Static Program Analysis
Part 10 – pointer analysis

http://cs.au.dk/~amoeller/spa/

Anders Møller & Michael I. Schwartzbach
Computer Science, Aarhus University
Agenda

• Introduction to pointer analysis
• Andersen’s analysis
• Steensgaard’s analysis
• Interprocedural pointer analysis
• Records and objects
• Null pointer analysis
• Flow-sensitive pointer analysis
Analyzing programs with pointers

How do we perform e.g. constant propagation analysis when the programming language has pointers? (or object references?)

\[
\text{Exp} \rightarrow \ldots
\begin{align*}
&| \text{alloc } E \\
&| \&Id \\
&| \ast Exp \\
&| \text{null}
\end{align*}
\]

\[
\text{Stm} \rightarrow \ldots
\begin{align*}
&| \ast Id = Exp \\
\end{align*}
\]

\[
\ldots
\begin{align*}
&\ast x = 42; \\
&\ast y = -87; \\
&z = \ast x; \\
&// \text{ is } z \text{ 42 or -87?}
\end{align*}
\]
Heap pointers

- For simplicity, we ignore records
 - `alloc` then only allocates a single cell
 - only linear structures can be built in the heap

- Let’s at first also ignore functions as values
- We still have many interesting analysis challenges...
The fundamental question about pointers: *What cells can they point to?*

- We need a suitable abstraction
- The set of (abstract) cells, *Cells*, contains
 - alloc_i for each allocation site with index \(i \)
 - \(X \) for each program variable named \(X \)
- This is called *allocation site abstraction*
- Each abstract cell may correspond to many concrete memory cells at runtime
Points-to analysis

• Determine for each pointer variable \(X \) the set \(pt(X) \) of the cells \(X \) may point to

• A conservative (“may points-to”) analysis:
 – the set may be too large
 – can show absence of aliasing: \(pt(X) \cap pt(Y) = \emptyset \)

• We’ll focus on flow-insensitive analyses:
 – take place on the AST
 – before or together with the control-flow analysis

\[
\begin{align*}
\ldots \\
* x &= 42; \\
* y &= -87; \\
\text{z} &= * x; \\
\text{// is z 42 or -87?}
\end{align*}
\]
Obtaining points-to information

• An almost-trivial analysis (called *address-taken*):
 – include all *alloc→i* cells
 – include the *X* cell if the expression *&X* occurs in the program

• Improvement for a typed language:
 – eliminate those cells whose types do not match

• This is sometimes good enough
 – and clearly very fast to compute
Pointer normalization

• Assume that all pointer usage is normalized:
 • $X = \text{alloc } P$ where P is null or an integer constant
 • $X = &Y$
 • $X = Y$
 • $X = *Y$
 • $*X = Y$
 • $X = \text{null}$

• Simply introduce lots of temporary variables...

• All sub-expressions are now named

• We choose to ignore the fact that the cells created at variable declarations are uninitialized (otherwise it is impossible to get useful results from a flow-insensitive analysis)
Agenda

- Introduction to pointer analysis
- Andersen’s analysis
- Steensgaard’s analysis
- Interprocedural pointer analysis
- Records and objects
- Null pointer analysis
- Flow-sensitive pointer analysis
Andersen’s analysis (1/2)

• For every cell c, introduce a constraint variable $⟦c⟧$ ranging over sets of cells, i.e. $⟦·⟧ : Cells \rightarrow \mathcal{P}(Cells)$

• Generate constraints:

 • $X = \text{alloc} P$: $\text{alloc} - i \in ⟦X⟧$

 • $X = &Y$: $Y \in ⟦X⟧$

 • $X = Y$: $⟦Y⟧ \subseteq ⟦X⟧$

 • $X = *Y$: $c \in ⟦Y⟧ \Rightarrow ⟦c⟧ \subseteq ⟦X⟧$ for each $c \in Cells$

 • $*X = Y$: $c \in ⟦X⟧ \Rightarrow ⟦Y⟧ \subseteq ⟦c⟧$ for each $c \in Cells$

 • $X = \text{null}$: (no constraints)

(For the conditional constraints, there’s no need to add a constraint for the cell x if $&x$ does not occur in the program)
Andersen’s analysis (2/2)

• The points-to map is defined as:
 \[pt(X) = \lceil X \rceil \]

• The constraints fit into the cubic framework ☺
• Unique minimal solution in time \(O(n^3) \)
• In practice, for Java: \(O(n^2) \)

• The analysis is flow-insensitive but *directional*
 – models the direction of the flow of values in assignments
Example program

```
var p, q, x, y, z;
p = alloc null;
x = y;
x = z;
*p = z;
p = q;
p = &z;
q = &y;
x = *p;
p = &z;
```

Cells = \{p, q, x, y, z, alloc\(-1\)\}
Applying Andersen

• Generated constraints:

\[
\begin{align*}
\text{alloc}-1 & \in \llbracket p \rrbracket \\
\llbracket y \rrbracket & \subseteq \llbracket x \rrbracket \\
\llbracket z \rrbracket & \subseteq \llbracket x \rrbracket \\
c & \in \llbracket p \rrbracket \implies \llbracket z \rrbracket \subseteq \llbracket \alpha \rrbracket \text{ for each } c \in \text{Cells} \\
\llbracket q \rrbracket & \subseteq \llbracket p \rrbracket \\
y & \in \llbracket q \rrbracket \\
c & \in \llbracket p \rrbracket \implies \llbracket \alpha \rrbracket \subseteq \llbracket x \rrbracket \text{ for each } c \in \text{Cells} \\
z & \in \llbracket p \rrbracket
\end{align*}
\]

• Smallest solution:

\[
\begin{align*}
pt(p) &= \{ \text{alloc}-1, y, z \} \\
pt(q) &= \{ y \} \\
pt(x) &= pt(y) = pt(z) = \emptyset
\end{align*}
\]
A specialized cubic solver

• At each load/store instruction, instead of generating a conditional constraint for each cell, generate a single universally quantified constraint:

 - $t \in [x]$
 - $[x] \subseteq [y]$
 - $\forall t \in [x]: [t] \subseteq [y]$
 - $\forall t \in [x]: [y] \subseteq [t]$

• Whenever a token is added to a set, lazily add new edges according to the universally quantified constraints

• Note that every token is also a constraint variable here

• Still cubic complexity, but faster in practice
A specialized cubic solver

- $x.\text{sol} \subseteq T$: the set of tokens for x (the bitvectors)
- $x.\text{succ} \subseteq V$: the successors of x (the edges)
- $x.\text{from} \subseteq V$: the first kind of quantified constraints for x
- $x.\text{to} \subseteq V$: the second kind of quantified constraints for x
- $W \subseteq T \times V$: a worklist (initially empty)

Implementation: SpecialCubicSolver
A specialized cubic solver

- \(t \in \llbracket x \rrbracket \)
 - \(\text{addToken}(t, x) \)
 - \(\text{propagate}() \)

- \(\llbracket x \rrbracket \subseteq \llbracket y \rrbracket \)
 - \(\text{addEdge}(x, y) \)
 - \(\text{propagate}() \)

- \(\forall t \in \llbracket x \rrbracket : \llbracket t \rrbracket \subseteq \llbracket y \rrbracket \)
 - add \(y \) to \(x.\text{from} \)
 - for each \(t \) in \(x.\text{sol} \)
 - \(\text{addEdge}(t, y) \)
 - \(\text{propagate}() \)

- \(\forall t \in \llbracket x \rrbracket : \llbracket y \rrbracket \subseteq \llbracket t \rrbracket \)
 - add \(y \) to \(x.\text{to} \)
 - for each \(t \) in \(x.\text{sol} \)
 - \(\text{addEdge}(y, t) \)
 - \(\text{propagate}() \)

\(\text{addToken}(t, x) : \)
- if \(t \notin x.\text{sol} \)
 - add \(t \) to \(x.\text{sol} \)
 - add \((t, x) \) to \(W \)

\(\text{addEdge}(x, y) : \)
- if \(x \neq y \land y \notin x.\text{succ} \)
 - add \(y \) to \(x.\text{succ} \)
 - for each \(t \) in \(x.\text{sol} \)
 - \(\text{addToken}(t, y) \)

\(\text{propagate}() : \)
- while \(W \neq \emptyset \)
 - pick and remove \((t, x) \) from \(W \)
 - for each \(y \) in \(x.\text{from} \)
 - \(\text{addEdge}(t, y) \)
 - for each \(y \) in \(x.\text{to} \)
 - \(\text{addEdge}(y, t) \)
 - for each \(y \) in \(x.\text{succ} \)
 - \(\text{addToken}(t, y) \)
Agenda

- Introduction to pointer analysis
- Andersen’s analysis
- Steensgaard’s analysis
- Interprocedural pointer analysis
- Records and objects
- Null pointer analysis
- Flow-sensitive pointer analysis
Steensgaard’s analysis

• View assignments as being bidirectional

• Generate constraints:
 • $X = \text{alloc } P$: $\text{alloc} - i \in [X]$
 • $X = &Y$: $Y \in [X]$
 • $X = Y$: $[X] = [Y]$
 • $X = *Y$: $c \in [Y] \Rightarrow [c] = [X]$ for each $c \in \text{Cells}$
 • $*X = Y$: $c \in [X] \Rightarrow [Y] = [c]$ for each $c \in \text{Cells}$

• Extra constraints:

\[c_1, c_2 \in [c] \Rightarrow [c_1] = [c_2] \text{ and } [c_1] \cap [c_2] \neq \emptyset \Rightarrow [c_1] = [c_2] \]

(whenever a cell may point to two cells, they are essentially merged into one)

• Steensgaard’s original formulation uses conditional unification for $X = Y$: $c \in [Y] \Rightarrow [X] = [Y]$ for each $c \in \text{Cells}$ (avoids unifying if Y is never a pointer)
Steensgaard’s analysis

• Reformulate as term unification
• Generate constraints:

 • \(X = \text{alloc} \ P: \) [\(X \)] = ⨁[\text{alloc} - i]
 • \(X = \& Y: \) [\(X \)] = ⨁[\(Y \)]
 • \(X = Y: \) [\(X \)] = [\(Y \)]
 • \(X = * Y: \) [\(Y \)] = ⨁\(\alpha \) ∧ [\(X \)] = \(\alpha \) where \(\alpha \) is fresh
 • \(* X = Y: \) [\(X \)] = ⨁\(\alpha \) ∧ [\(Y \)] = \(\alpha \) where \(\alpha \) is fresh

• Terms:
 – term variables, e.g. [\(X \)], [\text{alloc} - i], \(\alpha \) (each representing the possible values of a cell)
 – each a single (unary) term constructor ⨁\(t \) (representing pointers)
 – each [\(c \)] is now a term variable, not a constraint variable holding a set of cells

• Fits with our unification solver! (union-find...)
• The points-to map is defined as \(\text{pt}(X) = \{ c \in Cells \mid [X] = \text{имв}[c] \} \)
• Note that there is only one kind of term constructor, so unification never fails
Applying Steensgaard

• Generated constraints (as sets or terms, respectively):

\[
\begin{align*}
\text{alloc-1} & \in \llbracket p \rrbracket \\
\llbracket y \rrbracket & = \llbracket x \rrbracket \\
\llbracket z \rrbracket & = \llbracket x \rrbracket \\
c & \in \llbracket p \rrbracket \Rightarrow \llbracket z \rrbracket = \llbracket c \rrbracket & \text{ for each } c \in \text{Cells} \\
\llbracket q \rrbracket & = \llbracket p \rrbracket \\
y & \in \llbracket q \rrbracket \\
c & \in \llbracket p \rrbracket \Rightarrow \llbracket c \rrbracket = \llbracket x \rrbracket & \text{ for each } c \in \text{Cells} \\
z & \in \llbracket p \rrbracket \\
+ \text{ the extra constraints}
\end{align*}
\]

\[
\begin{align*}
\llbracket p \rrbracket & = \uparrow \llbracket \text{alloc-1} \rrbracket \\
\llbracket y \rrbracket & = \llbracket x \rrbracket \\
\llbracket z \rrbracket & = \llbracket x \rrbracket \\
\llbracket p \rrbracket & = \uparrow \alpha_1 \\
\llbracket z \rrbracket & = \alpha_1 \\
\llbracket q \rrbracket & = \llbracket p \rrbracket \\
\llbracket q \rrbracket & = \uparrow \llbracket y \rrbracket \\
\llbracket p \rrbracket & = \uparrow \alpha_2 \\
\llbracket x \rrbracket & = \alpha_2 \\
\llbracket p \rrbracket & = \uparrow \llbracket z \rrbracket
\end{align*}
\]

• Smallest solution:

\[
\begin{align*}
pt(p) & = \{ \text{alloc-1}, y, z \} \\
pt(q) & = \{ \text{alloc-1}, y, z \}
\end{align*}
\]

...
Another example

Andersen:

```
a1 = &b1;
b1 = &c1;
c1 = &d1;
a2 = &b2;
b2 = &c2;
c2 = &d2;
```

Steensgaard:

```
a1 = b1;
b1 = c1;
c1 = d1;
a2 = b2;
b2 = c2;
c2 = d2;
```
Recall our type analysis...

• Focusing on pointers...

• Constraints:
 • $X = \text{alloc } P$: \[[X] = \uparrow [P] \]
 • $X = &Y$: \[[X] = \uparrow [Y] \]
 • $X = Y$: \[[X] = [Y] \]
 • $X = \ast Y$: \[\uparrow [X] = [Y] \]
 • $\ast X = Y$: \[[X] = \uparrow [Y] \]

• Implicit extra constraint for term equality:
 \[\uparrow t_1 = \uparrow t_2 \Rightarrow t_1 = t_2 \]

• Assuming the program type checks, is the solution for pointers the same as for Steensgaard’s analysis?
Agenda

- Introduction to pointer analysis
- Andersen’s analysis
- Steensgaard’s analysis
- **Interprocedural pointer analysis**
- Records and objects
- Null pointer analysis
- Flow-sensitive pointer analysis
Interprocedural pointer analysis

• In TIP, function values and pointers may be mixed together:
 \((**x)(1,2,3)\)

• In this case the CFA and the points-to analysis must happen simultaneously!

• The idea: Treat function values as a kind of pointers
Function call normalization

• Assume that all function calls are of the form

\[X = X_0 (X_1, \ldots, X_n) \]

• Assume that all return statements are of the form

return \(X' \);

• As usual, simply introduce lots of temporary variables...

• Include all function names in Cells
CFA with Andersen

- For the function call
 \[X = X_0(X_1, \ldots, X_n) \]
 and every occurrence of
 \[f(X'_1, \ldots, X'_n) \{ \ldots \text{return } X'; \} \]
 add these constraints:

 \[
 f \in [f] \\
 f \in [X_0] \Rightarrow ([X_i] \subseteq [X'_i] \text{ for } i=1,\ldots,n \land [X'] \subseteq [X])
 \]

- (Similarly for simple function calls)
- Fits directly into the cubic framework!

Andersen’s analysis is already closely connected to control-flow analysis!
CFA with Steensgaard

• For the function call
 \[X = X_0 \left(X_1, \ldots, X_n \right) \]
 and every occurrence of
 \[f(X'_1, \ldots, X'_n) \{ \ldots \text{return } X'; \} \]
 add these constraints:

 \[
 f \in \llbracket f \rrbracket \\
 f \in \llbracket X_0 \rrbracket \Rightarrow \left(\llbracket X_i \rrbracket = \llbracket X'_i \rrbracket \text{ for } i=1,\ldots,n \land \llbracket X' \rrbracket = \llbracket X \rrbracket \right)
 \]

• (Similarly for simple function calls)
• Fits into the unification framework, but requires a generalization of the ordinary union-find solver
Context-sensitive pointer analysis

```c
foo(a) {
    return *a;
}

bar() {
    ...
    x = alloc null;  // alloc-1
    y = alloc null;  // alloc-2
    *x = alloc null;  // alloc-3
    *y = alloc null;  // alloc-4
    ...
    q = foo(x);
    w = foo(y);
    ...
}
```

Are q and w aliases?
Context-sensitive pointer analysis

• Generalize the abstract domain $Cells \rightarrow \mathcal{P}(Cells)$ to $Contexts \rightarrow Cells \rightarrow \mathcal{P}(Cells)$
 (or equivalently: $Cells \times Contexts \rightarrow \mathcal{P}(Cells)$)
where $Contexts$ is a (finite) set of call contexts

• As usual, many possible choices of $Contexts$
 – recall the call string approach and the functional approach

• We can also track the set of reachable contexts
 (like the use of lifted lattices earlier):
 $Contexts \rightarrow \text{lift}(Cells \rightarrow \mathcal{P}(Cells))$

• Does this still fit into the cubic solver?
Context-sensitive pointer analysis

```plaintext
mk() {
    return alloc null; // alloc-1
}

baz() {
    var x, y;
    x = mk();
    y = mk();
    ...
}
```

Are x and y aliases? $
\llbracket x \rrbracket = \{\text{alloc-1}\}$
$
\llbracket y \rrbracket = \{\text{alloc-1}\}$
Context-sensitive pointer analysis

• We can go one step further and introduce context-sensitive heap (a.k.a. heap cloning)

• Let each abstract cell be a pair of
 – alloc_i (the alloc with index i) or X (a program variable)
 – a heap context from a (finite) set HeapContexts

• This allows abstract cells to be named by the source code allocation site and (information from) the current context

• One choice:
 – set HeapContexts = Contexts
 – at alloc, use the entire current call context as heap context
Context-sensitive pointer analysis with heap cloning

Assuming we use the call string approach with $k=1$, so $\text{Contexts} = \{\varepsilon, c1, c2\}$, and $\text{HeapContexts} = \text{Contexts}$

```c
mk() {
    return alloc null; // alloc-1
}

baz() {
    var x, y;
    x = mk(); // c1
    y = mk(); // c2
    ...
}
```

Are x and y aliases?

\[
[x] = \{(\text{alloc-1}, c1)\}
\]

\[
[y] = \{(\text{alloc-1}, c2)\}
\]
Agenda

- Introduction to pointer analysis
- Andersen’s analysis
- Steensgaard’s analysis
- Interprocedural pointer analysis
- Records and objects
- Null pointer analysis
- Flow-sensitive pointer analysis
Records in TIP

\[
\text{Exp} \rightarrow \ldots
\]

\[
| \{ \text{Id} : \text{Exp}, \ldots, \text{Id} : \text{Exp} \} \\
| \text{Exp} . \text{Id}
\]

- Field write operations: see SPA...
- Values of record fields cannot themselves be records
- After normalization:
 - \(X = \{ F_1 : X_1, \ldots, F_k : X_k \} \)
 - \(X = \text{alloc} \{ F_1 : X_1, \ldots, F_k : X_k \} \)
 - \(X = Y.F \)

Let us extend Andersen’s analysis accordingly...
Constraint variables for record fields

- $\llbracket \cdot \rrbracket : (\text{Cells} \cup (\text{Cells} \times \text{Fields})) \rightarrow \mathcal{P}(\text{Cells})$
 where Fields is the set of field names in the program

- Notation: $\llbracket c \cdot f \rrbracket$ means $\llbracket (c, f) \rrbracket$
Analysis constraints

- \(X = \{ F_1 : X_1, \ldots, F_k : X_k \} : \ [X_1] \subseteq [X.F_1] \land \ldots \land [X_k] \subseteq [X.F_k] \)
- \(X = \text{alloc} \{ F_1 : X_1, \ldots, F_k : X_k \} : \ \text{alloc}-i \in [X] \land [X_1] \subseteq [\text{alloc}-i.F_1] \land \ldots \land [X_k] \subseteq [\text{alloc}-i.F_k] \)
- \(X = Y.F : \ [Y.F] \subseteq [X] \)

- \(X = Y : \ [Y] \subseteq [X] \land [Y.F] \subseteq [X.F] \) for each \(F \in \text{Fields} \)
- \(X = *Y : \ c \in [Y] \Rightarrow ([c] \subseteq [X] \land [c.F] \subseteq [X.F]) \) for each \(c \in \text{Cells} \) and \(F \in \text{Fields} \)
- \(*X = Y : \ c \in [X] \Rightarrow ([Y] \subseteq [c] \land [Y.F] \subseteq [c.F]) \) for each \(c \in \text{Cells} \) and \(F \in \text{Fields} \)

See example in SPA
Objects as mutable heap records

\[
\text{Exp} \rightarrow \ldots
\]

\[
| \text{Id} \\
| \text{alloc} \{ \text{Id:Exp, ...}, \text{Id:Exp} \} \\
| (*\text{Exp})\text{.Id} \\
| \text{null}
\]

\[
\text{Stm} \rightarrow \ldots
\]

\[
| \text{Id = Exp;} \\
| (*\text{Exp})\text{.Id} = \text{Exp};
\]

- \text{E.X} in Java corresponds to \((*E).X\) in TIP (or C)
- Can only create pointers to heap-allocated records (=objects), not to variables or to cells containing non-record values
Agenda

- Introduction to pointer analysis
- Andersen’s analysis
- Steensgaard’s analysis
- Interprocedural pointer analysis
- Records and objects
- **Null pointer analysis**
- Flow-sensitive pointer analysis
Null pointer analysis

• Decide for every dereference \(*p \), is \(p \) different from null?

• (Why not just treat null as a special cell in an Andersen or Steensgaard-style analysis?)

• Use the monotone framework
 – assuming that a points-to map \(pt \) has been computed

• Let us consider an intraprocedural analysis
 (i.e. we ignore function calls)
A lattice for null analysis

• Define the simple lattice $Null$:

\[
\begin{array}{c}
? \\
| \\
NN
\end{array}
\]

where NN represents “definitely not null” and ? represents “maybe null”

• Use for every program point the map lattice:

$$Cells \rightarrow Null$$

(here for TIP without records)
Setting up

• For every CFG node, v, we have a variable $\llbracket v \rrbracket$:
 – a map giving abstract values for all cells at the program point after v

• Auxiliary definition:

$$JOIN(v) = \bigsqcup_{w \in \text{pred}(v)} \llbracket w \rrbracket$$

(i.e. we make a forward analysis)
Null analysis constraints

• For operations involving pointers:
 • $X = \text{alloc } P$: $\llbracket v \rrbracket = ???$
 • $X = \&Y$: $\llbracket v \rrbracket = ???$
 • $X = Y$: $\llbracket v \rrbracket = ???$
 • $X = *Y$: $\llbracket v \rrbracket = ???$
 • $*X = Y$: $\llbracket v \rrbracket = ???$
 • $X = \text{null}$: $\llbracket v \rrbracket = ???$

 where P is null or an integer constant

• For all other CFG nodes:
 • $\llbracket v \rrbracket = \text{JOIN}(v)$
Null analysis constraints

• For a heap store operation \(*X = Y \) we need to model the change of whatever \(X \) points to

• That may be *multiple* abstract cells (i.e. the cells \(pt(X) \))

• With the present abstraction, each abstract heap cell \(\text{alloc} - i \) may describe *multiple* concrete cells

• So we settle for **weak** update:

\[
*X = Y: \quad \left[v \right] = \text{store}(\text{JOIN}(v), X, Y)
\]

where \(\text{store}(\sigma, X, Y) = \sigma[\alpha \mapsto \sigma(\alpha) \cup \sigma(Y)] \) for \(\alpha \in pt(X) \)
Null analysis constraints

• For a heap load operation $X = \ast Y$ we need to model the change of the program variable X
• Our abstraction has a single abstract cell for X
• That abstract cell represents a single concrete cell
• So we can use strong update:

$$X = \ast Y: \quad \llbracket v \rrbracket = load(\text{JOIN}(v), X, Y)$$

where

$$load(\sigma, X, Y) = \sigma[X \mapsto \bigcup \sigma(\alpha)]$$

$$\alpha \in pt(Y)$$
Strong and weak updates

```c
mk() {
    return alloc null; // alloc-1
}
```

...

```c
a = mk();
b = mk();
c = alloc null; // alloc-2
*b = c; // strong update here would be unsound!
d = *a;
```

The abstract cell `alloc-1` corresponds to *multiple concrete cells*.
Strong and weak updates

```c
a = alloc null; // alloc-1
b = alloc null; // alloc-2
*a = alloc null; // alloc-3
*b = alloc null; // alloc-4
if (...) {
    x = a;
} else {
    x = b;
}
n = null;
*x = n; // strong update here would be unsound!
c = *x;
```

is C null here?

The points-to set for x contains multiple abstract cells
Null analysis constraints

• $X = alloc p$: $[v] = JOIN(v)[X \mapsto NN, alloc - i \mapsto ?]
• $X = &Y$: $[v] = JOIN(v)[X \mapsto NN]
• $X = Y$: $[v] = JOIN(v)[X \mapsto JOIN(v)(Y)]
• $X = \text{null}$: $[v] = JOIN(v)[X \mapsto ?]

• In each case, the assignment modifies a program variable
• So we can use strong updates, as for heap load operations
Strong and weak updates, revisited

• Strong update: \(\sigma[c \mapsto new\text{-}value] \)
 – possible if \(c \) is known to refer to a single concrete cell
 – works for assignments to local variables
 (as long as TIP doesn’t have e.g. nested functions)

• Weak update: \(\sigma[c \mapsto \sigma(c) \sqcup new\text{-}value] \)
 – necessary if \(c \) may refer to multiple concrete cells
 – bad for precision, we lose some of the power of flow-sensitivity
 – required for assignments to heap cells
 (unless we extend the analysis abstraction!)
Interprocedural null analysis

• Context insensitive or context sensitive, as usual...
 – at the after-call node, use the heap from the callee
• But be careful!

Pointers to local variables may escape to the callee

 – the abstract state at the after-call node cannot simply copy the abstract values for local variables from the abstract state at the call node
Using the null analysis

• The pointer dereference \(*p \) is "safe" at entry of \(v \) if

\[
JOIN(v)(p) = \text{NN}
\]

• The quality of the null analysis depends on the quality of the underlying points-to analysis
Example program

p = alloc null;
q = &p;
n = null;
*q = n;
*p = n;

Andersen generates:

\[pt(p) = \{ \text{alloc-1} \} \]
\[pt(q) = \{ p \} \]
\[pt(n) = \emptyset \]
Generated constraints

\[
[p=\text{alloc null}] = \bot[p \mapsto \text{NN}, \text{alloc-1} \mapsto ?] \\
[q=&p] = [p=\text{alloc null}][q \mapsto \text{NN}] \\
[n=\text{null}] = [q=&p][n \mapsto ?] \\
[*q=n] = [n=\text{null}][p \mapsto [n=\text{null}](p) \cup [n=\text{null}](n)] \\
[*p=n] = [*q=n][\text{alloc-1} \mapsto [*q=n](\text{alloc-1}) \cup [*q=n](n)]
\]
Solution

⟦p=alloc null⟧ = [p ↦ NN, q ↦ NN, n ↦ NN, alloc-1 ↦ ?]
⟦q=&p⟧ = [p ↦ NN, q ↦ NN, n ↦ NN, alloc-1 ↦ ?]
⟦n=null⟧ = [p ↦ NN, q ↦ NN, n ↦ ?, alloc-1 ↦ ?]
⟦*q=n⟧ = [p ↦ ?, q ↦ NN, n ↦ ?, alloc-1 ↦ ?]
⟦*p=n⟧ = [p ↦ ?, q ↦ NN, n ↦ ?, alloc-1 ↦ ?]

• At the program point before the statement *q=n the analysis now knows that q is definitely non-null
• ... and before *p=n, the pointer p is maybe null
• Due to the weak updates for all heap store operations, precision is bad for alloc-i cells
Agenda

• Introduction to pointer analysis
• Andersen’s analysis
• Steensgaard’s analysis
• Interprocedural pointer analysis
• Records and objects
• Null pointer analysis
• Flow-sensitive pointer analysis
Points-to graphs

• Graphs that describe possible heaps:
 – nodes are abstract cells
 – edges are possible pointers between the cells

• The lattice of points-to graphs is $\mathcal{P}(Cells \times Cells)$ ordered under subset inclusion (or alternatively, $Cells \rightarrow \mathcal{P}(Cells)$)

• For every CFG node, v, we introduce a constraint variable $\llbracket v \rrbracket$ describing the state after v

• Intraprocedural analysis (i.e. ignore function calls)
Constraints

• For pointer operations:
 • \(X = \text{alloc} \ P \): \([v] = \text{JOIN}(v) \downarrow X \cup \{ (X, \text{alloc} - i) \} \)
 • \(X = \& Y \): \([v] = \text{JOIN}(v) \downarrow X \cup \{ (X, Y) \} \)
 • \(X = Y \): \([v] = \text{JOIN}(v) \downarrow X \cup \{ (X, t) \mid (Y, t) \in \text{JOIN}(v) \} \)
 • \(X = *Y \): \([v] = \text{JOIN}(v) \downarrow X \cup \{ (X, t) \mid (Y, s) \in \sigma, (s, t) \in \text{JOIN}(v) \} \)
 • \(*X = Y \): \([v] = \text{JOIN}(v) \cup \{ (s, t) \mid (X, s) \in \text{JOIN}(v), (Y, t) \in \text{JOIN}(v) \} \)
 • \(X = \text{null} \): \([v] = \text{JOIN}(v) \downarrow X \)

where \(\sigma \downarrow X = \{ (s,t) \in \sigma \mid s \neq X \} \)

\[\text{JOIN}(v) = \bigcup_{w \in \text{pred}(v)} [w] \]

• For all other CFG nodes:
 • \([v] = \text{JOIN}(v) \)

note: weak update!
Example program

```c
var x, y, n, p, q;
x = alloc null; y = alloc null;
*x = null; *y = y;
n = input;
while (n > 0) {
    p = alloc null; q = alloc null;
    *p = x; *q = y;
    x = p; y = q;
    n = n - 1;
}
```
Result of analysis

• After the loop we have this points-to graph:

• We conclude that x and y will always be disjoint
Points-to maps from points-to graphs

• A points-to map for each program point v:

 $\text{pt}(X) = \{ t \mid (X,t) \in \llbracket v \rrbracket \}$

• More expensive, but more precise:
 – Andersen: $\text{pt}(x) = \{ y, z \}$
 – flow-sensitive: $\text{pt}(x) = \{ z \}$

\[x = &y; \]
\[x = &z; \]
Improving precision with abstract counting

- The points-to graph is missing information:
 - `alloc-2` nodes always form a self-loop in the example

- We need a more detailed lattice:

 \[P(\text{Cells} \times \text{Cells}) \times (\text{Cell} \rightarrow \text{Count}) \]

 where we for each cell keep track of how many concrete cells that abstract cell describes

 \[\text{Count} = 0 \quad 1 \quad >1 \]

- This permits **strong updates** on those that describe precisely 1 concrete cell
Better results

- After the loop we have this extended points-to graph:

 ![Diagram](image)

- Thus, `alloc-2` cells form a self-loop
- Both `alloc-1` and `alloc-2` permit strong updates
Escape analysis

- Perform a points-to analysis
- Look at return expression
- Check reachability in the points-to graph to arguments or variables defined in the function itself

- None of those

 ↓

no escaping stack cells

```javascript
baz() { 
    var x;
    return &x;
}
main() { 
    var p;
    p=baz();
    *p=1;
    return *p;
}
```