
Anders Møller & Michael I. Schwartzbach

Computer Science, Aarhus University

Static Program Analysis
Part 1 ςthe TIP language

http://cs.au.dk/~amoeller/spa/

http://cs.au.dk/~amoeller/spa/

Questions about programs

ÅDoesthe program terminateon all inputs?

ÅHow large canthe heapbecomeduringexecution?

ÅCan sensitive information leak to non-trusted users?

ÅCan non-trusted users affect sensitive information?

ÅAre buffer-overruns possible?

ÅData races?

ÅSQL injections?

ÅXSS?

ÅΧ

2

foo(p,x) {

var f,q ;

if (*p==0) { f=1; }

else {

q = alloc 10;

*q = (*p) - 1;

f=(*p)*(x(q,x));

}

return f;

}

Program points

Invariants:

A property holds at a program point if it holds in any
such state for any execution with any input

any point in the program
= any value of the PC

3

Questions about program points

ÅWill the valueof x be readin the future?

ÅCan the pointer p benull ?

ÅWhichvariables canp point to?

ÅIs the variable x initializedbeforeit is read?

ÅWhat is a lower and upper boundon the valueof the
integervariable x?

ÅAt whichprogram points couldx beassignedits
currentvalue?

ÅDo p and q point to disjointstructuresin the heap?

ÅCan this assert statement fail?
4

Why are the answers interesting?

ÅIncreaseefficiency

ïresourceusage

ïcompiler optimizations

ÅEnsurecorrectness

ïverifybehavior

ïcatchbugs early

ÅSupport program understanding

ÅEnable refactorings

5

Testing?

6

άProgram testing can be used to show

the presence of bugs, but never to show

their absence.έ

[Dijkstra, 1972]

Nevertheless, testing often takes 50% of the development cost

a program analyzer A

a program P
P always

works

correctly

P fails

for some

inputs

Programs that reason about programs

7

{h¦b5b9{{ όŘƻƴΩǘ Ƴƛǎǎ ŀƴȅ ŜǊǊƻǊǎύ

/hat[9¢9b9{{ όŘƻƴΩǘ ǊŀƛǎŜ ŦŀƭǎŜ ŀƭŀǊƳǎύ

TERMINATION (always give an answer)

Requirements to the perfect program analyzer

wƛŎŜΩǎ theorem, 1953

9

wƛŎŜΩǎ theorem

Anynon-trivial propertyof the behaviorof programs
in a Turing-completelanguageis undecidable!

10

Reductionto the halting problem

ÅCanwe decideif a variable has a constantvalue?

ÅHere, x is constantif and only if the jΩǘƘTuring
machinedoesnot halt on empty input

11

x = 17; if (TM(j)) x = 18;

12

Build e(ST)
from e(T)

Is the FAIL state
unreachable in

the given program
(for any input)?

Undecidabilityof program correctness

P ACCEPT

REJECT

yes

no

e(T) e(ST)

M

Simulate T on input e(T) (ignoring input w)
Å If simulation reaches ACCEPT, then gotoFAIL
Å Otherwise, just terminate

(without reaching FAIL)

w

Does M accept input e(M)?

ST
or loop forever

13

Build e(ST)
from e(T)

Is the FAIL state
unreachable in

the given program
(for any input)?

Undecidabilityof program correctness

P ACCEPT

REJECT

yes

no

e(T) e(ST)

M

Simulate T on input e(T) for |w| moves
Å If simulation reaches ACCEPT, then gotoFAIL
Å Otherwise, just terminate

(without reaching FAIL)

w

Does M accept input e(M)?
(Note: this proof works even if we only consider programs that always terminate!)

ST

Approximation

ÅApproximateanswers may be decidable!

ÅThe approximation must be conservative:

ïi.e. only err on άǘƘŜ ǎŀŦŜ ǎƛŘŜέ

ïwhich direction depends on the client application

ÅWe'll focus on decision problems

ÅMore subtle approximations if not only άyesέκάnoέ

ïe.g. memory usage, pointer targets

14

False positives and false negatives

15

Example approximations

ÅDecide if a given function is ever called at runtime:

ïif άnoέΣ ǊŜƳƻǾŜ ǘƘŜ ŦǳƴŎǘƛƻƴ ŦǊƻƳ ǘƘŜ ŎƻŘŜ

ïif άyesέΣ ŘƻƴΩǘ Řƻ ŀƴȅǘƘƛƴƎ

ïthe άnoέ ŀƴǎǿŜǊ mustalways be correct if given

ÅDecide if a cast (A)x will always succeed:

ïif άyesέΣ ŘƻƴΩǘ ƎŜƴŜǊŀǘŜ ŀ ǊǳƴǘƛƳŜ ŎƘŜŎƪ

ïif άnoέΣ ƎŜƴŜǊŀǘŜ ŎƻŘŜ ŦƻǊ ǘƘŜ Ŏŀǎǘ

ïthe άyesέ ŀƴǎǿŜǊ mustalways be correct if given

16

Beyond άȅŜǎέκάnoέ problems

ÅHow much memory / time may be used in any
execution?

ÅWhich variables may be the targets of a pointer
variable p?

17

The engineering challenge

ÅA correct but trivial approximation algorithm may just
give the useless answer every time

ÅThe engineering challengeis to give the useful answer
often enough to fuel the client application

Å... and to do so within reasonable time and space

ÅThis is the hard (and fun) part of static analysis!

18

Bug finding

gcc �²Wall foo.c
lint foo.c

No errors !

19

int main() {

char *p,*q;

p = NULL;

printf ("% s",p);

q = (char *) malloc (100);

p = q;

free(q);

*p = 'x';

free(p);

p = (char *) malloc (100);

p = (char *) malloc (100);

q = p;

strcat (p,q);

}

https://en.wikipedia.org/wiki/Lint_(software)

