rightarrow$ Sign by lift(Vars $\rightarrow$ Sign)
(allows us to distinguish between "unreachable" and "all variables are non-integers")
- This trick is also useful for context-sensitive analysis! (later...)

