
168

Eliminating Abstraction Overhead of Java Stream Pipelines

using Ahead-of-Time Program Optimization

ANDERS MéLLER, Aarhus University, Denmark

OSKAR HAARKLOU VEILEBORG, Aarhus University, Denmark

Java 8 introduced streams that allow developers to work with collections of data using functional-style

operations. Streams are often used in pipelines of operations for processing the data elements, which leads to

concise and elegant program code. However, the declarative data processing style comes at a cost. Compared to

processing the data with traditional imperative language mechanisms, constructing stream pipelines requires

extra heap objects and virtual method calls, which often results in significant run-time overheads.

In this work we investigate how to mitigate these overheads to enable processing data in the declarative

style without sacrificing performance. We argue that ahead-of-time bytecode-to-bytecode transformation is

a suitable approach to optimization of stream pipelines, and we present a static analysis that is designed to

guide such transformations. Experimental results show a significant performance gain, and that the technique

works for realistic stream pipelines. For 10 of 11 micro-benchmarks, the optimizer is able to produce bytecode

that is as effective as hand-written imperative-style code. Additionally, 77% of 6 879 stream pipelines found in

real-world Java programs are optimized successfully.

CCS Concepts: • Software and its engineering→ Compilers.

Additional Key Words and Phrases: program optimization, static program analysis, Java 8

ACM Reference Format:

Anders Mùller and Oskar Haarklou Veileborg. 2020. Eliminating Abstraction Overhead of Java Stream Pipelines

using Ahead-of-Time Program Optimization. Proc. ACM Program. Lang. 4, OOPSLA, Article 168 (Novem-

ber 2020), 29 pages. https://doi.org/10.1145/3428236

1 INTRODUCTION

Functional programming is no longer a niche programming paradigm. Although classic functional
languages may remain mainly of academic interest only, functional language features are being
integrated into mainstream languages, most importantly Java. Version 8 of Java was released
in 2014 and included features such as lambda functions and the Stream API [Oracle 2014b,c],
which enables functional-style processing of data. A 2017 study found that the adoption of lambda
expressions is growing, and that they are mostly used for behavior parameterization such as
in stream pipelines [Mazinanian et al. 2017]. As a simple example, Figure 1 shows two ways of
computing sums of even squares: (a) using traditional imperative-style iteration and mutable state,
and (b) using a functional-style stream pipeline. A stream pipeline consists of a source, in this case
an array of integers, operations to be performed on the elements of the stream, here filter and
map, and a terminal operation, such as sum. The advantages of functional programming are well
known; most importantly, once familiar with this paradigm, the declarative style and absence of

Authors’ addresses: Anders Mùller, Aarhus University, Denmark, amoeller@cs.au.dk; Oskar Haarklou Veileborg, Aarhus

University, Denmark, oskar@cs.au.dk.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2020 Copyright held by the owner/author(s).

2475-1421/2020/11-ART168

https://doi.org/10.1145/3428236

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 168. Publication date: November 2020.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/
https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3428236
https://doi.org/10.1145/3428236

168:2 Anders Mùller and Oskar Haarklou Veileborg

1 int sumOfSquaresEven(int[] v) {

2 int result = 0;

3 for (int i = 0; i < v.length; i++)

4 if (v[i] % 2 == 0)

5 result += v[i] * v[i];

6 return result;

7 }

(a) Imperative style.

8 int sumOfSquaresEven(int[] v) {

9 return IntStream.of(v)

10 .filter(x -> x % 2 == 0)

11 .map(x -> x * x)

12 .sum();

13 }

(b) Functional style, using a stream pipeline.

Fig. 1. Two variants of computing sums of even squares.

side-effects tend to make code easier to read and write than the imperative alternatives, especially
for more complex computations.
Despite this advance in language and library design, programmers sometimes avoid using

streams for performance reasons. The authors of the 2017 study interviewed a developer from the
Open Source project Cassandra on adoption of lambda expressions, who mentioned that ł...Unfortu-
nately, we quickly realized that Streams and Lambdas were pretty bad from a performance point of view.
Due to this fact, we stopped using them in hot path.ž A developer at Oracle working on the HotSpot
Java compiler wrote: łIn order to get the full benefit from JDK 8 streams we will need to make them
optimize fullyž [Rose 2015]. In 2014, Biboudis et al. [2014] measured the performance of stream APIs
in different languages, including Java 8 and Scala, on seven micro-benchmarks that compare stream
pipelines with traditional imperative data processing. They found the Java 8 stream implementation
to be the most mature with regards to performance, but also that the baseline imperative-style
alternatives were much faster. For example, for their benchmark sumOfSquaresEven, which per-
forms the computation shown in Figure 1, the stream approach suffered from a 60% performance
degradation compared to the baseline implementation. For pipelines that include the flatMap

operation, the performance overheads were even larger, and a later study shows performance losses
that grow quickly in the number of intermediate pipeline operators [Kiselyov et al. 2017].

Interestingly, today ś six years after the experiments by Biboudis et al. ś their conclusions still
hold, despite improvements in compilers and virtual machine technology. We have replicated their
study in Java 13 using the OpenJDK Server VM (build 13+33) with default settings on a machine with
an Intel i7-8700 @ 4.6GHz processor and 16 GB of memory. The results are shown in Figure 2.1 As
an extreme case, the megamorphicMaps benchmark is still around 52× slower when using streams
compared to the imperative-style baseline.
One of the strengths of stream pipelines is that it is often easy to switch to parallel processing

and thereby exploit modern multi-core CPUs. Although this may reduce the computation time, it is
not an ideal solution. It wastes cores, and even for trivially parallelized pipelines, there is typically
still a substantial overhead [Biboudis et al. 2014]. Moreover, parallel processing does not work well
with stateful stream operations, such as sorted, or computations with side-effects.

The problem with abstraction overhead of stream processing is well known also for other
programming languages than Java. This has motivated the development of, for example, the
strymonas library for Scala andOCaml [Kiselyov et al. 2017], LinqOptimizer for C# and F# [Palladinos
and Rontogiannis 2014], and ScalaBlitz for Scala [Prokopec and Petrashko 2013], however, those
approaches are based on meta-programming capabilities that are not available in Java.

1The micro-benchmarks from Biboudis et al. [2014] can be found at https://github.com/strymonas/java8-benchmarks/blob/

master/src/main/java/benchmarks/S.java.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 168. Publication date: November 2020.

https://github.com/strymonas/java8-benchmarks/blob/master/src/main/java/benchmarks/S.java
https://github.com/strymonas/java8-benchmarks/blob/master/src/main/java/benchmarks/S.java

Eliminating Abstraction Overhead of Java Stream Pipelines 168:3

cart

flatMapTake

megamorphicFilters

megamorphicMaps sum

sumOfSquares

sumOfSquaresEven
0

100

200

300

400

500

600

700

Av
er

ag
e

tim
e

(m
s)

1607
2631

Time by benchmark
Baseline
Stream

Fig. 2. Performance of baseline imperative implementation versus sequential Java streams.

Since the early versions of Java, the main approach to code optimization has been as part of
just-in-time (JIT) compilation in the virtual machine. Few ahead-of-time (AOT) optimizations are
performed by javac, since it is believed that the JIT optimizer is able to make smarter decisions
at run-time based on profiling information. In principle, at run-time the optimizer could be able
to deduce that a stream pipeline can be transformed into a for-loop to yield optimal performance,
however, the experiments mentioned above show that this is often not the case in practice, even for
simple stream pipelines. By manually tuning the HotSpot JIT settings for the megamorphicMaps
benchmark to inline much more aggressively, we find that a 2× speedup can be obtained, but it
is still an order of magniture slower than the baseline. Also, substantial modifications to the JIT
settings compared to the defaults can of course degrade performance for other code. Although
promising results have been obtained for the Graal JIT compiler on Scala code [Prokopec et al.
2017], AOT optimization techniques have advantages compared to JIT optimizations. First, a JIT
compiler has to make fast decisions about what and when to optimize while running the program,
whereas an AOT optimizer can be given time to perform more precise whole-program analysis.
Second, JIT optimizations are known to be unpredictable, while AOT techniques allow the developer
to know before program execution whether an optimization attempt succeeds. Third, new AOT
optimizations can be deployed, for example in mobile apps, without requiring modifications to
the JVM installations. These observations suggest that it may be time to start pursuing AOT
optimization techniques for Java, to reach the full potential of functional-style Java code, most
importantly for stream pipelines.
By the use of bytecode-to-bytecode transformations driven by a static program analysis, we

combine the best of two styles of programming: the conciseness of functional-style stream pipelines
at source-code level, and the efficiency of low-level imperative code at run-time. Among the
salient features of our approach are that it does not require adding new Java language features
or modifications of the application source code, it does not depend on API-specific knowledge
(we demonstrate that it works on both push- and pull-style stream APIs without any adaptation),
and it is predictable in the sense that the programmer can be informed ahead-of-time whether
optimization succeeds for a given stream pipeline. Furthermore, as the transformations and the
static analysis work on Java bytecode, this optimization technique is easy to integrate into existing
program development processes.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 168. Publication date: November 2020.

168:4 Anders Mùller and Oskar Haarklou Veileborg

In summary, the contributions of this paper are:

• We propose an ahead-of-time Java bytecode optimization technique that targets stream
pipelines in Java code to make them as efficient as hand-written imperative code. Specifically,
we demonstrate that applying a combination of well-known program transformations suffices
to reach this goal, most importantly, method inlining and stack allocation.

• We present a static program analysis that simultaneously performs type and pointer analysis
for driving the program transformations.

• We report from an experimental evaluation showing that applying the optimization to a suite
of 11 micro-benchmarks makes 10 of them as fast as hand-written imperative code, in several
cases leading to more than 10× speedup, and that 77% of 6 879 stream pipelines found in
real-world Java programs are optimized successfully. The evaluation also demonstrates that
the approach is not limited to Java’s push-style streams but also works for a pull-style stream
API, although with potential for improvements of the static analysis.

2 BACKGROUND: PULL- AND PUSH-STYLE STREAM APIS

Stream APIs can be implemented in two different styles. A pull-style stream API follows the iterator
protocol, with a method hasNext for querying whether the stream has more elements and a method
next for pulling out the next element from the stream. The iteration through the elements of the
stream is controlled by the terminal operation, and each operation in the pipeline thus pulls the
elements one at a time from its predecessor.

In a simple pull-style stream API, the map intermediate operation, which applies a given function
to each element of the stream, can be implemented in Java as shown in Figure 3. The function
allocates a new PullStream object to represent the intermediate mapping operation, which becomes
the new head of the pipeline. When elements are queried from this head, it extracts an element
from its predecessor in the pipeline (using PullStream.this.next to refer to the method of the
outer class) and applies the supplied function to it before it is returned.

A push-style stream API instead includes a single method that takes a consumer action to apply to
each element in the stream. When executing the stream pipeline, the source operation controls the
iteration by pushing every element in the underlying data source to its consumer action until the
data source is empty or until the pipeline terminates early (for example, the findFirst operation
usually does not have to look at all the elements).

14 public abstract class PullStream <V> implements Stream <V> { ...

15 public <U> Stream <U> map(Function <? super V, ? extends U> f) {

16 return new PullStream <U>() {

17 protected U next() {

18 return f.apply(PullStream.this.next());

19 }

20 protected boolean hasNext () {

21 return PullStream.this.hasNext ();

22 }

23 };

24 } ...

25 }

Fig. 3. The map intermediate operation in a pull-style stream API.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 168. Publication date: November 2020.

Eliminating Abstraction Overhead of Java Stream Pipelines 168:5

26 public abstract class PushStream <V> implements Stream <V> { ...

27 public PushStream <V> filter(Predicate <? super V> p) {

28 return new PushStream <V>() {

29 protected void exec(Consumer <? super V> c) {

30 PushStream.this.exec(x -> {

31 if (p.test(x)) c.accept(x);

32 });

33 }

34 };

35 } ...

36 }

Fig. 4. The filter intermediate operation in a simple push-style stream library.

In a push-style stream API, the filter intermediate operation, which filters out elements that
do not satisfy a given predicate, can be implemented as shown in Figure 4. A new PushStream

object is allocated to form the new head of the pipeline. When we execute this pipeline by calling
exec on the final stream object, the filtering operation constructs a new consumer and passes it to
its predecessor in the pipeline (using PushStream.this.exec to refer to the method of the outer
class). When this consumer is invoked with an element, it only forwards it to the next consumer if
the element satisfies the predicate that was given to the filter function.

The stream API in Java’s standard library is push-style, whereas Scala’s views and C#’s Language-
Integrated Queries (LINQ) are pull-style [Biboudis et al. 2014].

The Java stream implementation is quite complex. It provides specialized stream pipelines for the
int, long and double Java primitives to avoid boxing at run-time, and pipelines can be executed
in parallel using multiple threads. Additionally, certain characteristics of pipelines are recorded to
perform further optimizations at run-time. For example, in the pipeline list.stream().sorted()
.sorted().collect(Collectors.toList()), the second sorting operation is skipped, since the
library infers that the stream is already sorted after the first one.
One of the main reasons why stream pipelines are less efficient than their imperative-style

counterparts is that executing a stream pipeline involves many virtual calls. A Java stream pipeline
with 𝑁 elements and depth 𝐾 will accumulate up to 𝑁 × 𝐾 virtual calls just to push the elements
through the pipeline [Kiselyov et al. 2017]. Our optimization technique builds on the key observation
that fully inlining the consumer chain will reduce this to a constant number of calls depending on
the stream source. Method inlining (also called inline expansion) is a classic compiler optimization
technique that replaces a call with the body of the method being called, with parameters and return
value flow properly substituted to preserve the program semantics [Arnold et al. 2000; Detlefs and
Agesen 1999].

If we take a deeper look into Java’s stream implementation we see that its streams are backed by
spliterators, which are similar to iterators but support more advanced features, such as splitting
a data source into smaller chunks for parallel computation. Every Java class that implements
the Collection interface inherits a default implementation of a spliterator backed by the collec-
tion’s iterator implementation. Stream pipelines eventually end up calling the forEachRemaining
method on the backing spliterator (unless they stop early due to short-circuiting operations such
as findFirst) to push every element in the collection through a provided consumer function. For
the default iterator-backed spliterator, this translates roughly into this code:

37 while (it.hasNext ()) consumer.accept(it.next());

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 168. Publication date: November 2020.

168:6 Anders Mùller and Oskar Haarklou Veileborg

39 public class ArrayList <T> extends AbstractList <T> implements ... {

40 transient Object [] elementData;

41

42 @Override

43 public Spliterator <T> spliterator () {

44 return new ArrayListSpliterator (...);

45 }

46

47 final class ArrayListSpliterator <T> implements Spliterator <T> {

48 public void forEachRemaining(Consumer <? super T> action) {

49 int i, hi, mc;

50 Object [] a = elementData;

51 ...

52 }

53 ...

54 }

55 ...

56 }

Fig. 5. Excerpt of the spliterator implementation in Java’s ArrayList class.

This is expensive, as it requires three virtual calls per element, even for a pipeline with zero inter-
mediate operations. Therefore, to achieve better performance, collections can provide their own split-
erator implementation. For example, the ArrayList class provides an efficient forEachRemaining
spliterator implementation that is essentially a while loop over the internal array:

38 while (index < elementData.length) consumer.accept(elementData[index ++]);

This means that if we can fully inline the execution of such a stream pipeline, we expose a
primitive while loop with a single virtual call per element. If we can furthermore inline calls to the
consumer.accept method, the code we are left with will resemble a hand-written imperative loop
construct.

Inlining a method call is a relatively simple program transformation in itself. The key to be able
to inline the relevant calls ahead-of-time is precise type information to enable virtual call resolution.
The static analysis we present in Section 5 is designed to provide this information.

One complication to inlining is that spliterators sometimes rely on private fields in the source
collection, in which case naively inliningwill violate Java’s access rules. An example is the spliterator
in Java’s ArrayList class, shown in Figure 5, where the forEachRemaining method accesses the
field elementData, which is package-private (i.e., Java’s default access mode). This prevents inlining
the method into another package. A similar situation may occur when the default iterator-backed
spliterator is used, since the implementations of hasNext and next in the source collection may
also rely on private fields. This is not a concern for any of the most widely used collections in Java’s
standard library, but it can be an issue for non-standard stream sources. In Section 6 we discuss
different options for how to handle these situations.

To be able to study optimization opportunities in a more controlled environment and to present
manageable examples in the following sections, we have created a simple implementation of a
push-style stream library with an API that is similar to that of Java’s streams and also to stream
implementations studied in related work [Biboudis et al. 2015]. This library suffers from the same
performance issues as Java’s standard stream library (see Section 8). Its API is shown in Figure 6.
The library additionally supports pull-style streams, which allows us to explore the flexibility of
our optimization techniques also for such a fundamentally different kind of stream API than the
one in Java’s standard library.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 168. Publication date: November 2020.

Eliminating Abstraction Overhead of Java Stream Pipelines 168:7

57 public interface IntStream <StreamT extends IntStream > {

58 /* Intermediate operations */

59 StreamT map(IntUnaryOperator f);

60 StreamT filter(IntPredicate p);

61 StreamT flatMap(IntFunction <? extends StreamT > f);

62 StreamT limit(long maxSize);

63 /* Terminal operations */

64 void forEach(IntConsumer c);

65 int reduce(int initial , IntBinaryOperator r);

66 }

Fig. 6. A simple IntStream interface, which can be implemented either pull-style or push-style.

Our current focus is on optimizing sequential (i.e., non-parallel) stream pipelines, since those are
by far the most common in practice. (In 28 randomly selected open source Java projects from the
RepoReapers dataset [Munaiah et al. 2017] that we could build we found 6 879 sequential stream
pipelines and 49 parallel stream pipelines. A recent study by Khatchadourian et al. [2020b] confirms
this finding.) Still, sequential stream pipelines are often used in multi-threaded applications, so we
cannot assume a single-threaded execution environment when designing optimization techniques.

Another crucial observation we can exploit when optimizing stream pipelines is that the entire
construction and execution of a typical pipeline take place locally within a single method. Objects
of type Stream rarely appear as arguments or return values at calls to other methods than those
in the stream library, nor are such objects stored in data structures on the heap. We have made
a quantitative study of the top 100 Java projects on GitHub to experimentally verify this claim,
and found that 93% of calls with streams as parameter or return types are to stream sources,
intermediate, or terminal operations, and there is only one field access that involves stream objects
per 200 stream operations in the code. Furthermore, all the spliterator objects, consumer objects,
and other transient objects are only used internally within the stream operations. This means that
all the information stored in these objects can be placed on the stack instead of in the heap, thereby
eliminating the object allocations and reducing the need for garbage collection. As for inlining, this
optimization, called stack allocation, is widely used and well understood [Choi et al. 1999; Park and
Goldberg 1992].
The Java JIT compiler already tries to perform stack allocation,2 but the escape analysis used

in the Java JIT to drive stack allocation is limited by being intraprocedural only. We exploit the
fact that stack allocation works even better in the AOT setting that allows more precise analysis,
together with the aggressive inlining strategy described above. Conversely, stack allocation can
also boost inlining. For example, if a method accesses private fields, it cannot be inlined at call sites
in other classes, however, if the fields are moved to local variables then inlining can be performed
without violating Java’s access control mechanisms.

To understand how stack allocation can apply to stream pipelines, consider the filter operation
from Figure 4. It contains an inner class, which the Java compiler lifts outside the method. The
free variables of the inner class, PushStream.this and p, then become fields that are set by the
constructor. Java code that roughly corresponds to the resulting bytecode is shown in Figure 7. Here,
it is clear that every access to PushStream.this and p in the original method actually involves
fields in objects in the heap. This heap allocation cannot be converted into stack allocation without
information about the code that calls the filtermethod and uses of the resulting stream object via
its exec method. By statically analyzing the entire pipeline, our approach can obtain the required

2https://docs.oracle.com/javase/7/docs/technotes/guides/vm/performance-enhancements-7.html#escapeAnalysis

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 168. Publication date: November 2020.

https://docs.oracle.com/javase/7/docs/technotes/guides/vm/performance-enhancements-7.html#escapeAnalysis

168:8 Anders Mùller and Oskar Haarklou Veileborg

67 private static class PushStream$1 <V> extends PushStream <V> {

68 private final PushStream <V> previous;

69 private final Predicate <? super V> predicate;

70

71 PushStream$1(PushStream <V> previous , Predicate <? super V> predicate) {

72 this.previous = previous;

73 this.predicate = predicate;

74 }

75

76 protected void exec(Consumer <? super V> c) {

77 previous.exec(x -> {

78 if (predicate.test(x)) c.accept(x);

79 });

80 }

81 }

82

83 public PushStream <V> filter(Predicate <? super V> p) {

84 return new PushStream$1 <>(this , p);

85 }

Fig. 7. The filter intermediate operation from Figure 4, flattened such that the inner class is now lifted

outside the filter method, similar to the structure of the bytecode.

information. Also note that the exec method in Figure 7 cannot be inlined unless we also perform
stack allocation of PushStream$1, because the fields are declared as private.

In summary, these observations suggest that method inlining and stack allocation, which are two
classic optimization techniques, can be effective together in AOT optimization of stream pipelines.

3 APPROACH OVERVIEW

Figure 8 shows the structure of our approach. We start the optimization process by analyzing the
compiled program with an off-the-shelf pointer analysis [Bravenboer and Smaragdakis 2009; Lhoták
and Hendren 2003; Sridharan and Bodík 2006]. The purpose of this phase is to find the segments of
the bytecode that correspond to stream pipelines in the program and to find the concrete types of
the stream sources.

We then process each stream pipeline individually. As mentioned in Section 2, stream pipelines
rarely span multiple methods, and the stream objects are rarely stored in the heap, so tracking the
flow of stream objects is trivial (we skip pipelines where this is not the case). For each pipeline
we perform a flow- and context-sensitive type and pointer analysis. The result of this analysis
consists of an abstract state for every analyzed control flow graph node (in JVM bytecode, a node
corresponds to a bytecode instruction), for each call context. Informally, an abstract state maps
each local variable and object field to an abstract value, which is a pair of a Java type and an
abstract points-to value. For the types, we distinguish between abstract types 𝜏 and concrete types
𝜏 [Agesen 1995], where an abstract value with type 𝜏 can represent any object that is a subtype of
𝜏 , while 𝜏 only represents objects that have exactly the type 𝜏 . The abstract points-to values use
allocation-site abstraction [Chase et al. 1990] as the heap model. The analysis is explained in more
detail in Section 5.
We then use facts from the analysis result in the next phase to guide the optimization transfor-

mations. The type information allows us to resolve calls for the inlining transformation, while the
pointer information is used in the stack allocation transformation to redirect field accesses on stack
allocated objects to the corresponding local variables. After the pipeline has been transformed,

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 168. Publication date: November 2020.

Eliminating Abstraction Overhead of Java Stream Pipelines 168:9

Phase 1: Off-the-shelf pointer analysis

Phase 2: Interprocedural, flow- and context-sensitive type and pointer analysis

Phase 3: Inlining and stack allocation transformations

Phase 4: Bytecode cleanup

Input program

Pipelines and stream source types

Abstract states

Transformed program

Output program

Fig. 8. Flow diagram of the approach.

we feed it to a cleanup phase that can remedy some inefficiencies that are inherent to the two
transformations.

It may be the case that the analysis aborts. This happens when it can determine that the analysis
result would not allow optimizations to take place. If, for example, the analysis discovers that a
pipeline object flows out of the boundary of the analyzed method, for instance to a static field,
then after this point the analysis (and therefore also the transformation) cannot make any useful
assumptions about the state of the object. Another condition for aborting is over-approximation of
an unanalyzable call that leads to an unusable analysis result. These and other cases are described
in more detail in Section 5.

Example. To get an intuitive understanding of the approach before we explain the details in
the following sections, we can apply it to the example stream pipeline shown in Figure 9a. It is
presented as Java source code for readability although the actual technique works on Java bytecode.
The pre-analysis finds a stream pipeline in the sum method. The initial abstract state for the

main analysis is seeded with abstract values from the pre-analysis for the local variables and the
stack. The method contains one local variable for the argument v, which is given the abstract value
(int[], unrelated). Here, unrelated denotes a pointer value that cannot refer to any allocation
site that appears during the analysis and whose field values are not tracked in the abstract heap.
Since the stream source is constructed by a static method call in this example, it does not require
additional type information to be resolved. (We show an example in Section 4 that needs the
pre-analysis to infer the concrete type of the stream source object.)
The first instructions encountered during the main analysis phase correspond to the call to

IntPushStream.of(v). We resolve this call by finding the static method on IntPushStream with
the correct signature and continue by analyzing the resolved method:

86 public static IntPushStream of(int[] arr) {

87 return new IntPushStream () {

88 public void exec(IterConsumer c) {

89 int i = 0;

90 while (i < arr.length) c.accept(arr[i++]);

91 }

92 };

93 }

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 168. Publication date: November 2020.

168:10 Anders Mùller and Oskar Haarklou Veileborg

94 public static int sum(int[] v) {

95 IntPushStream stream = IntPushStream.of(v);

96 return stream.reduce(0, Integer ::sum);

97 }

(a) An example method, sum, containing a stream pipeline.

98 public static int sum(int[] v) {

99 // inlined IntPushStream.of

100 int[] IntPushStream_of_arr = v;

101 IntPushStream stream = null;

102 int[] IntPushStream$0_arr = IntPushStream_of_arr;

103 // inlined IntPushStream.reduce

104 IntPushStream IntPushStream_reduce_this = stream;

105 int IntPushStream_reduce_initial = 0;

106 IntBinaryOperator IntPushStream_reduce_r = null;

107 Reducer IntPushStream_reducer = null;

108 int Reducer_state = IntPushStream_reduce_initial;

109 IntBinaryOperator Reducer_operator = IntPushStream_reduce_r;

110 // inlined IntPushStream$0.exec

111 IntPushStream$0 IntPushStream$0_exec_this = (IntPushStream$0)

IntPushStream_reduce_this;

112 IterConsumer IntPushStream$0_exec_c = IntPushStream_reducer;

113 int IntPushStream$0_exec_i = 0;

114 while (IntPushStream$0_exec_i < IntPushStream$0_arr.length) {

115 // inlined Reducer.accept

116 Reducer Reducer_accept_this = (Reducer) IntPushStream$0_exec_c;

117 int Reducer_accept_v = IntPushStream$0_arr[IntPushStream$0_exec_i ++];

118 // inlined Integer.sum

119 int Integer_sum_a = Reducer_state , Integer_sum_b = Reducer_accept_v;

120 Reducer_state = Integer_sum_a + Integer_sum_b;

121 }

122 return Reducer_state;

123 }

(b) The sum method after inlining and stack allocation.

124 public static int sum(int[] v) {

125 int state = 0, i = 0;

126 while (i < v.length) state += v[i++];

127 return state;

128 }

(c) The resulting sum method after the cleanup phase.

Fig. 9. Optimization of a stream pipeline.

This of method constructs an instance of an anonymous subclass of IntPushStream. Following
Java conventions this subclass could be named IntPushStream$0. We update our abstract state
with this allocation site named ℓ1 and continue by analyzing the constructor of IntPushStream$0
(not shown here) and see that the implicitly passed arr parameter is stored as a field that is
also named arr in the subclass. The abstract value that is returned from IntPushStream.of is
(IntPushStream$0, ℓ1), and the heap part of the new abstract state is the map [ℓ1 ↦→ {arr ↦→

(int[], unrelated)}]. The next instructions in sum allocate the lambda argument to the reduce

function, causing the abstract state to be updated with a new allocation site, ℓ2. The abstract value

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 168. Publication date: November 2020.

Eliminating Abstraction Overhead of Java Stream Pipelines 168:11

of the receiver of the reduce call is (IntPushStream$0, ℓ1) and contains precise type information
such that we can resolve the call according to Java’s virtual method invocation semantics.3 We thus
continue by analyzing IntPushStream.reduce, shown below, where the abstract values of the

receiver and the arguments are (IntPushStream$0, ℓ1), (int,⊤), and (𝜆0, ℓ2), respectively, where
𝜆0 denotes the type of the object created for the method reference Integer::sum.

129 public int reduce(int initial , IntBinaryOperator r) {

130 Reducer reducer = new Reducer(initial , r);

131 this.exec(reducer);

132 return reducer.state;

133 }

Continuing analysis in this method, after allocating the Reducer at allocation site ℓ3, we have
the abstract heap

[ℓ1 ↦→ {arr ↦→ (int[], unrelated)}, ℓ2 ↦→ {}, ℓ3 ↦→ {state ↦→ (int,⊤), reducer ↦→ (𝜆0, ℓ2)}]

and the abstract values of this, initial, and r are (IntPushStream$0, ℓ1), (int,⊤), and (𝜆0, ℓ2),
respectively. The Reducer carries the state field to keep track of the running sumwhile the pipeline
executes, and a reference to the reducer method. The purpose of that method is to compute a new
state from a stream element and an old state, as a left-fold operation.

To resolve the call to exec, the analysis looks up the abstract value of the receiver (this), which

is (IntPushStream$0, ℓ1) in this case, so it can continue the analysis in IntPushStream$0.exec

where the abstract value of the first argument is (Reducer, ℓ3). Inside exec (see lines 88ś91) the
field arr of ℓ1 is accessed twice. The analysis can precisely resolve these accesses using the abstract
state since the abstract points-to value of this is ℓ1. The call to Reducer.accept is resolved and
the analysis continues in that method:

134 public void accept(int v) {

135 state = reducer.applyAsInt(state , v);

136 }

Here it is even more crucial that the analysis has precise type and points-to information for this,
as this allows it to look up the value of reducer on ℓ3 in the abstract state and resolve the call to
𝜆0.applyAsInt. After finishing the analysis, we have the information necessary to unambiguously
resolve the calls at every analyzed call site.
The following phases perform optimizing transformations on the analyzed pipeline. Like the

analysis it operates on stack-based Java bytecode, but we will outline the transformation as if it
happens directly on Java source code. The first transformation phase applies inlining and stack
allocation transformations. Local variables are used in place of the object’s fields and are also
allocated for the parameters of inlined methods.

We can look into how the analysis result is used to transform the call to IntPushStream.of(v)
in Figure 9a. The analysis resolved the callee such that it can be inlined into the sum method:

137 int[] IntPushStream_of_arr = v;

138 IntPushStream stream = new IntPushStream () {

139 public void exec(IterConsumer c) {

140 int i = 0;

141 while (i < IntPushStream_of_arr.length)

142 c.accept(IntPushStream_of_arr[i++]);

143 }

144 };

3https://docs.oracle.com/javase/specs/jvms/se13/html/jvms-6.html#jvms-6.5.invokevirtual

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 168. Publication date: November 2020.

https://docs.oracle.com/javase/specs/jvms/se13/html/jvms-6.html#jvms-6.5.invokevirtual

168:12 Anders Mùller and Oskar Haarklou Veileborg

Notice that a fresh local variable has been generated for the arr parameter.
The next step is to allocate IntPushStream$0 on the stack instead of on the heap (see line 138).

First, the new instruction is replaced with null to preserve the operand stack layout. The class
has one field of type int[] so a local variable is allocated for it (IntPushStream$0_arr at line 147
below). The variable is associated with the allocation site ℓ1 of the IntPushStream$0 object, and
the constructor is inlined. Inside the constructor of IntPushStream$0, the array is stored as a
field on the object. According to the abstract state for the field write instruction, the object that is
written to is the object allocated at site ℓ1. The field write instruction can therefore be redirected to
write to the local variable allocated for the object (see line 148):

145 int[] IntPushStream_of_arr = v;

146 IntPushStream stream = null;

147 int[] IntPushStream$0_arr = null;

148 IntPushStream$0_arr = IntPushStream_of_arr;

Whenever the transformation later finds an instruction that accesses the arr field of ℓ1, it is similarly
replaced with an instruction that instead accesses IntPushStream$0_arr.
The result of the transformation phase is shown in Figure 9b. This transformed method can

be executed as is but is rather large and filled with redundancies. The last transformation phase
aims to reduce the code size and the number of local variables in the resulting code. It does so
by identifying and removing duplicate aliasing local variables, unused variables, and redundant
bytecode instructions. After these transformations, we end up with the code shown in Figure 9c.
Notice that the resulting code is a simple while-loop that iterates over the array, without any virtual
calls, similar to what a programmer would likely write if not having streams available.
In the following sections, we describe how each of the four phases work more generally, and

with more details about the analysis and transformations.

4 PHASE 1: PRE-ANALYSIS

The optimization process begins with a preliminary analysis. Its goals are (1) to identify stream
pipelines within the analyzed program, and (2) to restrict the set of possible concrete types for
stream sources. This information allows us to subsequently use an expensive analysis, which is
specialized for guiding our optimizations, only at the program points where it is needed. The
concrete types for the stream sources are used for seeding the analysis in phase 2.

Consider the example stream pipeline marked with gray in Figure 10. By simply using the type
information available in the Java bytecode of the compiled program, it is trivial to find all local

149 class Application {

150 private void method (...) {

151 List <Integer > list = new ArrayList <Integer >();

152 // ...

153 boolean anyMatching = list.stream()

154 .map(x -> x * y)

155 .anyMatch(x -> x > z) ;

156 // ...

157 }

158 }

Fig. 10. A stream pipeline (marked) as part of a bigger program. Note that the lambdas are excluded from the

code considered by the main analysis.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 168. Publication date: November 2020.

Eliminating Abstraction Overhead of Java Stream Pipelines 168:13

variables of type Stream, which allows us to recognize the segment of bytecode constituting the
pipeline. (In case the stream objects are passed as parameters or return values of non-application
methods, or they are stored in or retrieved from fields in objects, we simply give up optimizing the
pipeline, as mentioned earlier; this can be improved in future work.) Application code, such as the
two lambdas in Figure 10, is considered outside the pipeline by the main analysis although it is
being inlined in the transformation phase. However, we do analyze the (implicit) constructors for
the lambdas, to be able to detect if stream objects escape from the pipeline code. An exception is
made for the flatMap operator where the callback creates a stream object directly involved in the
execution of the pipeline, and must therefore be included in the main analysis.
In many cases, the stream source type is trivial to infer (as in the sum example in Figure 9a),

but other cases require information about dataflow. When compiled to bytecode, the call to
list.stream() simply contains List as the receiver of the call. At run-time it is up to the JVM to
dispatch the call to the implementation of the concrete type of the receiver of the call, in this case
ArrayList. It does not require an advanced analysis to figure out that the concrete type of the
receiver is indeed ArrayList in this simple example, but the receiver is not always allocated in the
same method as the stream pipeline, as it could be passed as an argument to the method or reside
in a field of an object. To handle such situations, we can apply an off-the-shelf pointer analysis
to statically find the concrete type of the stream source object. Several such tools are available,
including Soot [Lhoták and Hendren 2003; Sridharan and Bodík 2006], Doop [Bravenboer and
Smaragdakis 2009], and WALA [Dolby et al. 2010]. Instead of simply selecting every non-abstract
subclass of the declared type List of the list variable, such analyzers can narrow the set of
possible concrete types by safely over-approximating the dataflow in the program. Usually, this
gives us a single concrete type for each pipeline source. In case multiple possible concrete types
are found, one possibility is to optimize the pipeline separately for each of them and then branch at
run-time based on the actual type. Since we typically only need the type information for a small
number of expressions in the program, a demand-driven analysis [Späth et al. 2016; Sridharan and
Bodík 2006], which only analyzes the relevant part of the code, is a good fit.

5 PHASE 2: INTERPROCEDURAL ANALYSIS

We express the main analysis as a monotone framework [Kam and Ullman 1977], which requires a
lattice of abstract states. Abstract values are defined as elements of the lattice

Values = Type × Pointer

and Type and Pointer are illustrated in Figure 11. The Type lattice contains all concrete and
abstract types, for modelling classes, interfaces, primitives, and arrays. The dashed edges between
the types represent the class and interface inheritance relations. The least upper bound of two Java
types is not always a single unique class or interface, which is why this simple lattice is chosen.

⊤

⊥

𝐶1 𝐶𝑛

𝐶1 𝐶𝑛

(a)Type lattice for all classes, interfaces, primitive

types, and array types 𝐶1 . . .𝐶𝑛 .

⊤

⊥

unrelated
ℓ𝑛ℓ2ℓ1

any

(b) Pointer lattice for allocation sites

ℓ1, ℓ2, . . . , ℓ𝑛 .

Fig. 11. Lattices for type and pointer components of abstract values.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 168. Publication date: November 2020.

168:14 Anders Mùller and Oskar Haarklou Veileborg

In the Pointer lattice, any represents a value that can point to any allocation site that occurs in
the pipeline. The lattice element unrelated represents values that can point to objects unrelated to
the execution of stream pipelines or objects allocated before the analysis entry point. Values that
are references to objects are modeled by object labels, ℓ1, ℓ2, ℓ3, . . . , ℓ𝑛 ∈ ObjectLabels . Objects are
abstracted by their allocation sites, ObjectLabels = Contexts × Nodes . Here, Nodes is the set of
control flow graph nodes (i.e., bytecode instructions), and Contexts is the set of all call contexts
(explained below), so the allocation sites are qualified by contexts (also called heap cloning or
context sensitive heap) [Nystrom et al. 2004; Smaragdakis et al. 2011].

An abstract state defines an abstract value for each local variable and operand stack cell (together
referred to as the set Cells), and it carries an abstract heap that maps each object label to a map
from fields to abstract values:

States =

Stack and locals
︷ ︸︸ ︷
(Cells → Values) ×

Heap
︷ ︸︸ ︷
(ObjectLabels → Fields → Values)

To achieve context sensitivity we apply the well known call-string technique with unbounded
length [Sharir and Pnueli 1981]. This allows us to precisely analyze stream pipelines of arbitrary
depth. Such an extreme choice of context sensitivity is of course not scalable to Java code in general,
but stream pipelines are relatively small. For modeling object constructions, we pick the entire
current call context as context for the object labels. The analysis is also flow sensitive, so the full
analysis lattice has an abstract state for each context and control flow graph node:

Contexts → Nodes → States

The analysis is invoked for each pipeline found in phase 1. Such a pipeline is marked by a range
of bytecode instructions that contain all instructions relevant to its execution. Thus the analysis
can start at the first of these instructions when initialized with a sensible initial abstract state. This
state contains the concrete type information from the pre-analysis necessary to resolve the call
to the stream source. The analysis then proceeds to analyze the pipeline code. If a critical loss of
precision occurs on the way, the analysis aborts and no optimization of the pipeline is performed.

The transfer functions of the intraprocedural parts of the analysis are straightforward. Generally
they model the modification to the abstract operand stack and local variables after executing
bytecode instructions. For instance, the getfield instruction on a field 𝐹 of type 𝜏 looks at the
topmost value (𝜏 ′, 𝑝) of the abstract stack and proceeds by case analysis to figure out which value
𝑣 to replace it with:

𝑣 =

lookup (𝑝) (𝐹) if 𝑝 ∈ ObjectLabels
⊔

ℓ⊑𝑝 ∧ filter (ℓ,𝜏 ′) lookup (ℓ) (𝐹) if 𝑝 = any

(𝜏, 𝑝) if 𝑝 ∈ {⊤, unrelated}

(⊥,⊥) if 𝑝 = ⊥

The function lookup (ℓ) (𝐹) looks up the abstract value of field 𝐹 in abstract object ℓ in the current
abstract state. In the first case, 𝑝 ∈ ObjectLabels , we simply look up the field value, which precisely
captures the semantics of getfield. If 𝑝 = any then the result value is the least upper bound of
the abstract values for that field on all relevant objects. The predicate filter (ℓ, 𝜏 ′) filters the set
of object labels ℓ according to the type 𝜏 ′: If 𝜏 ′ is a concrete type then only abstract objects of
exactly that type are included, otherwise abstract objects that are subclasses of 𝜏 ′ are included. If
𝑝 ∈ {⊤, unrelated}, then 𝑣 cannot be refined further than (𝜏, 𝑝), as 𝑝 could point to an object that
the analysis does not track.
For putfield instructions, the two topmost values on the stack are popped. Let (𝜏𝑜 , 𝑝𝑜) and

(𝜏𝑣, 𝑝𝑣) denote the abstract values of the object reference and assigned value, respectively. If

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 168. Publication date: November 2020.

Eliminating Abstraction Overhead of Java Stream Pipelines 168:15

unrelated ⊑ 𝑝𝑜 and there exists an object label ℓ such that ℓ ⊑ 𝑝𝑣 the analysis aborts, as ℓ can
escape from the analyzed part of the program. If 𝑝𝑜 ∈ ObjectLabels , a strong update on the
object can be performed,4 otherwise a weak update on all the object labels ℓ ⊑ 𝑝𝑜 that have the
corresponding field is performed.
For the interprocedural part of the analysis we define transfer functions for method calls.

The first part of a method call is to resolve the callee. If the call instruction is invokestatic
or invokespecial this is easy,5 otherwise the callee depends on the run-time type of the receiver.
If the type component of the abstract value of the receiver is precise, then we can use Java’s virtual
method lookup procedure. If not, we might be able to exploit that the targeted method is final
or that the declaring class is final. Otherwise the analysis resorts to over-approximation without
involving the callee body, as follows.6 If any value (𝜏, 𝑝) flows into an over-approximated call
(either as receiver or argument) where there exists some ℓ ∈ ObjectLabels such that ℓ ⊑ 𝑝 and
filter (ℓ, 𝜏) holds, then the analysis aborts, as the method could modify the full reachable heap from
this object, leading to a very imprecise heap. Otherwise, if the callee can be uniquely resolved,
analysis continues in the resolved method in a new context with the current abstract heap. After
the analysis of the method finishes, we merge the abstract states at all reachable return instructions
in the method and continue analysis in the caller with the merged abstract heap. The return value
is the topmost value on the stack in the merged state.

It is possible to construct stream pipelines whose structure is not statically fixed, for example by
applying a stream operation conditionally as in the following example.

159 IntStream s = /* some source */;

160 if (shouldSquare) s = s.map(x -> x * x);

161 return s.filter(x -> x % 2 == 0).sum();

This causes the analysis to abort due to a failed resolution of a call target, in this case at a call that
appears as part of the terminal operation, no matter if Java’s stream library or the simple push- or
pull-style implementation described in Section 2 is used.

Callbacks from the stream library to the application code, such as the lambdas in Figures 1b, 9a
and 10, are not analyzed unless it is necessary. These must be analyzed if a pipeline object flows
into such a method (the lambda can capture a reference to the pipeline), or if it is the callback from
a flatMap operator.
Calls to methods implemented in native code are handled by over-approximating as explained

above. To prevent this from aborting the analysis in common cases we use custom models for
a few core methods in the Java standard library (e.g., Class.getName and System.arraycopy).
Other typical obstacles to sound and precise static analysis for Java, such as reflection or dynamic
class loading, are not a concern, because we only apply the analysis to the stream library code,
and stream libraries do not use such mechanisms. (If the analysis should encounter use of such
mechanisms, it simply aborts.)
Context-sensitive analysis with unbounded call strings may diverge for programs that contain

recursion. It is not trivial to detect ill-natured recursion, as the call stack may legitimately contain
the same method multiple times during the execution of a stream pipeline, if the pipeline contains
multiple instances of the same intermediate operation. To ensure termination, we therefore abort

4Strong updating [Chase et al. 1990] is sound in this situation because of the use of flow sensitivity and full context

sensitivity.
5invokestatic is a direct method call while invokespecial resolves the callee by traversing the superclasses of the

enclosing class until a matching method is found.
6We could instead apply some variant of Class-Hierarchy Analysis [Dean et al. 1995] to find potential callees and merge the

results of analyzing those methods.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 168. Publication date: November 2020.

168:16 Anders Mùller and Oskar Haarklou Veileborg

the analysis if the length of a call string exceeds 1 000. This bound is well above what is needed to
admit analysis of most pipelines.

With this analysis lattice and these transfer functions, the analysis runs using a standard worklist
algorithm that repeatedly applies the transfer functions until either a fixed-point is reached, in
which case we proceed to the transformation phase, or the analysis aborts due to one of the
conditions described above. In summary, the realistic situations where the analysis aborts are (1) an
object created in the analyzed part of the code may escape that part of the code (this happens for
around 2% of the pipelines in our experiments, see Section 8.2), (2) a call target cannot be resolved
with sufficient precision (happens for around 14% of the pipelines), and (3) recursion causing the
analysis to diverge (happens for less than 1% of the pipelines).

Handling Java’s Stream Library. The analysis presented above suffices for simple stream
libraries, such as the one described in Section 2, but not for more complex ones. As mentioned
earlier, the Java standard library stream implementation is quite complex and uses different code
paths for sequential and parallel computation, and for short-circuiting and non-short-circuiting
pipelines. To obtain sufficient analysis precision to fuel optimizations, we need to avoid analyzing
certain paths that are not taken in actual runs of the code. We achieve this by including constant
propagation [Callahan et al. 1986] in the abstract values and by making the analysis control sensitive
(also called branch sensitive) to take branch conditions into account for refining abstract values
and for eliding dead code.
A common source of precision loss is the use of stream flags in the library code. Every stream

pipeline has a set of flags that are queried at different stages of execution. If we cannot analyze
these queries precisely, the analysis loses too much precision to be useful. The flags are bitmasks
that are computed at run-time by the static initializer of the StreamOpFlag enum class. The code
in a static initializer of the class is run the first time the class is accessed and is mainly used to
populate static fields. Since we do not necessarily want to limit ourselves to a whole-program
analysis, we cannot make assumptions about when this initialization happens and in what state
the static fields of the class are in at the analysis entry point. However, we observe that if the fields
have the final modifier, they cannot have been reassigned after initialization.

Analyzing StreamOpFlag’s initializer statically requires loop unrolling to be precise enough to
be useful. We take a simpler approach: Instead we utilize an on-demand dynamic pre-analysis that
takes a snapshot of the reachable heap after initializing static fields and preserves abstract values
for fields that are marked final. This allows us to get precise information on StreamOpFlag and
StreamOpFlag$Type enums needed for control sensitivity.
This small extension of the analysis relies on two assumptions. The first is that final fields of

pre-analyzed classes are not modified by the client at run-time. This assumption could be violated
by clients that use reflection,7 or by bytecode that is not emitted by the Java compiler. Even though
the Java compiler does not allow multiple writes to final fields, it is possible to load classes into the
JVM that violate this constraint.8 We also assume that the values of static final fields involved
in the stream pipeline do not rely on the run-time environment in which they are initialized.
A final trick necessary to enable useful analysis of the Java stream implementation is a model

for the standard library method java.util.stream.AbstractPipeline.wrapSink. This method
is responsible for traversing the stream pipeline from back to front, chaining together consumers
(called Sinks in Java stream terminology) along the way. This consumer is what the spliterator will
send elements into when the pipeline executes, and analyzing the chaining precisely is therefore
critical. This method is implemented with a loop instead of with recursion and thus loop unrolling

7However, since Java 9 the JVM can disallow all reflective accesses to JDK internal API’s. See Relaxed-strong-encapsulation.
8See https://hg.openjdk.java.net/jdk/jdk12/file/06222165c35f/src/hotspot/share/interpreter/rewriter.cpp#l435

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 168. Publication date: November 2020.

http://openjdk.java.net/jeps/261#Relaxed-strong-encapsulation
https://hg.openjdk.java.net/jdk/jdk12/file/06222165c35f/src/hotspot/share/interpreter/rewriter.cpp#l435

Eliminating Abstraction Overhead of Java Stream Pipelines 168:17

is necessary to analyze the behavior precisely. We have precise enough information to unroll the
loop, but we have not extended the analysis to support this in the proof-of-concept implementation,
so instead we replace that method with a model that has the loop manually unrolled.

6 PHASE 3: INLINING AND STACK ALLOCATION

Both kinds of transformations we apply, inlining and stack allocation, are classic compiler optimiza-
tions used for decades [Choi et al. 1999; Detlefs and Agesen 1999]. In this section we briefly describe
how they work, in particular how they depend on each other, how they use the information from
the main analysis phase, and what their limitations are. The transformation starts at the entry point
of the pipeline and considers each bytecode instruction one-by-one.

6.1 Inlining

At a method call instruction the transformation tries to resolve the callee in the same way as
the analysis, using the abstract state for this program point. If the callee cannot be uniquely
determined, inlining is not applied for the call. Otherwise the callee is resolved to some method
with 𝑛 arguments and𝑚 local variables. At the call instruction the Java operand stack must contain
at least 𝑛 values where the top 𝑛 values will be consumed by the call. At method entry, the callee
expects the parameter values to be placed in the local variables numbered 0 to 𝑛 − 1. In the caller
method, we allocate 𝑚 new locals for the inlined method. For each argument in reverse order,
a store instruction is inserted to the appropriate newly allocated local variable before the call
instruction. The callee is then recursively transformed where care is taken to remap variable
accesses to the allocated variables in the caller. Return instructions are handled by replacing them
with an unconditional jump to a fresh label placed at the end of the inlined method.9 The list of
bytecode instructions in the transformed method is then spliced into the caller in place of the call
instruction, and the maximum stack size of the caller is adjusted accordingly.

The transformation is easy to apply, but the ability to apply it in the AOT setting can be hindered
by Java’s access control mechanisms. If the callee is in a different class and/or package than the
caller, the callee might be able to access fields, methods, and classes that the caller cannot, for
example if they are declared private. In this case, inlining the callee would produce code that does
not pass Java’s runtime encapsulation checks [Budimlic and Kennedy 1997, 1998]. We return to
this issue at the end of the section.

Since the analysis does not cover thewhole program, the inlining transformation is only successful
if callees can be inlined all the way into the body of the method containing the stream pipeline. If
the analysis starts in method 𝑓1 and analyzes a call to 𝑓2 that further calls 𝑓3, only inlining 𝑓3 into 𝑓2
using the abstract states from the analysis would be unsound, as 𝑓2 could have other callers than 𝑓1
where the abstract states do not match the ones we used for the transformation. This implies that
the technique is not directly suitable to optimize parallel stream pipelines. In such pipelines, the
work of executing the pipeline is delegated to multiple threads, and can therefore not be inlined
into the method containing the stream pipeline.

6.2 Stack Allocation

Stack allocation can only be done for objects that do not escape their method [Choi et al. 1999]; the
analysis has already checked that property as explained in Section 5. To be able to perform the
transformation in a way that preserves the program semantics, it is also necessary that sufficiently

9The semantics of a JVM call instruction specify that (at most) one value is placed on the operand stack after execution.

While the stack is not required to contain only one value at a return instruction, this is the case for all bytecode generated

by the Java compiler. Additional measures can be taken to allow for full return semantics.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 168. Publication date: November 2020.

168:18 Anders Mùller and Oskar Haarklou Veileborg

precise pointer information is available from the preceding phase. For this reason, we use the
following concept of stack allocation eligibility. When an object is allocated in the stack, and its
fields are stored in local variables in the call frame instead of on the heap, all instructions that
access the object’s fields must be appropriately transformed. If this condition cannot be satisfied
for a given object (identified by an object label), then the object is ineligible for stack allocation.
Eligibility is determined by examining all field access instructions in the analyzed code. At a field
access instruction the abstract state can be queried for the abstract value of the object reference,
denoted (𝜏, 𝑝). If 𝑝 ∉ ObjectLabels then all object labels ℓ where ℓ ⊑ 𝑝 and filter (ℓ, 𝜏) holds are
made ineligible for stack allocation. For such an ℓ the abstract state is not precise enough to ensure
that this field access instruction can be redirected to the corresponding local variable. Notice that
stack allocation eligibility relies on inlining ś all method calls that the potentially stack allocated
object flows into must be inlined to ensure that we can translate load and store instructions and
inline virtual calls.
After stack allocation eligibility is determined, the transformation starts. It operates on new,

putfield, and getfield instructions. Whenever new is encountered, the transformation checks
whether the allocation site defined by this bytecode instruction is eligible for stack allocation. If
this is the case, local variables are allocated for all of the object’s fields, and they are associated
with the object label. To keep the operand stack layout valid, the new instruction is temporarily
replaced with an instruction that loads the null constant.
At a getfield instruction, the abstract state is queried for the abstract value of the object

reference, denoted (𝜏, 𝑝) as above. If 𝑝 ∈ ObjectLabels and 𝑝 is eligible for stack allocation, the
instruction is transformed into a read to the local variable that was previously allocated for the
field. The transformation handles putfield instructions similarly.

As mentioned in Section 3, stack allocation can enable more inlining optimizations. If a candidate
method for inlining contains field accesses that would violate Java’s access control, inlining can
only take place if the object that is accessed is allocated on the stack, such that its fields can be
accessed as local variables instead.
In practice, because of the interdependencies between the two transformations, optimizing a

given stream pipeline with our technique is usually łall or nothingž ś either inlining succeeds for
all the methods involved in the pipeline and all the objects created in the process are stack allocated,
or the optimization fails entirely.

6.3 Handling Private Fields

In Section 1 we mentioned how spliterator implementations for Java’s standard library contain
accesses to package-private fields (see Figure 5). These accesses are directed at a Collection object
that should not be stack allocated, either because the object is not allocated within the analyzed
method, or because the scope of the analysis would have to be broadened to not only include the
stream pipeline but also parts of the application code relevant to the collection object, to be able to
carry out the necessary transformations. The consequence is that inlining the spliterator methods
will always be prohibited by the rules described above. Not being able to inline the spliterator
methods produces a cascade of other optimizations that cannot take place, due to the interplay
between them. When this happens, different courses of action are possible:

Inline as much as possible: We can choose to apply only the optimizations that are possible.
This is, however, undesirable, as the bulk of the performance benefits of the optimization comes
from fully inlining the call to spliterator.forEachRemaining and eliminating chains of virtual calls
to push elements through the pipeline. This chain starts in the forEachRemaining method, and
when this method cannot be inlined it disallows inlining of further calls.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 168. Publication date: November 2020.

Eliminating Abstraction Overhead of Java Stream Pipelines 168:19

Use reflection: Violating field accesses can be circumvented with the use of Java’s Reflection API.
The use of reflection can have unfortunate performance drawbacks, and is only possible when
the application is run in an appropriate Java security context. Since reflection allows us to expose
encapsulated fields that are not part of the object’s interface, using reflection only works as
long as the internal implementation of the object does not change, which could happen between
different Java releases.

Exploit the Java module system: Since Java 9 introduced the Platform Module System,10 it is
possible, with appropriate JVM settings, to inject a class into the same module and package as the
collection class, to expose private members of the class in a public interface. This does not suffer
the same performance drawback as reflection, but still depends on the internal implementation
of the class. In addition the JVM must be run with special settings.

Copy the class: We can make a copy of the collection class that publicly exposes its members.
This class must be used in place of the original class throughout the application code. This way
the application will work no matter the environment in which it runs, and will not suffer any
performance drawbacks.

None of these solutions are ideal, but allow the transformation to optimize stream pipelines with
collection sources. For our experiments we chose the last course of action as the lesser evil.

7 PHASE 4: CLEANUP

The above transformations, while general, typically introduce a lot of redundant bytecode instruc-
tions. The goal of the cleanup phase is to remove some of these redundancies from the transformed
method. The null values introduced temporarily during the stack allocation transformation (see
Section 6.2) are also eliminated in this phase. As input, the phase receives the transformed method
from the previous phase. It then applies a few simple intraprocedural analyses and transformations
described below. We motivate the cleanup techniques with two examples of method bodies that
can be shortened. In the first example, method f invokes twice in line 164:

162 int f(int i) {

163 ILOAD 0

164 INVOKE int twice(int)

165 ...

166 }

167 int twice(int x) {

168 ILOAD 0

169 ICONST_2

170 IMUL

171 IRETURN

172 }

173 int f_opt(int i) {

174 ILOAD 0

175 ISTORE 1 (removed)

176 ILOAD 1 (removed)

177 ICONST_2

178 IMUL

179 ...

180 }

When twice has been inlined into f as shown on the right, the argument loaded for twice will be
stored into a fresh local variable that is immediately reloaded and never reassigned. In this case
we can remove the store and load instructions (indicated by ‘removed’ above). In general, such
redundancies occur whenever we inline a method that is called with variables as arguments, and
the method never assigns to the local variables for those parameters.
Another type of redundancy is introduced in the stack allocation transformation. Consider the

following example on the left. A State object is created, then i is written to its value field, and
finally the value is read from the field and returned. In this example, the State object can be stack
allocated.

10https://www.oracle.com/corporate/features/understanding-java-9-modules.html

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 168. Publication date: November 2020.

https://www.oracle.com/corporate/features/understanding-java-9-modules.html

168:20 Anders Mùller and Oskar Haarklou Veileborg

181 class State { public int value; }

182

183 int m(int i) {

184 NEW State

185 DUP

186 INVOKE void State.<init >()

187 ASTORE 1

188 ALOAD 1

189 ILOAD 0

190 PUTFIELD State.value int

191 ALOAD 1

192 GETFIELD State.value int

193 IRETURN

194 }

195 int m_opt(int i) {

196 ACONST_NULL (removed)

197 DUP (removed)

198 POP (removed)

199 ASTORE 1 (removed)

200 ALOAD 1 (removed)

201 ILOAD 0

202 ISTORE 2 (removed)

203 POP (removed)

204 ALOAD 1 (removed)

205 POP (removed)

206 ILOAD 2 (removed)

207 IRETURN

208 }

On the right, the method is shown after applying the stack allocation transformation, but before
cleanup. The State class has one field, so a fresh local variable is allocated for it in the method, in
this case it gets the index 2. The putfield instruction is replaced with a store to the allocated local
variable followed by a pop. This pop is necessary to preserve the operand stack layout. A similar
transformation is applied for the getfield instruction.With further intraprocedural simplifications,
the body of the method can now be reduced to only a load of the argument followed by a return
instruction, making all the other instructions redundant.
Figure 9b shows a transformed stream pipeline with redundancies from both the inlining and

stack allocation transformations, in Java source code form.
Both inlining and stack allocation introduce a lot of redundant local variables in the transformed

method. To eliminate such redundancy, we incorporate a flow-sensitive must-alias analysis similar
to the one used in the Scala compiler.11 This analysis determines which values are guaranteed
to be equal for each program point. For instance it can determine that the local variables 0 and
1 must alias at line 176. With this information we can redirect the load instruction to the first
local variable. This in turn makes the instructions in lines 174 and 175 dead, so they can safely
be removed. We additionally employ other well-known intraprocedural analyses: strongly live
variables analysis, nullness analysis, reachability analysis, and sign analysis, and the optimizations
they enable, together with a suite of peephole optimizations.
In our benchmarks, the cleanup optimizations reduce the number of local variables in the

transformed stream pipeline by a factor of 10 to 40 and the number of bytecode instructions by a
factor 10, and thereby enable further optimizations by the JIT. Of course these numbers vary a lot
depending on the pipeline in question.

8 EVALUATION

Our proof-of-concept implementation of the approach, named Streamliner, consists of approxi-
mately 8 KLOC Java code, building on ASM12 for bytecode manipulation and analysis.
We evaluate our approach by answering the following research questions:

RQ1: Is the performance of the optimized code comparable to that of hand-optimized code, when
applied to micro-benchmarks and using either push- or pull-style libraries?

RQ2: To what extent is the technique able to optimize stream pipelines in real-world Java applica-
tions? In cases where it fails, what are the reasons?

The Streamliner implementation and experimental data are available at https://brics.dk/streamliner/.

11https://github.com/scala/scala/blob/2.13.x/src/compiler/scala/tools/nsc/backend/jvm/analysis/AliasingAnalyzer.scala
12https://asm.ow2.io/

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 168. Publication date: November 2020.

https://brics.dk/streamliner/
https://github.com/scala/scala/blob/2.13.x/src/compiler/scala/tools/nsc/backend/jvm/analysis/AliasingAnalyzer.scala
https://asm.ow2.io/

Eliminating Abstraction Overhead of Java Stream Pipelines 168:21

Table 1. Java Virtual Machines used in the performance evaluation.

Name Java Version Build number

Oracle HotSpot VM 8 1.8.0_241

OpenJDK HotSpot VM 13 13+13

GraalVM CE 11 11.0.6+9-jvmci-20.0

Eclipse OpenJ9 13 0.18.0

8.1 RQ1: Performance Evaluation

To answer the first research question we wish to compare the performance of programs before and
after optimization. Our approach mainly targets stream pipelines which usually are components of
larger programs. To isolate the performance impact of our optimization we evaluate the approach
on a suite of 11 micro-benchmarks that consist only of stream pipelines. This suite builds upon
micro-benchmarks from previous work [Biboudis et al. 2015] and includes a new benchmark that
uses the allMatch terminal operation. This operation terminates the execution of the pipeline as
soon as an element that does not satisfy the supplied predicate is found (it is a short-circuiting
operation), and therefore follows an alternative code path in the Java stream library.
We do not include real-world Java programs in the performance evaluation, as measuring the

impact of the optimization would be extremely difficult to do in a fair manner. Stream pipelines are
used for different reasons and with different workloads, as small parts of bigger applications. Many
stream pipelines in existing code are not performance critical; conversely, programmers sometimes
avoid using streams exactly for performance reasons, as discussed in the introduction.
The performance measurements are made using the Java Microbenchmarking Harness (JMH)

tool [Oracle 2014a], a benchmarking tool designed for JVM-based languages included in the
OpenJDK project. It performs a series of iterations to warm up the JIT before doing proper testing
iterations. In our experiments we perform 5 warm-up iterations and 10 normal iterations, and
the presented number is the average over those 10 iterations. We omit confidence intervals, as
fluctuations between runs are negligible compared to the differences resulting from the use of
optimization and the choices of library and VM [Georges et al. 2007].

We have performed experiments on the four different Java VMs and versions shown in Table 1. For
each VM we measure the performance of each micro-benchmark before and after optimization. For
each benchmark we have four groups. The Baseline group constitutes the benchmark implemented
with Java for-loops, while the Pull and Push groups use the simple library implementation described
in Section 2. We include our own stream library implementations to show that they suffer from the
same performance deficiencies as the Java stream implementation compared to the baseline, and
that the optimization can yield performance improvements for both pull- and push style stream
APIs. Finally, the Stream group uses the stream implementation of the Java standard library. The
results can be found in Figures 12 to 15. The sum and sumOfSquaresEven benchmarks are shown
in Figure 9a and Figure 1, respectively.
The results show that, when using Java’s stream library, after optimization 10 of the 11 bench-

marks have comparable performance to that of the baseline implementation.
The technique fails to optimize the stream pipeline for flatMapTake in the Stream group on

all VMs except Oracle HotSpot VM 8 (indicated by gray bars). This benchmark features a short-
circuiting pipeline that includes a flatMap operator, which uses a lazily-initialized buffer to hold
elements from its generated streams.13 The lazy initialization pattern results in toomuch imprecision
causing the analysis to abort. This can be remedied in future work by more precise analysis.

13All the VMs use the OpenJDK implementation of the standard library for streams. The Oracle Hotspot VM uses an earlier

version that does not use lazy initialization.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 168. Publication date: November 2020.

168:22 Anders Mùller and Oskar Haarklou Veileborg

allMatch cart
count

filte
rCount

filte
rMapCount

flatMapTake

megamorphicFilters

megamorphicMaps sum

sumOfSquares

sumOfSquaresEven
0

50

100

150

200

250

300

350

400

Av
er

ag
e

tim
e

(m
s)

555 494 1607
2631

1669
2760

598 2766
3422

Baseline
Stream
Stream optimized
Push
Push optimized
Pull
Pull optimized
Missing optimization

Fig. 12. Micro-benchmarks run on OpenJDK 13.

Across all implementations we experience a massive speedup for the (pathological) cart,
megamorphicFilters, and megamorphicMaps benchmarks. The count benchmarks (which count
the number of elements in a stream) experience drastic speedups after optimization, because the JIT
can determine that the result is equivalent to the length of the supplied array, effectively making
the run-time negligible.
Although our focus is on Java’s stream library, we also test the applicability of our approach

for pull-style streams. Across all tests, the analysis is too imprecise to optimize the cart and
flatMapTake benchmarks in the Pull group. These benchmarks all use the flatMap stream op-
erator. In the pull stream implementation, this operator assumes the iterator protocol in that
calls to get are preceded by a call to hasNext returning true. A relational analysis is required to
separate the abstract states for when hasNext returns true or false respectively. In many cases
the performance of the optimized pull-style stream pipelines does not match that of the baseline,
nor the performance of the optimized Java pipelines. This is due to a suboptimal structure of the
optimized bytecode, which results in the JIT compiler generating performance-wise worse machine
code. The same reason explains how optimized code in some cases performs marginally worse
than the unoptimized version, as seen in the filterCount and filterMapCount benchmarks with
OpenJDK 13 in Figure 12. Further cleanup transformations are needed to make the bytecode as
efficient as the baseline.
There are some differences between the results on the various VMs. The Oracle HotSpot VM

is slower for some benchmarks in the Baseline group compared to OpenJDK 13, which is not
surprising as the OpenJDK VM has experienced five more years of development. However, we still
experience the same relative speedup when the optimization is applied.
For the OpenJ9 VM, we also experience significant speedups for the optimized code, although

OpenJ9’s absolute performance seems to be below that of the other VMs. In some of the benchmarks,
in particular the sum benchmarks, the Stream optimized code seems to be twice as fast as the baseline,
which is suspicious. A plausible explanation for this is that the Java Microbenchmarking Harness
is geared towards performance evaluation of HotSpot-based virtual machines (and OpenJ9 is not
based on the HotSpot VM), which may lead to inaccurate measurements.
The megamorphicMaps benchmark that was highlighted in Section 1 for its exceptionally poor

performance when executed with Java’s streams is presented in Figure 16. Figures 16a and 16b show

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 168. Publication date: November 2020.

Eliminating Abstraction Overhead of Java Stream Pipelines 168:23

allMatch cart
count

filte
rCount

filte
rMapCount

flatMapTake

megamorphicFilters

megamorphicMaps sum

sumOfSquares

sumOfSquaresEven
0

100

200

300

400

500

Av
er

ag
e

tim
e

(m
s)

774 1557
2719

1614
2720

594 2617
3109

Baseline
Stream
Stream optimized
Push
Push optimized
Pull
Pull optimized
Missing optimization

Fig. 13. Micro-benchmarks run on Oracle’s JDK 8.

allMatch cart
count

filte
rCount

filte
rMapCount

flatMapTake

megamorphicFilters

megamorphicMaps sum

sumOfSquares

sumOfSquaresEven
0

100

200

300

400

500

600

700

800

Av
er

ag
e

tim
e

(m
s)

1095
3096

3447
1911

2760
1130

2465
3361

Baseline
Stream
Stream optimized
Push
Push optimized
Pull
Pull optimized
Missing optimization

Fig. 14. Micro-benchmarks run on OpenJ9 13.

allMatch cart
count

filte
rCount

filte
rMapCount

flatMapTake

megamorphicFilters

megamorphicMaps sum

sumOfSquares

sumOfSquaresEven
0

100

200

300

400

500

Av
er

ag
e

tim
e

(m
s)

1040
1198

1922
1136

2003
635 1950

2261

Baseline
Stream
Stream optimized
Push
Push optimized
Pull
Pull optimized
Missing optimization

Fig. 15. Micro-benchmarks run on GraalVM 11.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 168. Publication date: November 2020.

168:24 Anders Mùller and Oskar Haarklou Veileborg

209 public int megamorphicMaps () {

210 return IntStream.of(v)

211 .map(d -> d * 1)

212 .map(d -> d * 2)

213 .map(d -> d * 3)

214 .map(d -> d * 4)

215 .map(d -> d * 5)

216 .map(d -> d * 6)

217 .map(d -> d * 7)

218 .sum();

219 }

(a) Benchmark implemented with Java streams.

220 public int megamorphicMaps () {

221 int acc = 0;

222 for(int i = 0; i < v.length; i++)

223 acc += v[i]*1*2*3*4*5*6*7;

224 return acc;

225 }

(b) Benchmark implemented with a for loop.

226 public int megamorphicMaps () {

227 int[] values = v;

228 int endExclusive = values.length;

229 // bounds and null checking omitted

230 int state = 0;

231 if(values.length >= endExclusive) {

232 int i = 0;

233 if (0 < endExclusive) {

234 do {

235 int t = values[i];

236 int t2 = t * 1;

237 int t3 = t2 * 2;

238 int t4 = t3 * 3;

239 int t5 = t4 * 4;

240 int t6 = t5 * 5;

241 int t7 = t6 * 6;

242 int t8 = t7 * 7;

243 state += t8;

244 } while (++i < endExclusive);

245 }

246 }

247 return state;

248 }

(c) Decompiled benchmark after optimization.

Fig. 16. The megamorphicMaps benchmark.

the code that is executed in the Stream and Baseline group, respectively. In Figure 16c we show
the optimized code after decompilation. The JIT compiler is able to transform both the baseline
and optimized code into equally efficient machine code, but it is perhaps not immediately clear to
the programmer that the code in Figure 16a is semantically equivalent to the code in Figure 16c.
The optimized code shows similar structure to that of the baseline implemented with a for loop,
but includes several transformation artifacts. One such artifact is the check of values.length >=

endExclusive, which is always true. This could be removed with additional simple intraprocedural
cleanup transformations, although it does not affect the performance.

8.2 RQ2: Evaluation on General Programs

To answer the second research question, we run the analysis and transformation on a suite of 28
different Java projects that use streams, to evaluate how many stream pipelines the analysis is able
to optimize. Projects are randomly chosen from the RepoReapers dataset [Munaiah et al. 2017]
under the criteria that we can build the project and that the project contains uses of streams.
Since we are not interested in evaluating the quality of the exact choice of pre-analysis, in this

experiment we use a simple alternative to dataflow analysis to decide the stream source types. The
ability to optimize a pipeline does not hinge on the concrete type of the stream, only that we know
which one it is. For this reason, for streams created from collections (i.e., using the stream method
in a sub-class of java.util.Collection), we simply choose a specific concrete collection type,
such as ArrayList. For other kinds of stream sources, this pre-analysis simply aborts.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 168. Publication date: November 2020.

Eliminating Abstraction Overhead of Java Stream Pipelines 168:25

Table 2. Results of the evaluation on optimization of stream pipelines in general Java programs.

Category Count %

Successful optimization 5 293 77%

Imprecise resolution of call target 985 14%

Use of advanced stream operators 260 4%

Escaping pipeline object 121 2%

Infinite recursion 34 <1%

Other 186 3%

Total 6 879 100%

We identified 6 879 sequential stream pipelines in the chosen projects. As explained in Section 6,
whether a stream pipeline can be optimized with our approach is łall or nothingž. This gives us a
simple way to classify each attempt to optimize a pipeline as being successful or not: If the optimizer
succeeds in inlining all the stream library code used in the pipeline into the method containing the
pipeline, then the optimization is successful. For each pipeline, we invoked the combined analysis
and transformation, and recorded whether the pipeline was successfully optimized or not.
In the cases where the optimization is not successful, we have attempted to identify the most

likely cause. The results of the experiment are presented in Table 2. Out of 6 879 pipelines, 5 293
(77%) are successfully optimized. This leaves 1 586 pipelines that fail to optimize for different
reasons. The most prominent reason is that the analysis aborts due to imprecise type information
at call sites, making it impossible to statically track the interprocedural control flow of the stream
pipeline. This imprecision can arise from different sources as described in Section 5. One is that
the simple pre-analysis implementation fails to deliver the type information needed to analyze the
construction of the stream source, which accounts for about half of the 985 cases. (That may happen
if the stream is created neither from a collection nor from static methods such as IntStream.of.)
Incorporating a full-fledged pointer analysis, such as Boomerang, [Späth et al. 2016] can likely help
the analysis in these cases. The analysis also experiences imprecision when the pipeline structure
depends on branching (for example when an intermediate operation is applied to a stream only
under some conditions, as in line 160). More advanced techniques could insert optimized code
for both cases and branch on the original condition. The next most common cause of inability
to optimize is the use of stream operators that the analysis is not precise enough to handle. This
includes the LongStream.range source, which leads to infinite recursion, the toArray and concat
operators, and the flatMap operator when involved in a short-circuiting pipeline as outlined in
Section 8.1. These operators include some complex state that is initialized during pipeline execution
which the analysis is unable to follow. This can cause the analysis to abort due to an imprecise
resolution of a call target, as described in Section 5, or make the analysis result too imprecise to
allow meaningful optimization, as described in Section 6. In 121 cases, the main analysis aborts
due to an object escaping the analyzed part of the code, and in 34 cases the analysis aborts due
to uncontrolled growth of call strings. Both of these conditions are described in Section 5. The
remaining unsuccessful cases are harder to classify. In most of these cases the analysis succeeds
but Java’s access control mechanisms prevent optimization, as discussed in Section 6.
In summary, the results from this experiment show that the relatively simple static analysis

presented in Section 5 can produce the information needed to optimize stream pipelines in a variety
of programs. Moreover, the technique is quite cheap to apply. In our experiments, the analysis and
transformation take approximately one second to apply for each pipeline on average.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 168. Publication date: November 2020.

168:26 Anders Mùller and Oskar Haarklou Veileborg

9 RELATED WORK

Most work on compiler optimization for Java focuses on JIT optimizations [Arnold et al. 2005;
Aycock 2003], and there is (surprisingly) little work on AOT optimizations in general for Java and
related languages. To our knowledge, we are the first to investigate the use of AOT optimization
for eliminating the massive abstraction overhead of Java stream pipelines.

The bytecode-to-bytecode optimizer described by Budimlic and Kennedy [1997, 1998] applies a
transformation called object inlining, which inlines all data and code from selected objects, much
like our use of method inlining and stack allocation, however, they do not present any strategies
for when to apply the transformation. They also encounter the limitation of inlining methods
that access private members. The term ‘object inlining’ has also been used for another kind of
optimization that fuses together objects to reduce the number of object allocations, without method
inlining or stack allocation [Dolby and Chien 1998].
Another related technique is the interprocedural escape analysis for guiding stack allocation

optimization for Java by Choi et al. [1999]. Our dataflow analysis (Section 5) performs a variant of
escape analysis by the use of the unrelated lattice element, to determine which objects may escape
the stream pipeline code.
The Interflow optimizer [Shabalin and Odersky 2018] for Scala Native uses a combination of

flow-sensitive type inference, method duplication, partial evaluation, partial escape analysis, and
inlining. It focuses on optimizations for Scala’s collection library, not for stream pipelines, and is
designed for native code generation instead of bytecode-to-bytecode transformation. By targeting
native code, they avoid the problems with Java’s access modifiers discussed in Section 6. On the
other hand, by choosing bytecode-to-bytecode transformation, our approach is easier to incorporate
into existing build processes and execution platforms.
Our approach builds on ideas from the techniques mentioned above, and applies them to opti-

mize stream pipelines. By focusing analysis and transformation on stream pipeline code that has
large potential for optimization, we can afford more expensive analysis than the general purpose
optimization techniques.

Our optimization technique can also be viewed as a form of program specialization [Schultz et al.
2003], where we specialize the stream library code to each individual stream pipeline. Instead of
using a binding-time analysis as in traditional partial evaluation, we use a specialized analysis that
simultaneously infers types and points-to information to guide the transformations.

Khatchadourian et al. [2020a] have developed a tool for optimizing Java streams that uses a static
typestate analysis to determine whether it is advantageous to convert a sequential stream to a
parallel one or vice versa. Parallel computation is a natural source of performance improvement,
so their goal is to determine preconditions for when it is safe to execute pipelines concurrently.
While parallel streams can offer better performance, it does not address the inherent overhead that
is currently present when using Java’s streams sequentially, as discussed in the introduction.
Declarative data processing has close ties to functional programming. Deforestation [Wadler

1990] is a technique that transforms functional programs that operate on trees (in particular lists)
into equivalent programs without allocating intermediate results in new trees, thereby improving
run-time performance. Many variants of deforestation exist, but mostly for functional programming
languages. These techniques are difficult to adapt to optimize code that uses Java’s stream library,
in particular because of its advanced features described in Section 2.
For programming languages with advanced meta-programming capabilities, such as staging,

efficient stream implementations can be obtained by implementing stream fusion and other opti-
mizations within the libraries themselves. The strymonas library for Scala and OCaml [Kiselyov
et al. 2017], ScalaBlitz for Scala [Prokopec and Petrashko 2013], the fold-based fusion technique

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 168. Publication date: November 2020.

Eliminating Abstraction Overhead of Java Stream Pipelines 168:27

for Scala by Jonnalagedda and Stucki [2015], and LinqOptimizer for C# and F# [Palladinos and
Rontogiannis 2014] follow that approach. These techniques cannot be adapted to Java, because it
lacks the necessary language features. Also, our goal is to enable optimization for Java’s existing
stream library, not to replace it.
The stream library for Java by Biboudis et al. [2015] aims for extensibility, not to reach the

performance of imperative code.
C# supports declarative data processing in the form of Language-Integrated Query (LINQ), which

suffers from similar performance problems as Java streams compared to hand-optimized code.
The Steno tool [Murray et al. 2011] makes it possible to translate declarative LINQ queries into
imperative code, using iterator fusion and nested loop generation optimizations. Earlier work has
applied similar approaches as Steno for Common Lisp and Pascal programs [Waters 1991]. The
key difference to our technique is that Steno relies on hardwired knowledge about the semantics
of all the available LINQ operators and thus does not need to look at their implementations; in
contrast, our approach is not limited to a specific API but instead relies on static analysis of the
stream library implementation.
Also for C#, Adamus et al. [2015] have developed a technique for optimizing LINQ queries by

identifying free expressions in nested queries. By lifting these expressions out of the nested query
they can avoid redundant re-computation at run-time, thus improving performance. Their technique
builds on the idea of rewriting stream pipelines, and is not concernedwith the performance overhead
of using LINQ queries compared to hand-optimized code.

10 CONCLUSION

Streams are a powerful abstraction mechanism in Java programming, but they incur a large
performance overhead, which JIT optimization has been unable to mitigate. In this work we exploit
the fact that stream pipelines are relatively small pieces of code, which makes them amenable to
high-precision interprocedural analysis and optimization. We have demonstrated the feasibility of
AOT optimization of Java stream pipelines. By aggressively applying method inlining and stack
allocation transformations driven by a static type/pointer analysis, our experimental results show
that a variety of stream pipelines can be automatically transformed into efficient imperative-style
code that has much better performance characteristics. For 10 of 11 micro-benchmarks, the resulting
bytecode is as effective as hand-written imperative-style code, and 77% of 6 879 stream pipelines
found in real-world Java programs are optimized successfully. Since the optimizer is fast (even
for a prototype implementation) and structured as a bytecode-to-bytecode transformer, it is easily
deployed in ordinary build processes. Moreover, the approach is not restricted to Java’s push-style
stream implementation but also produces good results for a simple pull-style library.
The experimental results also identify opportunities for future work. Most importantly, more

pipelines could be optimized if the analysis is improved to be able to reason more accurately about
short-circuiting operations. Also, incorporating relational analysis can lead to improved precision
necessary for optimizing certain operations when using a pull-style stream library.

ACKNOWLEDGMENTS

This work was supported by the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation program (grant agreement No 647544).

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 168. Publication date: November 2020.

168:28 Anders Mùller and Oskar Haarklou Veileborg

REFERENCES

Radoslaw Adamus, Tomasz Marek Kowalski, and Jacek Wislicki. 2015. A step towards genuine declarative language-

integrated queries. In 2015 Federated Conference on Computer Science and Information Systems, FedCSIS 2015, Lódz, Poland,
September 13-16, 2015, Vol. 5. IEEE, 935ś946. https://doi.org/10.15439/2015F156

Ole Agesen. 1995. The Cartesian Product Algorithm: Simple and Precise Type Inference Of Parametric Polymorphism.

In ECOOP’95 - Object-Oriented Programming, 9th European Conference, Århus, Denmark, August 7-11, 1995, Proceedings
(Lecture Notes in Computer Science), Vol. 952. Springer, 2ś26. https://doi.org/10.1007/3-540-49538-X_2

Matthew Arnold, Stephen J. Fink, David Grove, Michael Hind, and Peter F. Sweeney. 2005. A Survey of Adaptive Optimization

in Virtual Machines. Proc. IEEE 93, 2 (2005), 449ś466. https://doi.org/10.1109/JPROC.2004.840305

Matthew Arnold, Stephen J. Fink, Vivek Sarkar, and Peter F. Sweeney. 2000. A comparative study of static and profile-based

heuristics for inlining. In Proceedings of ACM SIGPLANWorkshop on Dynamic and Adaptive Compilation and Optimization
(Dynamo 2000), Boston, MA, USA, January 18, 2000. ACM, 52ś64. https://doi.org/10.1145/351397.351416

John Aycock. 2003. A brief history of just-in-time. ACM Comput. Surv. 35, 2 (2003), 97ś113. https://doi.org/10.1145/857076.

857077

Aggelos Biboudis, Nick Palladinos, George Fourtounis, and Yannis Smaragdakis. 2015. Streams a la carte: Extensible

Pipelines with Object Algebras. In 29th European Conference on Object-Oriented Programming, ECOOP 2015, July 5-10,
2015, Prague, Czech Republic (LIPIcs), Vol. 37. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 591ś613. https:

//doi.org/10.4230/LIPIcs.ECOOP.2015.591

Aggelos Biboudis, Nick Palladinos, and Yannis Smaragdakis. 2014. Clash of the Lambdas. CoRR abs/1406.6631 (2014).

arXiv:1406.6631

Martin Bravenboer and Yannis Smaragdakis. 2009. Strictly declarative specification of sophisticated points-to analyses.

In Proceedings of the 24th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2009, October 25-29, 2009, Orlando, Florida, USA. ACM, 243ś262. https://doi.org/10.1145/1640089.

1640108

Zoran Budimlic and Ken Kennedy. 1997. Optimizing Java: theory and practice. Concurrency - Practice and Experience 9, 6
(1997), 445ś463.

Zoran Budimlic and Ken Kennedy. 1998. Static interprocedural optimizations in Java. Technical Report. Center for Research
on Parallel Computation, Rice University, Technical Report CRPC-TR98746.

David Callahan, Keith D. Cooper, Ken Kennedy, and Linda Torczon. 1986. Interprocedural constant propagation. In

Proceedings of the 1986 SIGPLAN Symposium on Compiler Construction, Palo Alto, California, USA, June 25-27, 1986. ACM,

152ś161. https://doi.org/10.1145/12276.13327

David R. Chase, Mark N. Wegman, and F. Kenneth Zadeck. 1990. Analysis of Pointers and Structures. In Proceedings of the
ACM SIGPLAN’90 Conference on Programming Language Design and Implementation (PLDI), White Plains, New York, USA,
June 20-22, 1990. ACM, 296ś310. https://doi.org/10.1145/93542.93585

Jong-Deok Choi, Manish Gupta, Mauricio J. Serrano, Vugranam C. Sreedhar, and Samuel P. Midkiff. 1999. Escape Analysis

for Java. In Proceedings of the 1999 ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages &
Applications (OOPSLA ’99), Denver, Colorado, USA, November 1-5, 1999. ACM, 1ś19. https://doi.org/10.1145/320384.320386

Jeffrey Dean, David Grove, and Craig Chambers. 1995. Optimization of Object-Oriented Programs Using Static Class

Hierarchy Analysis. In ECOOP’95 - Object-Oriented Programming, 9th European Conference, Århus, Denmark, August 7-11,
1995, Proceedings (Lecture Notes in Computer Science), Vol. 952. Springer, 77ś101. https://doi.org/10.1007/3-540-49538-X_5

David Detlefs and Ole Agesen. 1999. Inlining of Virtual Methods. In ECOOP’99 - Object-Oriented Programming, 13th European
Conference, Lisbon, Portugal, June 14-18, 1999, Proceedings (Lecture Notes in Computer Science), Vol. 1628. Springer, 258ś278.
https://doi.org/10.1007/3-540-48743-3_12

Julian Dolby and Andrew A. Chien. 1998. An Evaluation of Automatic Object Inline Allocation Techniques. In Proceedings
of the 1998 ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages & Applications (OOPSLA ’98),
Vancouver, British Columbia, Canada, October 18-22, 1998. ACM, 1ś20. https://doi.org/10.1145/286936.286943

Julian Dolby, Stephen J. Fink, and Manu Sridharan. 2010. T.J. Watson Libraries for Analysis. http://wala.sourceforge.net/

Andy Georges, Dries Buytaert, and Lieven Eeckhout. 2007. Statistically rigorous Java performance evaluation. In Proceedings
of the 22nd Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2007, October 21-25, 2007, Montreal, Quebec, Canada. ACM, 57ś76. https://doi.org/10.1145/1297027.1297033

Manohar Jonnalagedda and Sandro Stucki. 2015. Fold-based fusion as a library: a generative programming pearl. In

Proceedings of the 6th ACM SIGPLAN Symposium on Scala, Scala@PLDI 2015, Portland, OR, USA, June 15-17, 2015. ACM,

41ś50. https://doi.org/10.1145/2774975.2774981

John B. Kam and Jeffrey D. Ullman. 1977. Monotone Data Flow Analysis Frameworks. Acta Inf. 7 (1977), 305ś317.

https://doi.org/10.1007/BF00290339

RaffiKhatchadourian, Yiming Tang, andMehdi Bagherzadeh. 2020a. Safe Automated Refactoring for Intelligent Parallelization

of Java 8 Streams. Science of Computer Programming (2020), 102476. https://doi.org/10.1016/j.scico.2020.102476

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 168. Publication date: November 2020.

https://doi.org/10.15439/2015F156
https://doi.org/10.1007/3-540-49538-X_2
https://doi.org/10.1109/JPROC.2004.840305
https://doi.org/10.1145/351397.351416
https://doi.org/10.1145/857076.857077
https://doi.org/10.1145/857076.857077
https://doi.org/10.4230/LIPIcs.ECOOP.2015.591
https://doi.org/10.4230/LIPIcs.ECOOP.2015.591
https://arxiv.org/abs/1406.6631
https://doi.org/10.1145/1640089.1640108
https://doi.org/10.1145/1640089.1640108
https://doi.org/10.1145/12276.13327
https://doi.org/10.1145/93542.93585
https://doi.org/10.1145/320384.320386
https://doi.org/10.1007/3-540-49538-X_5
https://doi.org/10.1007/3-540-48743-3_12
https://doi.org/10.1145/286936.286943
http://wala.sourceforge.net/
https://doi.org/10.1145/1297027.1297033
https://doi.org/10.1145/2774975.2774981
https://doi.org/10.1007/BF00290339
https://doi.org/10.1016/j.scico.2020.102476

Eliminating Abstraction Overhead of Java Stream Pipelines 168:29

RaffiKhatchadourian, Yiming Tang,Mehdi Bagherzadeh, and Baishakhi Ray. 2020b. An Empirical Study on the Use andMisuse

of Java 8 Streams. In Fundamental Approaches to Software Engineering - 23rd International Conference, FASE 2020, Held as
Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020, Dublin, Ireland, April 25-30, 2020,
Proceedings (Lecture Notes in Computer Science), Vol. 12076. Springer, 97ś118. https://doi.org/10.1007/978-3-030-45234-6_5

Oleg Kiselyov, Aggelos Biboudis, Nick Palladinos, and Yannis Smaragdakis. 2017. Stream fusion, to completeness. In

Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, Paris, France,
January 18-20, 2017. ACM, 285ś299. https://doi.org/10.1145/3093333.3009880

Ondrej Lhoták and Laurie J. Hendren. 2003. Scaling Java Points-to Analysis Using SPARK. In Compiler Construction, 12th
International Conference, CC 2003, Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS
2003, Warsaw, Poland, April 7-11, 2003, Proceedings (Lecture Notes in Computer Science), Vol. 2622. Springer, 153ś169.
https://doi.org/10.1007/3-540-36579-6_12

Davood Mazinanian, Ameya Ketkar, Nikolaos Tsantalis, and Danny Dig. 2017. Understanding the use of lambda expressions

in Java. PACMPL 1, OOPSLA (2017), 85:1ś85:31. https://doi.org/10.1145/3133909

Nuthan Munaiah, Steven Kroh, Craig Cabrey, and Meiyappan Nagappan. 2017. Curating GitHub for engineered software

projects. Empirical Software Engineering 22, 6 (2017), 3219ś3253. https://doi.org/10.1007/s10664-017-9512-6

Derek Gordon Murray, Michael Isard, and Yuan Yu. 2011. Steno: automatic optimization of declarative queries. In Proceedings
of the 32nd ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2011, San Jose, CA,
USA, June 4-8, 2011. ACM, 121ś131. https://doi.org/10.1145/1993498.1993513

Erik M. Nystrom, Hong-Seok Kim, and Wen-mei W. Hwu. 2004. Importance of heap specialization in pointer analysis.

In Proceedings of the 2004 ACM SIGPLAN-SIGSOFT Workshop on Program Analysis For Software Tools and Engineering,
PASTE’04, Washington, DC, USA, June 7-8, 2004. ACM, 43ś48. https://doi.org/10.1145/996821.996836

Oracle. 2014a. Java Microbenchmarking Harness. http://openjdk.java.net/projects/code-tools/jmh/

Oracle. 2014b. java.util.stream documentation for JDK 8. https://docs.oracle.com/javase/8/docs/api/java/util/stream/package-

summary.html

Oracle. 2014c. JDK 8. https://openjdk.java.net/projects/jdk8/

Nick Palladinos and Kostas Rontogiannis. 2014. LinqOptimizer: An automatic query optimizer for LINQ to Objects and

PLINQ. http://nessos.github.io/LinqOptimizer/

Young Gil Park and Benjamin Goldberg. 1992. Escape Analysis on Lists. In Proceedings of the ACM SIGPLAN’92 Conference
on Programming Language Design and Implementation (PLDI), San Francisco, California, USA, June 17-19, 1992. ACM,

116ś127. https://doi.org/10.1145/143095.143125

Aleksandar Prokopec, David Leopoldseder, Gilles Duboscq, and Thomas Würthinger. 2017. Making collection operations

optimal with aggressive JIT compilation. In Proceedings of the 8th ACM SIGPLAN International Symposium on Scala,
SCALA@SPLASH 2017, Vancouver, BC, Canada, October 22-23, 2017. ACM, 29ś40. https://doi.org/10.1145/3136000.3136002

Aleksandar Prokopec and Dmitry Petrashko. 2013. ScalaBlitz: Lightning-fast Scala collections framework. https://scala-

blitz.github.io/

John Rose. 2015. Hotspot-dev mailing list: Perspectives on Streams Performance. http://mail.openjdk.java.net/pipermail/

hotspot-compiler-dev/2015-March/017278.html

Ulrik Pagh Schultz, Julia L. Lawall, and Charles Consel. 2003. Automatic program specialization for Java. ACM Trans.
Program. Lang. Syst. 25, 4 (2003), 452ś499. https://doi.org/10.1145/778559.778561

Denys Shabalin and Martin Odersky. 2018. Interflow: interprocedural flow-sensitive type inference and method duplication.

In Proceedings of the 9th ACM SIGPLAN International Symposium on Scala, SCALA@ICFP 2018, St. Louis, MO, USA,
September 28, 2018. ACM, 61ś71. https://doi.org/10.1145/3241653.3241660

Micha Sharir and Amir Pnueli. 1981. Two approaches to interprocedural data flow analysis. Prentice-Hall, Chapter 7, 189ś234.
Yannis Smaragdakis, Martin Bravenboer, and Ondrej Lhoták. 2011. Pick your contexts well: understanding object-sensitivity.

In Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2011, Austin,
TX, USA, January 26-28, 2011. ACM, 17ś30. https://doi.org/10.1145/1926385.1926390

Johannes Späth, Lisa Nguyen Quang Do, Karim Ali, and Eric Bodden. 2016. Boomerang: Demand-Driven Flow- and

Context-Sensitive Pointer Analysis for Java. In 30th European Conference on Object-Oriented Programming, ECOOP
2016, July 18-22, 2016, Rome, Italy (LIPIcs), Vol. 56. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 22:1ś22:26.

https://doi.org/10.4230/LIPIcs.ECOOP.2016.22

Manu Sridharan and Rastislav Bodík. 2006. Refinement-based context-sensitive points-to analysis for Java. In Proceedings of
the ACM SIGPLAN 2006 Conference on Programming Language Design and Implementation, Ottawa, Ontario, Canada, June
11-14, 2006. ACM, 387ś400. https://doi.org/10.1145/1133981.1134027

Philip Wadler. 1990. Deforestation: Transforming Programs to Eliminate Trees. Theor. Comput. Sci. 73, 2 (1990), 231ś248.
https://doi.org/10.1016/0304-3975(90)90147-A

Richard C. Waters. 1991. Automatic Transformation of Series Expressions into Loops. ACM Trans. Program. Lang. Syst. 13, 1
(1991), 52ś98. https://doi.org/10.1145/114005.102806

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 168. Publication date: November 2020.

https://doi.org/10.1007/978-3-030-45234-6_5
https://doi.org/10.1145/3093333.3009880
https://doi.org/10.1007/3-540-36579-6_12
https://doi.org/10.1145/3133909
https://doi.org/10.1007/s10664-017-9512-6
https://doi.org/10.1145/1993498.1993513
https://doi.org/10.1145/996821.996836
http://openjdk.java.net/projects/code-tools/jmh/
https://docs.oracle.com/javase/8/docs/api/java/util/stream/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/package-summary.html
https://openjdk.java.net/projects/jdk8/
http://nessos.github.io/LinqOptimizer/
https://doi.org/10.1145/143095.143125
https://doi.org/10.1145/3136000.3136002
https://scala-blitz.github.io/
https://scala-blitz.github.io/
http://mail.openjdk.java.net/pipermail/hotspot-compiler-dev/2015-March/017278.html
http://mail.openjdk.java.net/pipermail/hotspot-compiler-dev/2015-March/017278.html
https://doi.org/10.1145/778559.778561
https://doi.org/10.1145/3241653.3241660
https://doi.org/10.1145/1926385.1926390
https://doi.org/10.4230/LIPIcs.ECOOP.2016.22
https://doi.org/10.1145/1133981.1134027
https://doi.org/10.1016/0304-3975(90)90147-A
https://doi.org/10.1145/114005.102806

	Abstract
	1 Introduction
	2 Background: Pull- and Push-Style Stream APIs
	3 Approach Overview
	4 Phase 1: Pre-Analysis
	5 Phase 2: Interprocedural analysis
	6 Phase 3: Inlining and stack allocation
	6.1 Inlining
	6.2 Stack Allocation
	6.3 Handling Private Fields

	7 Phase 4: Cleanup
	8 Evaluation
	8.1 RQ1: Performance Evaluation
	8.2 RQ2: Evaluation on General Programs

	9 Related Work
	10 Conclusion
	Acknowledgments
	References

