
Type Safety Analysis for Dart

Thomas S. Heinze Anders Møller Fabio Strocco
Aarhus University, Denmark

{t.heinze,amoeller,fstrocco}@cs.au.dk

Abstract
Optional typing is traditionally viewed as a compromise
between static and dynamic type checking, where code
without type annotations is not checked until runtime. We
demonstrate that optional type annotations in Dart programs
can be integrated into a flow analysis to provide static type
safety guarantees both for annotated and non-annotated
parts of the code. We explore two approaches: one that
uses type annotations for filtering, and one that uses them
as specifications. What makes this particularly challenging
for Dart is that its type system is unsound even for fully
annotated code. Experimental results show that the technique
is remarkably effective, even without context sensitivity:
99.3% of all property lookup operations are reported type
safe in a collection of benchmark programs.

Categories and Subject Descriptors D.2.4 [Software Engi-
neering]: Software/Program Verification

Keywords type systems; optional types; static analysis

1. Introduction
The Dart programming language supports optional type
annotations, allowing programmers to select which parts of
the programs are statically type checked [7]. For pragmatic
reasons, type checking in Dart is unsound by design. This
means that even in fully annotated programs where the static
type checker reports no warnings, runtime type errors are still
possible. The language designers argue that this leads to a
simple and intuitive type system that provides flexibility to the
programmers while still enabling useful IDE tool support [3].

Although some IDE features, such as, type warnings and
code navigation, do not require soundness, this design choice
precludes the use of sound refactorings and optimizations
based on type annotations. Moreover, runtime type errors
may be acceptable in web apps, but not in more safety critical
code, which makes it interesting to explore alternative designs.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, contact
the Owner/Author(s). Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax +1 (212)
869-0481.

DLS ’16, October 30–November 4 2016, Delft, Netherlands
Copyright c© 2016 held by owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4445-6/16/10. . . $15.00
DOI: http://dx.doi.org/10.1145/10.1145/2989225.2989226

Another concern is that dynamic type checks in languages
with optional or gradual typing affect runtime performance,
sometimes with disastrous consequences [26].

Two kinds of runtime type errors may occur in Dart
programs: a message-not-understood error appears if the
program attempts to access a field or method that does not
exist, and a subtype-violation error appears (in checked mode
execution) if a value does not match the declared type at a
write operation. Type annotations are optional; the default
type dynamic effectively disables subtype violation checks
for the variable or field in question.

Previous work has formalized a core of Dart to clarify
its type system and identify the precise causes of potential
type errors [8]. That work also established two variations
of the static type system: one for message safety, which
statically rules out message-not-understood errors while still
allowing subtype-violation errors, and full type safety, which
statically prevents both kinds of type errors, akin to more
traditional static type checking. One important limitation of
that work is that it provides no guarantees for program code
that uses type dynamic. With this foundation in place, we now
investigate opportunities for statically checking type safety
also in program code that is not fully type annotated.

Existing work on combining optional types and type
inference does not solve the problems for languages like
Dart. For example, the type inference algorithm by Siek
and Vachharajani [22] is based on unification, which is
insufficient for object-oriented languages with subtyping,
and the technique for ActionScript by Rastogi et al. [20]
does not account for generic classes, nor for the kinds of
unsoundness that are present in Dart’s type system. We show
that it is possible to integrate optional types into a static type
analysis, for a language with generic classes and where the
type annotations cannot always be trusted. Moreover, we
show that even a context-insensitive analysis can provide
high precision.

The main contributions of this paper are as follows.

• We present a type safety analysis designed for sound type
checking, that integrates optional types for Dart. The anal-
ysis is capable of statically checking absence of runtime
type errors in Dart code that may not be fully annotated.
The key challenge in the analysis design is how to incor-
porate type annotations in a sound manner. We explore
two main approaches: one that uses type annotations for

filtering the flow of types through the program, and one
that uses the annotations as specifications allowing more
modular reasoning. Furthermore, we investigate how anal-
ysis precision and time can be improved by optimistically
assuming that type annotations can be trusted.
• We experimentally evaluate the approach on real Dart

programs. Among the results is that even a context insen-
sitive analysis is capable of statically checking safety of
99.3% of all property lookup operations, including those
in unannotated parts of the code. We also report on the
effectiveness of the different analysis modes and identify
opportunities for improving precision further.

The purpose of our program analysis is not to automat-
ically add type annotations to programs, but to infer the
dataflow through non-annotated code and statically check
for potential type errors. Using the terminology of Palsberg
and Schwartzbach [19], this is a safety analysis, not a type
inference. We believe such an analysis may be useful for pro-
grammers who wish to gain confidence in their code, in the
spirit of gradual typing [21]. Our experimental results may
also be useful to qualify the discussion of language design
choices and to guide the development of new software tools
supporting Dart programmers.

2. The Dart Language
The Dart language, being developed by Google and stan-
dardized by Ecma [7], features interesting design choices in
gradual type systems. Dart is an object-oriented language
with a syntax that resembles Java, and with support for first-
class functions. Type annotations are optional, and warnings
raised by the static type checker do not preclude execution.
Dart programs are executed either in checked mode or in
production mode. In checked mode, a runtime subtype check
is performed every time a value is passed to an entity with a
declared type; a subtype-violation runtime type error (tech-
nically, a TypeError exception) occurs if the check fails.
In production mode, all type annotations are ignored. An-
other kind of runtime type error is message-not-understood (a
NoSuchMethodError exception), which occurs when field
or method lookup operations fail.

Unlike most gradual type systems, the one in Dart is de-
signed to be unsound, meaning that both kinds of runtime type
errors can occur even in fully annotated programs (the pre-
cise causes of unsoundness have been studied previously [8]).
This means that Dart’s standard type checking strictly does
not satisfy the defining properties of gradual typing according
Siek et al. [21, 22, 24], even in checked mode.

The Dart language specification explicitly encourages
development of alternative static checkers. In this work we
present one such checker that can soundly check for runtime
type errors, even for programs that are not fully annotated.

3. Optional Types & Flow Analysis
Our goal is to provide a program analysis that can conserva-
tively check whether a Dart program may encounter runtime
type errors. As an extreme case, consider Dart programs with-
out any type annotations. For such programs, an obvious
choice is to design some form of flow analysis that tracks the
possible runtime types of all variables and expressions, as
done previously for dynamically typed languages, such as,
Scheme [10], Self [1], or JavaScript [16].

The situation becomes more interesting when we also
consider type annotations. In a Dart program, any local
variable, method/function parameter, return value, and class
field may or may not have a type annotation. Moreover,
even in a fully annotated program that passes standard type
checking, type errors may appear at runtime. This raises the
question of how to incorporate the type annotations that are
present, in a way that does not compromise soundness of our
analysis. As an example, consider the following program.

1 f(x) {
2 return x + ", world!";
3 }
4 String g(String y) {
5 return f(y);
6 }
7 main() {
8 print(g("Hello"));
9 }

Example 1: Optional type annotations.

A pure flow-analysis based technique would ignore the
String annotations on line 4 and infer that only string values
are ever stored in y. Furthermore, the possible values of x
can only come from y, so the application of + (operators
are technically methods in Dart) cannot fail (i.e., it does not
give a message-not-understood error). This results in a new
string value that is eventually returned from g, so that the
return operation is also guaranteed to succeed (i.e., without a
subtype-violation error in checked mode execution).

Such an analysis can use type annotations for filtering the
flow of types. Using the declared type of, for example, y, we
can model the checked-mode subtype checks and thereby
rule out types flowing into y that are not subtypes of String
(for example type int if assuming another call site g(42)).

In contrast to such a whole-program flow analysis, an anal-
ysis that uses the type annotations as specifications would
become more modular. For example, since g has type annota-
tions of both its input and its output, it is possible to analyze
main separately from f and g. Such modularity can have
several benefits, even when analyzing complete programs:
(1) Modular analysis tends to be more robust to changes
in the program code and for programs that may not yet be
ready for execution, since the effects of changes on the analy-
sis results only propagate within the component boundaries.
(2) Using type annotations as specifications may lead to more
meaningful warning messages in situations where the pro-
grammer deliberately uses type annotations that are more

general than strictly necessary. (3) In principle, the modular
approach can lead to better scalability of the analysis. As flow
analysis involves computing transitive closures of dataflow
in each component, modularly analyzing a large number of
small components may bring analysis complexity from cubic
to linear in practice. This modular analysis approach aligns
well with a recommended programming style to use type
annotations at interfaces of components.

Since Dart has both class inheritance and first-class func-
tions, some form of control-flow analysis is necessary. To this
end, we build on existing program analysis techniques from
object-oriented and functional programming. Class hierarchy
analysis [6] is often effective for object-oriented languages,
but insufficient if type annotations are absent or if first-class
functions are used extensively, in which case flow-based anal-
ysis [16] is more suitable.

4. Trusting Type Annotations
If type annotations could always be trusted, integrating the
type annotations would be a straightforward modification
of the flow analysis: when modeling reads from a type
annotated variable, simply ignore the incoming dataflow that
is assigned to that value and use the type annotation as a
description of the possible types that may appear (i.e., as
an implicit assumption); similarly, when modeling writes to
a type annotated variable, emit a warning if the incoming
flow does not match the type annotation (i.e., as an implicit
assertion). Unfortunately, type annotations in Dart cannot
always be trusted, which makes such reasoning unsound, as
the following example shows.

10 class Cell<T> { T f; }
11 void main() {
12 Cell x = new Cell();
13 Cell<String> y = x;
14 x.f = 42;
15 var z = y.f.substring(2);
16 print(z);
17 }

Example 2: Dynamic type arguments.

This program defines a generic class containing a field whose
type is a type parameter of the class. The main function
creates an object that has runtime type Cell<dynamic> (the
default type parameter is dynamic, so Cell has the same
meaning as Cell<dynamic>, and Dart does not use type
erasure). On line 14, an integer is stored in the field of the
object, which is fine since the field type is dynamic. However,
y also holds a reference to the object, and y has declared
type Cell<String>, so looking at the declaration of y on
line 13 and the use of y on line 15, one would expect that y.f
yields a string. In fact, it yields an integer, so the invocation
of substring fails with a message-not-understood runtime
error. We note that the standard type system in Dart does
not catch this error, nor does the modified type system by
Ernst et al. [8] because of the use of dynamic. The essence

of the problem in this program is that the type argument in
the annotation Cell<String> cannot be trusted. There are
different ways a program analysis or type system could reject
the program statically. An obvious candidate is to disallow
line 13 where an object of type Cell<dynamic> is assigned
in a variable of type Cell<String>. However, that operation
by itself may be perfectly harmless; perhaps the programmer
knows what she is doing and only ever stores strings in the
object, in which case this choice would cause an unnecessary
false positive. An even more draconian choice would be to
reject all uses of dynamic in generic class parameters, which
in this example would result in a warning on line 12. Another
candidate is line 14; however to report a problem at that point
would require knowing that x and y are aliases, and maybe
that strategy would also result in too many false positives.
Instead, we choose for our analysis design to report the errors
where they may occur at runtime, in this case line 15.

The Cell example involves dynamic in generic types; a
similar issue arises for function types since the return type of
function closures may be dynamic. In the following example,
T is the function type () => String, which suggests that f()
returns a value of type String.

18 typedef String T();
19 void main() {
20 T f = (() { return new Object(); });
21 String y = f();
22 }

Example 3: Dynamic return type.

The assignment in line 20 is acceptable by the standard
type checker and in checked mode execution (the runtime
return type of the function is dynamic), however, a subtype-
violation runtime error occurs in line 21 because Object is not
a subtype of String. In this case, we can trust, based on the
type annotation of f, that f is a function but not that it returns
a value that is a subtype of String. Further, a consequence
of a design flaw in the type rule for function subtyping is that
function return types cannot be trusted, even without type
dynamic [8]. More generally, if a variable x in a Dart program
has (non-dynamic) declared type T then we cannot always
be certain that whenever the value of x is read at runtime, its
type is a subtype of T , even in checked mode execution.

In the following program, field f in class B2 has a different
type than in the superclass B1, which is allowed in Dart:

23 class A1 {}
24 class A2 extends A1 { String s = "foo"; }
25 class B1 { A2 f = new A2(); }
26 class B2 extends B1 { A1 f = new A1(); }
27 void main() {
28 B1 x = new B2();
29 print(x.f.s);
30 }

Example 4: Contravariant field overriding.

The declared type B1 of x suggests that x.f.s exists, but
the program fails in line 29 at runtime because x.f has type

A1. To catch this error statically, we could require invariant
field overriding (as suggested by Ernst et al. [8]) and issue a
warning at line 26. However, that might be too restrictive, and
not in the Dart spirit. A better option is to issue a warning at
line 29 where the runtime error occurs. This can be achieved
by reasoning that x has declared type B1, so it may hold a
value of type B2 and thus x.f may have type A1, which is
not a subtype of A2. Alternatively, we can ignore the type
annotation of x and reason entirely using the dataflow, which
shows that the runtime type of x can only be B2.

As these examples demonstrate, the various ways by
which type annotations can or cannot be trusted cause subtle
complications for our analysis design.

5. The SafeDart Analysis
We propose three main modes of analysis that incorporate
type annotations in different ways:

flow mode As a baseline, flow mode completely ignores type
annotations, similar to Dart’s production mode, and relies
entirely on dataflow analysis (with some exceptions for
native libraries, see Section 8). This analysis mode can in
principle be used to statically check whether message-
not-understood errors may occur in production mode
execution. We introduce flow mode mainly as a starting
point for explaining the following two modes.

filter mode Filter mode takes type annotations into account
to model the subtype checks conducted in Dart’s checked
mode execution. This is accomplished by filtering the
dataflow at assignments with type declarations, as hinted
in Section 3. As a consequence, filter mode can in princi-
ple be used to check for message-not-understood as well
as subtype-violation errors in checked mode.

modular mode Instead of filtering dataflow, modular mode
uses type annotations as specifications, which generally
provides better modularity properties, as suggested in
Section 3.

As we shall see, it is beneficial to combine filter mode and
modular mode to obtain better precision and more informative
warning messages than running either individually.

The analysis can additionally be configured for optimistic
treatment of type annotations, which means that the analysis
blindly trusts that type annotations are correct when, for
example, modeling which types may appear at a variable read
operation, thereby ignoring some of the various sources of
unsoundness discussed in the previous section.

Note that in the extreme case where the program being an-
alyzed contains no type annotations, filter mode and modular
mode both work in the same way as flow mode. Conversely,
for a fully annotated program, modular mode analysis with
the optimistic configuration resembles traditional static type
checking (yet different from Dart’s standard type checking,
which uses implicit downcasts pervasively).

The analysis, SAFEDART, is conceptually divided into two
phases. First, the inference phase over-approximates the pos-

class C ::= class N<U extends T> extends N {
T f = e

T m(T x)⇒F e
}

typedef D ::= typedef T F (T)
expr . e ::= x | e.f | e.m | new N<T>() | x = e |

e.f = e | e(e) | T (T x)⇒F e
type T ::= N<T> | F | U | dynamic

Figure 1: Syntax of the simplified Dart language.

sible types of all expressions; second, the check phase emits
warnings about potential message-not-understood errors and
subtype-violation errors (the latter only in filter mode and
modular mode) based on the inferred types. We next explain
in detail how the different modes of type inference and the
type checking work.

5.1 A Core Language for Dart
We begin by defining a core of Dart that we use for pre-
sentation of our analysis. Figure 1 shows the syntax of the
language. It uses the set of class names N , type parameter
names U , field names f , method names m, function labels F ,
and variable names x (we let variables coincide with function
parameters). We occasionally misuse notation slightly and
use e.g. N as a meta-variable ranging over the set of class
names rather than as the set itself. A possibly empty list of
X elements is denoted by X .

A program is a collection of classes C and function type-
defs D. Each class contains fields and methods (collectively
called properties), either explicitly defined or inherited from
its superclass. Classes are parameterized by types, written in
<. . . >, where each type parameter has a bound. A field f is de-
fined with an initialization expression e and a type T , which
can be an object type N<T>, a type parameter U defined
for the surrounding class, a function type F (defined by a
typedef), or the type dynamic. Note that F plays two roles: as
names of typedefs and as labels of methods and anonymous
functions. A method Tr m(Tx x) ⇒F e is defined with a
name m, a parameter x with type Tx, a return expression e,
and a return type Tr. The notation N.p refers to the property
p in the class N .

Expressions e specify computations including variable
and property lookup, instance creation, assignments, calls,
and function expressions. A function expression of the form
Tr (Tx x) ⇒F e defines an anonymous function. Every
method and function has a label F that is used in the flow
analysis and has no effect at runtime.

Every program is assumed to be well-formed meaning
that there are no unresolved references to classes, function
types, type parameters, or variables and uses of generic
classes have the right number of type parameters. There is
one distinguished, predefined type, Object, which is the
supertype of all types. To simplify the presentation, we also
assume that every function and method has a single parameter,

inferred type τ ::= N<P>κ | F<P>κ | Uκ
kind κ ::= C | A
type arguments P ::= T | ?
type sets S ::= {τ}

Figure 2: Abstract domain.

every variable name, class name, and function name is unique,
every non-variable expression is unique (alternatively, one
may treat every expression as having an implicit unique
label), and inherited type parameters of generic object types
are never redefined. Also, we omit the null and this literals
and the void return type (our implementation described in
Section 8 naturally covers these language features).

We omit a formalization of the language semantics due
to the limited space; see Ernst et al. [8] for a formalization
of the related language Fletch. Note that, as in Fletch, a
dynamic programming style can be emulated by using the
type dynamic everywhere.

5.2 Abstract Domain for Types
We express our analysis using set constraints on a collection
of type variables [15, 19]. For a given program component
to be analyzed, we allocate a type variable for each program
variable x, denoted JxK, and similarly for each non-variable
expression e and class field or method N.f and N.m, respec-
tively. For each function F , we use F.x and F.r to denote its
parameter and its return expression, respectively.

Type variables range over sets S of inferred types shown
in Figure 2. An inferred type τ is an object type N<P>κ, a
function type F<P>κ, or a type parameter Uκ. An object
type N<P>κ describes objects of class N whose type
parameters P are assumed to be either a list of type arguments
T or ?, the latter denoting unknown type arguments (recall
that type parameters cannot always be trusted, so in some
situations explained later we choose not to track them). A
function type F<P>κ describes functions labeled with F
defined inside a generic class with type parameters P .1

We distinguish between two kinds of types denoted by
the κ superscript: concrete types C and abstract types A.
Informally, an abstract type τ = TA implicitly comprises all
subtypes of T , whereas a concrete type τ = TC describes
only T itself.

This abstract domain is richer than the language of type
annotations, as we allow sets of types (or, union types).
Another difference is that we distinguish between the two
kinds of inferred types, which we use in our treatment of type
annotations.

6. Type Inference Constraints
The inference phase of the analysis is expressed using con-
straints on the type variables as shown in Figure 3. As can be
seen, we use only simple subset constraints and conditional

1 A function type F<P> in our notation corresponds to (type(F.x, P)) →
type(F.r, P) in Ernst et al. [8].

constraints (X ⊆ Y ∩ Z represents two constraints, X ⊆ Y
and X ⊆ Z). The least solution to the constraints can be
found using standard fixpoint algorithms [15, 19, 25].

To explain the different analysis modesm ∈ {Flow,Filter,
Modular} in a uniform manner, we make use of some aux-
iliary definitions shown in Figure 4. Intuitively, flowm and
declm determine what types can be inferred on the basis of
dataflow and type annotations, respectively. The operator 4
is a variant of Dart’s subtyping relation that takes kinds (C
and A) and type parameters into account. The bindm function
used in some of the constraint rules models binding of type
parameters in inferred types, as explained informally in the
following subsections. We next explain each mode in turn.
Due to the limited space we only explain the most interesting
constraint rules.

6.1 Constraints for Flow Mode
Flow mode ignores type annotations and only propagates
concrete types, similar to an Andersen-style points-to anal-
ysis [25] although inferring types instead of abstract heap
locations. For m = Flow, bindm and flowm are simply the
identity function in their first argument and ignore the second
argument, declm always returns the empty set of types, and
4 is the identity relation.

In Figure 3, the constraint rule [OBJ] infers the type of
a new expression as a concrete object type. In this analysis
mode, generic type parameters are irrelevant so we simply
replace them with ?. The rules [FUN] and [METHOD] similarly
infer concrete function types for function expressions and
method declarations, respectively. [WRITEVAR] models the
flow of types at variable assignments. Method and field reads
(including method dispatch) are modeled by [READMETHOD]
and [READFIELD], respectively. Field assignments are simi-
larly handled by [FIELD] and [WRITEFIELD], and [INH1] and
[INH2] model the flow of types for inherited but not overrid-
den fields and methods. Finally, [APP] models the flow of
types for the parameter and return value at call sites. Note
that in this mode we conduct on-the-fly control flow analysis
using the labels in the concrete function types, as in many
points-to analyses.

6.2 Constraints for Filter Mode
Filter mode is different from flow mode in that inferred types
are filtered based on type annotations, similar to the use of
type filters in points-to analysis [25]. Revisiting Figure 4
with m = Filter, the function flowm(S, T) now performs
this filtering: it only admits types from the type set S that
are subtypes of T , thereby modeling the effect of runtime
subtype checks in Dart checked mode execution. (The relation
<: denotes subtyping, with special treatment of dynamic and
with covariant generics, as formalized by Ernst et al. [8].) We
make use of a static type resolution mechanism, type , which
finds the type T that can be used in this subtype check, as
explained in the following.

As an example, for a variable assignment x = e, we
filter the dataflow using the declared type of x, that is, its

class N . . . {

T m(Tx x)⇒F e {F<?>C} ⊆ JN.mK, declm(Tx) ⊆ JxK [METHOD]

T f = e flowm(JeK, type(N.f, ?)) ⊆ JN.fK [FIELD]

}

classM . . . extends N . . . flowm(JN.fK, type(N.f, ?)) ⊆ JM.fK for each non-overridden field f [INH1]

JN.mK ⊆ JM.mK for each non-overridden method m [INH2]

new N<T>() bindm({N<?>C}, T) ⊆ Jnew N<T>()K [OBJ]

T (Tx x)⇒F e {F<?>C} ⊆ JT (Tx x)⇒F eK, declm(Tx) ⊆ JxK [FUN]

e.m

τ ∈ JeK N<P>κ 4 τ

bindm(JN.mK, P) ⊆ Je.mK
[READMETHOD]

e.f

τ ∈ JeK N<P>κ 4 τ T = type(N.f, P)

bindm
(
flowm(JN.fK, T), P

)
∪ declm(T) ⊆ Je.fK

[READFIELD]

x = e flowm(JeK, type(x, ?)) ⊆ JxK ∩ Jx = eK [WRITEVAR]

e.f = e′
τ ∈ JeK N<P>κ 4 τ T = type(N.f, P)

bindm(flowm(Je′K, T), ?) ∪ declm(T) ⊆ JN.fK, flowm(Je′K, T) ∪ declm(T) ⊆ Je.f = e′K
[WRITEFIELD]

e(e′)

F<P>κ ∈ JeK Tx = type(F.x, P) Tr = type(F.r, P)

bindm(flowm(Je′K, Tx), ?) ⊆ JF.xK, bindm
(
flowm(JF.rK, Tr), P

)
∪ declm(Tr) ⊆ Je(e′)K

[APP]

Figure 3: Core constraints for the simplified Dart language, using mode m ∈ {Flow,Filter,Modular}.

type annotation or dynamic by default. We must be careful
with generic types as demonstrated in Section 4. In rule
[WRITEVAR], type(x, ?) finds the type to be used for filtering,
where the ? argument has the following meaning for type
parameters that may occur in the type annotation. To keep
the analysis simple, it does not track the actual types of
those type parameters. (We discuss alternative designs in
Section 6.4.) We therefore conservatively interpret the type
parameters as dynamic when filtering. Note that it is always
sound to perform less filtering in this type inference phase of
the analysis, compared to what types are actually ruled out
at runtime subtype checks. (When emitting type warnings
in the next phase, however, we are in the opposite situation,
as discussed in Section 7.) An alternative to replacing type
parameters with dynamic is to use the bounds of the type
parameters, but that would be unsound since they can be
invalidated by the use of dynamic as type argument, so
we only do that if ‘optimistic’ is enabled. Type parameters
occurring in JeK, for example if e is new Cell<T> inside the
Cell class, are treated similarly.

Type parameters in object types are now relevant, un-
like in flow mode. The bindm function is no longer the
identity function in its first argument but now substitutes
the type parameters according to its second argument. This
is used, for example, in rule [OBJ]. At method read op-
erations, e.m, the use of bindm in [READMETHOD] takes
care of binding the type parameters in the method’s type

according to the type of the receiver e. For example, as-
sume we add a method Cell<T> h(Cell<T> p) ⇒F3

p in the Cell class from Example 2 and that we have
JxK = {Cell<int>C} for some variable x. The bindm
function then ensures that the expression x.h(x) has type
Cell<int>C: applying rules [METHOD] and [READMETHOD]
gives bindm(JCell.hK, int) = bindm({F3<?>

C}, int) =
{F3<int>

C}, therefore Jx.hK = {F3<int>
C} and finally

Jx.h(x)K = {Cell<int>C} using [APP].
For a field assignment, e.f = e′, at rule [WRITEFIELD], we

correspondingly filter the flow of types based on the declared
type of e.f . For each object type N<P>κ in JeK (4 is still
just the identity function), type(N.f, P) gives us the type of
the f field in N using generic type arguments P . The use
of bindm here effectively erases any type parameters that
may appear in Je′K by substituting them by dynamic (or their
bounds, if ‘optimistic’).

Rule [READFIELD] is perhaps more surprising, because
it involves filtering even though it is not a write operation.
For an expression e.f , we again consider each object type
N<P>κ in JeK. Now, notice that we have chosen to have
only one constraint variable JN.fK irrespective of whether N
is generic, thereby conflating all instantiations of the generic
type parameters in a context insensitive manner. However,
we recover some precision by applying flowm to filter the
types in JN.fK according to P . As an example, consider an
expression x.f in a situation where JxK = {Cell<String>C}

flowm(S, T) =



S if m = Flow ∨ T = dynamic ∨ T = Object

{Xκ ∈ S | stype(X, ?) <: stype(T, ?)∧(
m = Filter ∨ ftype(X)

)
}

if m = Filter ∨(
m = Modular ∧ (ftype(T) ∨ tpar(T))

)
∅ otherwise

declm(T) =



{T A} if m = Modular ∧
(
tpar(T)∨

(T = N<T> ∧ T 6= Object ∧ opt)
)

{N<?>A} if m = Modular∧
T = N<T> ∧ T 6= Object ∧ ¬opt

∅ otherwise

τ1 4 τ2 iff τ1 = τ2 ∨(
τ1 = T C

1 ∧ τ2 = T A
2 ∧ stype(T1, ?) <: stype(T2, ?)

)
Figure 4: Auxiliary definitions. (The predicate opt denotes
the ‘optimistic’ configuration, tpar(T) means that T is a type
parameter, ftype(T) means that T is a function type, and
stype(X, ?) denotes the type X where all type parameters
are replaced by dynamic.)

and JCell.fK = {StringC, intC} (i.e. in some instantiations
of Cell, the f field holds a string and in others an integer).
By applying the filtering where the type parameter T (i.e. the
declared type of Cell.f) has been substituted with String
we get Jx.fK = {StringC}.

6.3 Constraints for Modular Mode
In modular mode, we attempt to use the type annotations
not to filter dataflow but as an alternative to the dataflow.
Consider an assignment x = e where the type annotation
of x is T . If T is a non-dynamic type, we let flowm yield
∅, thereby interrupting the flow of types, and in return let
declm return T A representing all possible objects of type T
including subtypes. Conversely, for T = dynamic, flowm

and declm behave as in flow mode. There are two important
exceptions to these rules, however (see Figure 4):

First, we must take into account that not all type anno-
tations can be trusted (cf. Section 4). If T is an object type
N<T> we therefore replace T by ? in this process unless
‘optimistic’ is enabled. Notice that with the use of type an-
notations in modular mode analysis, it becomes more impor-
tant whether or not we choose to trust type annotations, and
thereby ‘optimistic’ plays a bigger role than in filter mode.

Second, we choose to treat function types in the same
way as in filter mode, that is, by propagating and filtering
concrete function types (i.e. inferred types of form FC). In
principle, we could instead use abstract function types (of
form FA), which might be more in the spirit of modular
inference, however, that would cause precision to deteriorate.
If, for example, with that approach a variable f has declared
type F defined by typedef Object F(Object), then JxK =
{FA}, which comprises all functions with one argument,

so resolving a call f(. . .) would trigger dataflow to all
those functions, irrespective of which ones may be stored
in f. Moreover, recall from Example 3 that function return
types generally cannot be trusted. We additionally treat
T = Object in the same way as T = dynamic, because
the type ObjectA subsumes all types, including functions, so
using this as an inferred type would ruin the precision of the
control-flow part of the analysis.

Notice that modular mode thereby involves both abstract
(A) and concrete (C) types, in contrast to flow and filter
mode that only use concrete types (as long as we ignore the
modeling of the native library, see Section 8).

Type parameters can appear as inferred types in modu-
lar mode, unlike in the other modes. Thereby the analysis
can reason modularly about, for example, type safety of the
method U id(U x) {var y = x; return y;} (using actual
Dart syntax) where U is a type parameter in the surrounding
class. In modular mode, we get JxK = JyK = {UA}, irrespec-
tive of how id is called. However, now we must be careful if
such inferred types flow outside the current class which de-
fines the scope of the type parameter; in that situation we let
the bindm function conservatively convert them to ObjectA.

The fact that abstract types implicitly comprise subtypes
is captured by the definition of 4 (Figure 4). For exam-
ple, B2C 4 B1A using the classes from Example 4. As
a consequence, rules [READMETHOD], [READFIELD], and
[WRITEFIELD] essentially resolve property lookups as in class
hierarchy analysis [6]. (To increase precision, N<P> in
those rules implicitly ranges over only those classes that are
ever instantiated in the program being analyzed.)

6.4 Discussion
Many interesting variations of the type inference mechanism
exist. We now briefly discuss some of the design choices and
trade-offs that remain to be explored in future work.

To restrict the analysis complexity we have chosen a con-
text insensitive design. A more precise, but also more ex-
pensive analysis could be obtained by qualifying the type
constraint variables by valuations of the generic type parame-
ters. For the example program in Section 4, we would then
have distinct type constraint variables JCell<String>.fK and
JCell<dynamic>.fK for the f field of Cell, whereas we now
only have one, JCell.fK. Although our simple analysis design
is capable of recovering some precision at property access
operations by the use of filtering, as discussed in Section 6.2,
proper context sensitivity would naturally enable additional
precision in other situations.

A possible alternative to the ‘optimistic’ option is to extend
the analysis to track the flow of dynamic in generic type
parameters and function types, in a way that soundness would
be retained while preserving the advantages of the optimistic
assumptions in typical cases.

The design of modular mode inference involves trade-
offs between modularity and precision. At type annotations
that cannot be fully trusted, such as, a variable declared by
Cell<String> x, we currently opt for modularity by splitting

the dataflow and using Cell<?>A as inferred type (assuming
non-‘optimistic’), instead of falling back to filtering on the
assignments to x, which would generally be more precise.
Another interesting design choice is whether to represent ob-
ject instance creations by the types, as in our current analysis,
or by allocation site, as common in dataflow analysis [5].

With modular mode inference, it would be natural to con-
sider analyzing not only complete programs but also libraries
without application code, given that library interfaces are of-
ten well annotated with types. Nevertheless, this is difficult to
achieve without sacrificing soundness or precision. For exam-
ple, if a public library method has a parameter with declared
type C that is a class with a field f, then the application code
(which is unknown to the analysis) could pass in an object
whose type is some sub-class of C where f is overridden to
have type Object. Type annotations at library interface in
Dart therefore provide less information than what one may
think. Studying extensions of our ‘optimistic’ configuration
to address this challenge is an interesting opportunity for
future work.

We next state three key properties about the types pro-
duced by the inference phase. Formalizing and proving these
properties is beyond the scope of this paper.

Designed for soundness All three type inference modes
are designed for soundness in the sense that they result in
over-approximations compared to what types may actually
appear in checked mode execution, assuming that ‘optimistic’
is disabled.

When ‘optimistic’ is enabled, we aim for an interesting
form of conditional soundness: the information produced by
the type inference is sound, provided that whenever a value
is read at runtime from a variable or property a, then the type
of the value is a subtype of the declared type of a. This turns
out to be a reasonable assumption, as shown in Section 8.

Precision of the three modes Filter mode is always at least
as precise as both flow mode and modular mode, with ‘opti-
mistic’ being disabled. The reason is intuitively that it tracks
the intersection of the type information originating from
dataflow and type annotations, respectively. Also, enabling
‘optimistic’ can only improve precision, not degrade it.

Precision compared to the Fletch full type safety system
The “full type safety” system proposed by Ernst et al. [8]
is another approach to sound type checking for Dart. Its
precision is incomparable to our type inference—even when
restricting to Dart programs with no occurrences (explicitly
or implicitly) of dynamic in type annotations, type arguments,
or closure return types. As an example, the full type safety
system rejects Example 4 even if removing line 29, unlike our
analysis (in any mode). Conversely, the restrictions imposed
by the full type safety system in some situations allow it to
be more precise regarding generic type parameters.

7. The Type Checking Phase
After the type inference phase, we have a set JXK of inferred
types for every constraint variable X for the program being
analyzed. Based on this information, the goal of the type
checking phase is now to report warnings if message-not-
understood or subtype-violation errors may occur.

Message-not-understood checking At every property ac-
cess operation e.p, emit a warning if some inferred type in
JeK does not have a p property.

Type parameters in the inferred types are interpreted
according to their bounds if ‘optimistic’ is enabled, and
otherwise as ObjectA. In Dart, function calls and method
calls technically involve looking up the call property, so in
our implementation this check also detects attempts to call a
non-function value or pass the wrong number of parameters.

For this message-not-understood check, filter mode is al-
ways at least as precise as flow mode and modular mode.
Nevertheless, analyzing a program in both filter mode and
modular mode may give more information to the program-
mer compared to filter mode alone. Consider, for example,
a function f(A1 x) { var y = x; return y.s; } in a pro-
gram where only A2 objects are passed as argument to the
function, A2 is a subclass of A1, and the field s is only defined
in A2. Using the information from both analysis modes, we
can tell the programmer that the expression y.s is safe in the
current version of the program but the code is fragile because
of the misleading type annotation A1.

Subtype-violation checking At every assignment of some
expression e to a field, variable, or function/method parameter
x, emit a warning if some inferred type τ in JeK is not
a subtype of the declared type of x. Occurrences of ? or
dynamic in an inferred abstract type τ , as e.g. in Cell<?>A,
can denote any object and are accordingly treated as Object
in this subtype check. At method calls and field writes, type
parameters in declared types are substituted according to the
type of the base object. (In the full Dart language, methods
may also be invoked using tear-off functions; in that case
type parameters in declared types are treated as ObjectA.)
Type parameters in inferred types are interpreted in the same
way as for the message-not-understood checks, except at
variable writes where we can take advantage of reflexivity of
subtyping, as explained in the following.

Consider an assignment x=y where both variables x and y
have declared type T, which is a type parameter with bound
Object in the current class, and where the possible values
of y may be of type int or String. Filter mode inference
essentially ignores the type annotation for y, as explained
in Section 6.2, yielding JyK = {intC, StringC}. Now the
subtype-violation check results in a warning, because the
declared type of x is T. Modular mode inference, on the other
hand, will conclude JyK = {TA}. Since subtyping is reflexive,
the information from modular mode thereby suffices for
proving type safety of the assignment.

As this example shows, filter mode is, perhaps surpris-
ingly, not always at least as precise as modular mode regard-
ing subtype-violation checks. For the reasons discussed in
Section 6.4, filter mode is more precise than modular mode
in other situations. Thereby we can improve precision of
subtype-violation checking by running both filter mode and
modular mode inference and then emit a warning at a given
assignment only if both of them fail the subtype check.

We emphasize that message-not-understood errors are
more critical than subtype-violation errors, as only the for-
mer are relevant in production mode execution (recall from
Section 2 that runtime subtype checking is only performed in
Dart’s checked mode execution, and type annotations have
no effect in production mode execution). Conversely, if us-
ing the checked mode semantics, our analysis is sound with
respect to message-not-understood errors independent of the
precision regarding subtype-violation errors: if no message-
not-understood warning is produced by our type checker
at a given property access operation, then message-not-
understood errors cannot occur at that operation in checked
mode execution.

Examples We can demonstrate some interesting aspects
of the analysis using the example programs from Sec-
tion 4. Analyzing Example 2 with filter mode gives JyK =
{Cell<dynamic>C} and Jy.fK = {intC}, and int does not
have the property substring, so a message-not-understood
warning is generated at line 15. In modular mode we have
JxK = JyK = {Cell<?>A}, Jy.fK = JCell.fK = {intC},
resulting in the same warning but also a (spurious) subtype-
violation warning at line 13. Notice that modular mode
inference in this case automatically falls back to resolve
Jy.fK based on dataflow due to the use of dynamic.

Considering Example 3, let F5 be the label of the anony-
mous function in line 20. In both filter mode and modu-
lar mode, using rules [FUN] and [WRITEVAR] gives JfK =
{F5<?>} and [NEW] gives JF5.rK = {ObjectC} (since
F5.r is the expression new Object()). Rule [APP] now gives
Jf()K = {ObjectC} in both modes, and therefore our type
checker raises a warning on the assignment at line 21, because
Object is not a subtype of String.

Analyzing Example 4, which does not involve type
dynamic, with filter mode gives JxK = {B2C} and Jx.fK =
{A1C}, and A1 does not have the property s, again resulting in
a message-not-understood warning. With modular mode we
instead have JxK = {B1A} and Jx.fK = {A2A, A1A}, reaching
the same conclusion. Notice in this last case that looking
up f in B1A involves not only the B1 class itself but also its
subclass B2 (cf. rule [READFIELD] and the definition of 4),
which would not be necessary in languages with invariant
field overriding.

8. Evaluation
Our overall hypothesis is that it is possible to integrate type
annotations into a flow analysis that can effectively check
absence of runtime type errors in Dart programs—in a way

Benchmark LOC Baseline
excl./incl. deps. MNU / SV

dart2js 102 718 / 104 414 60 431 / 82 571
analyzer 83 410 / 86 297 37 213 / 53 876

devcompiler 66 247 / 159 883 7 458 / 11 034
dartstyle 3 591 / 73 765 3 291 / 3 415

linter 2 236 / 77 535 938 / 1 343
petitparser 2 065 / 3 280 1 155 / 1 559

bzip2 1 105 / 2 280 665 / 1 207
coverage 847 / 3 586 446 / 667

markdown 697 / 1 846 441 / 701
crypt 161 / 1 199 118 / 197

total 263 077 / 514 805 112 156 / 155 672

Table 1: Benchmarks used for the evaluation.

that retains soundness even though the type annotations
cannot always be trusted. More specifically, we aim to answer
the following research questions through an experimental
evaluation:

1. (precision of filter mode and modular mode) How pre-
cise is the analysis using the different modes (when not
using ‘optimistic’)? We focus on filter mode and modular
mode; flow mode is expected to be much less effective. For
the reason explained in Section 7, the precision regarding
message-not-understood errors is our primary interest.

2. (optimistic assumptions) What is the effect of enabling
‘optimistic’ treatment of type annotations? This configu-
ration is only conditionally sound (as discussed in Sec-
tion 6.4), so it is also interesting to investigate whether the
condition is satisfied in practice.

3. (causes of type warnings) What are the typical reasons
for warnings? Answers to this question can be very useful
to guide future work on improving precision. Experiments
may tell whether to focus on, for example, context sensi-
tivity, more precise heap modeling, or improved models
of the native library. Some warnings may also indicate
fragile code, as discussed in Section 7.

Although precision is our main objective, analysis time is of
course also relevant.

Implementation The evaluation is conducted on a range of
real-world open source Dart programs, where we exclude
programs that use mirrors [2] (a mechanism for dynamic
evaluations similar to reflection in Java) or heavily rely on
native functions. The goal of our evaluation is not to find
errors in these programs; they are presumably thoroughly
tested already, so runtime type errors are unlikely to exist.
Analysis precision can thus be measured by the ability to
show absence of errors.

Table 1 shows the number of lines of code (excluding/in-
cluding dependencies) for each program, together with (MNU)
the total number of property access operations and (SV) the
total number of assignments to variables or parameters with
non-dynamic type annotation. The latter numbers can be
viewed as a simple baseline for comparison: an entirely naive

Benchmark Flow Filter Modular Modular w. optimistic
MNU tinf / tchk MNU tinf / tchk MNU tinf / tchk MNU tinf / tchk

dart2js - - 481 (0.8%) 198s / 13s 976 (1.62%) 433s / 15s 681 (1.3%) 279s / 13s
analyzer - - 67 (0.2%) 54s / 4s 306 (0.9%) 124s / 5s 134 (0.4%) 67s / 4s

devcompiler - - 73 (1.0%) 122s / 4s 312 (4.2%) 840s / 8s 266 (3.6%) 366s / 6s
dartstyle - - 10 (0.3%) 56s / 1s 183 (5.6%) 134s / 3s 54 (1.6%) 74s / 1s

linter - - 10 (1%) 98s / 1s 26 (2.8%) 264s / 1s 25 (2.7%) 209s / 3s
petitparser 249 (21.5%) 53s / 0s 168 (14.6%) 12s / 0s 178 (15.4%) 51s / 0s 171 (14.8%) 43s / 1s

bzip2 33 (5%) 38s / 0s 2 (0.3%) 10s / 0s 31 (4.6%) 37s / 0s 2 (0.3%) 29s / 0s
coverage 36 (8%) 49s / 0s 7 (1.6%) 12s / 0s 24 (5.4%) 45s / 0s 16 (3.6%) 36s / 0s

markdown 44 (10%) 36s / 0s 4 (0.9%) 10s / 0s 28 (6.4%) 35s / 0s 11 (2.5%) 28s / 0s
crypt 0 (0%) 5s / 0s 0 (0%) 5s / 0s 1 (0%) 9s / 0s 0 (0%) 8s / 0s

total - - 819 (0.7%) 577s / 23s 2 036 (1.8%) 1972s / 32s 1 349 (1.2%) 1139s / 28s

Table 2: Experimental results on checking for potential message-not-understood errors using different analysis modes.

type checker would report a message-not-understood warn-
ing at each of the property access operations and a subtype-
violation warning at each of the assignments.

Our implementation, benchmarks, and all experimental
data are available online.2 To solve type inference constraints
we use a basic fixpoint algorithm with difference propaga-
tion [25]. The set of inferred types for a type variable may
become large if precision is lost during analysis. To improve
scalability we therefore widen sets containing more than k in-
ferred types to {ObjectA}, where k is some threshold (using
k = 100 in the experiments).

The step from the simplified language that we use for
presenting the analysis in Section 5 to the full Dart language
involves several interesting issues, some of which are crucial
for making the algorithms practical.

Programs are represented using SSA-form, which regains
some degree of flow sensitivity [14]. In the simplified lan-
guage we abstracted away from control structures, but pro-
grams written in dynamically typed languages often use type
tests in branch conditions. For this reason, we recognize
common patterns, such as, the is operator, and use them for
filtering types analogous to the type promotion mechanism
in Dart’s standard type checker [7].

It is particularly important to model the native library,
which is used in all Dart programs. To this end, we exploit
the type annotations in the library API and treat them as
in optimistic modular mode, even in flow mode and filter
mode. Native container classes (List, Set, and Map) are
treated specially using allocation-site abstraction and extra
type constraint variables representing the container contents.

To increase confidence in our implementation, we have
conducted a large number of soundness tests where we
execute the test suites that accompany some benchmark
programs and check that the types observed at runtime are
included in those inferred by our analysis.

8.1 Precision of Filter Mode and Modular Mode
We first measure the ability of the analysis to check absence
of message-not-understood errors. The MNU columns below

2 http://www.brics.dk/safedart/

Filter and Modular in Table 2 show the number of warnings
in filter mode and modular mode, respectively (without
‘optimistic’), and in percentage relative to the baseline from
Table 1. In total, filter mode gives only 819 warnings for the
112 156 property access operations that exist in the programs;
that is, it is able to show type safety of 99.3% of these
operations. Modular mode reaches 98.2% (2 036 warnings)
in comparison, however, it should be taken into account that
modular mode is designed not only to report type errors
that can possibly occur in some execution, but also to report
instances of fragile code where type annotations may be
misleading, as discussed in Section 7.

In comparison, the ordinary Dart type checker gives no
guarantees, so showing type safety of 99.3% of the property
access operations is a notable achievement.

The corresponding numbers for subtype-violation warn-
ings are 5.1% for filter mode and 10.1% for modular mode.
(We omit the details due to the limited space.) As suggested
in Section 7 it may be beneficial for subtype-violation check-
ing to combine the two modes; this reduces the number of
warnings to 4.2%, thus demonstrating that this trick does lead
to improved precision in practice. Our analysis can conse-
quently be used for eliminating 95.8% of the runtime checks
in checked mode execution. We have not measured the ef-
fect on execution time, but it is possible that checked mode
thereby becomes essentially as fast as production mode.

Flow mode ignores type annotations and has mainly been
used as a starting point for explaining the other modes.
Not surprisingly, context insensitivity and other sources of
abstraction cause an explosion in the sizes of the inferred type
sets with this inference mode, resulting in significantly worse
precision and efficiency. In Table 2, ‘-’ indicates a 10 minutes
cut-off. One way to interpret this result is that incorporating
type annotations adds significant value compared to merely
tracking dataflow.

Table 2 also shows the time for inference (tinf) and
message-not-understood checking (tchk), running on a 3.4 GHz
i7-3770 Linux machine with 16 GB RAM. Although speed
has not been an objective for this prototype implementation,
we see that both filter and modular mode analysis are already

fast enough for practical use during Dart software develop-
ment. Nevertheless, we believe more efficient representations
of inferred types in the implementation can improve the
analysis time, which we will investigate in future work.

8.2 Optimistic Assumptions
The ‘optimistic’ configuration allows the inference phase
to trust type annotations, which is particularly relevant in
modular mode as discussed in Section 6.3. As evident from
Table 2, this configuration has a significant effect on precision
(and it also improves analysis time). The number of message-
not-understood warnings is reduced from 1.8% to 1.2%, and
for subtype-violation warnings from 10.1% to 5.4%.

To investigate whether the ‘optimistic’ assumptions are
reasonable in practice, we have conducted an extra experi-
ment using the test suites that we also exploit for soundness
testing as mentioned above. In this experiment, the bench-
marks are executed extensively in a special “super-checked
mode” where we inject a type cast at every variable/property
read, checking that the types observed at runtime match the
declared types. For instance, running Example 2 in this way
triggers a cast error when reading the f field in line 15. Not
a single violation is detected when running the test suites,
which gives confidence that the ‘optimistic’ assumptions are
indeed reasonable and do not restrict Dart programmers in
using the dynamic features of the language.

8.3 Typical Causes of Type Warnings
We have manually investigated a random selection of the
reported type warnings. Classifying the precise causes of
such warnings is naturally difficult to do objectively, but we
have observed some interesting patterns that may provide
opportunities for future improvements of the analysis.

• Generic classes are a typical source of imprecision. While
the type inference is able to track type parameters to some
extent (cf. Section 5), we find that complex generic patterns
used throughout the benchmarks by way of, for example,
Dart’s async and collection library, are affected by the lack
of context sensitivity.
• Another important fraction of warnings relates to insuf-

ficient modelling of native libraries. Falling back to the
annotated types turns out not always to be the best solution,
since native libraries often provide very limited informa-
tion about the outflowing types, or are very polymorphic
by their nature (e.g., Dart’s html library).
• The relatively high number of warnings for petitparser

appears to be caused by a heavy use of higher-order
functions.
• Type tests appear in various forms, beyond the patterns our

implementation currently recognizes. Beside simple tests
on local variables, we also found tests involving fields and
global variables, which are not covered by SSA-form and
require further reasoning.

• We also observed a number of subtle invariants on types,
which cannot easily be captured by a static analysis. For ex-
ample, the dart2js benchmark contains many occurrences
of boolean fields used as type indicators. As another exam-
ple, Dart’s standard command line parser returns a dictio-
nary whose string keys indicate the value type.
• As expected, modular mode analysis gives a number of

warnings that point out fragile code involving misleading
type annotations.

9. Related Work
The idea of applying static analysis to check for potential type
errors in dynamically typed languages has a long history [1,
4, 9, 10, 16, 20, 22]. Common to most of these techniques
is that they do not incorporate type annotations. A notable
exception is the algorithm by Siek and Vachharajani [22],
however, being based on unification, it does not work in
presence of subtyping. The more recent algorithm by Rastogi
et al. [20] supports object-oriented programming, but neither
generics nor the kinds of unsoundness that exist in Dart’s
type system. The Flow static type checker uses a mix of
optional type annotations and type inference to find type
errors in JavaScript programs, but without any soundness
guarantees [9]. The Mypy project [27] applies optional typing
to Python programs for annotating and inferring types, which
can be used for type checking. While similar issues arise
due to Python’s dynamic nature, Mypy’s type checking
interestingly aligns itself far more with traditional static
typing compared to this paper, ruling out many dynamic
programming idioms.

Related ideas have been presented for StaDyn, a variant
of C# with optional typing but without higher-order func-
tions [18], and for an extension of Dylan with function types
and parametric polymorphism [17].

Gradual typing has become a popular approach to integrate
type annotations into dynamically typed programming. The
traditional view on gradual typing is that it allows program
code with type annotations to be type checked statically, while
postponing the remaining checks to runtime [21]. A recent
survey by Siek et al. [24] discusses numerous variations
of gradual typing that have been proposed. The lack of
soundness in Dart’s type system makes an unconventional
design, and it takes a pragmatic view on blame tracking [23],
but the language is gaining momentum in industrial software
development unlike e.g. Typed Racket [26].

The dart2js and dartanalyzer tools by Google can analyze
Dart programs to check for various kinds of errors, going
beyond the static type checking prescribed by the language
standard [12, 13]. The dart2js tool has an option trust-type-
annotations, which appears to be related to our filter mode,
however, not much documentation exists for these analyzers.
Another interesting recent initiative by the Google Dart team
is strong mode, which defines a subset of Dart with “a
stricter, sounder type system” and a limited form of type
inference [11].

Our use of type annotations as filters is inspired by previ-
ous work on alias analysis and call graph construction algo-
rithms. The notions of concrete and abstract types in Section 5
correspond to the point and cone types, respectively, used by
Sridharan et al. [25].

10. Conclusion
Optional typing has traditionally been viewed as a compro-
mise between static and dynamic type checking where pro-
gram code with type annotations is checked statically and the
rest is checked dynamically. We have demonstrated that it is
possible for a realistic programming language with optional
typing to incorporate the type annotations into a flow anal-
ysis to provide static type checking for program code that
is not fully annotated. The various reasons by which type
annotations can or cannot be trusted in Dart programs lead to
interesting challenges to the design of such an analysis. We
have proposed two main techniques: filter and modular mode,
with different strengths and weaknesses.

Our experimental results show that this is a viable ap-
proach. For example, in filter mode the analysis is able to
show for 99.3% of the property access operations in the
benchmark programs that message-not-understood errors can-
not occur at runtime. This is a notable result, since Dart’s
standard type checker is unsound by design and does not
provide any guarantees even when it produces no warnings.
Similarly, the analysis makes it possible to eliminate 95.8%
of the runtime subtype checks in checked mode execution.

The number of type warnings is reduced significantly
when enabling the optimistic assumptions in modular mode,
and these assumptions appear to be reasonable in practice.
This indicates that it may be beneficial to extend the analysis
to track the flow of dynamic in generic type parameters and
function types, such that soundness can be retained while
preserving the advantages of the optimistic assumptions.
Other opportunities for future work include exploring the
design choices and trade-offs suggested in Section 6.4, and
applying the analysis for safely eliminating costly runtime
type checks in compilation from Dart to low-level languages.
We believe our results also provide insight into the use of
the dynamic language features in Dart, which may guide the
further development of the language.

Acknowledgments This work was supported by the European
Research Council (ERC) under the European Union’s Horizon 2020
research and innovation program (grant agreement No 647544).

References
[1] O. Agesen. The cartesian product algorithm: Simple and precise

type inference of parametric polymorphism. In Object-Oriented
Programming, 9th European Conference (ECOOP), 1995.

[2] G. Bracha and D. Ungar. Mirrors: design principles for meta-level
facilities of object-oriented programming languages. In Proc. ACM
SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), 2004.

[3] E. Brandt. Why Dart types are optional and unsound, 2011. https:
//www.dartlang.org/articles/why-dart-types/.

[4] R. Cartwright and M. Fagan. Soft typing. In Proc. ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI), 1991.

[5] D. R. Chase, M. Wegman, and F. K. Zadeck. Analysis of pointers
and structures. In Proc. ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), 1990.

[6] J. Dean, D. Grove, and C. Chambers. Optimization of object-oriented
programs using static class hierarchy analysis. In Proc. Object-Oriented
Programming, 9th European Conference (ECOOP), 1995.

[7] Ecma International. Dart Programming Language Specification,
ECMA-408, 4th Edition, December 2015.

[8] E. Ernst, A. Møller, M. Schwarz, and F. Strocco. Message safety in
Dart. Science of Computer Programming, 2016. In press. Earlier
version in Proc. 11th Dynamic Languages Symposium (DLS), 2015.

[9] Facebook Inc. Flow – a static type checker for JavaScript, 2016.
http://flowtype.org/.

[10] C. Flanagan, M. Flatt, S. Krishnamurthi, S. Weirich, and M. Felleisen.
Catching bugs in the web of program invariants. In Proc. ACM SIG-
PLAN Conference on Programming Language Design and Implementa-
tion (PLDI), 1996.

[11] Google Inc. Strong mode, 2015. https://github.com/dart-lang/
dev_compiler/blob/master/STRONG_MODE.md.

[12] Google Inc. dart2js, 2016. https://www.dartlang.org/tools/
dart2js/.

[13] Google Inc. dartanalyzer, 2016. https://github.com/dart-lang/
analyzer_cli.

[14] R. Hasti and S. Horwitz. Using static single assignment form to improve
flow-insensitive pointer analysis. In Proc. ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI), 1998.

[15] N. Heintze. Set-based analysis of ML programs. In LISP and
Functional Programming, pages 306–317, 1994.

[16] S. H. Jensen, A. Møller, and P. Thiemann. Type analysis for JavaScript.
In Proc. 16th International Static Analysis Symposium (SAS), 2009.

[17] H. Mehnert. Extending Dylan’s type system for better type inference
and error detection. In International Lisp Conference (ILC), 2010.

[18] F. Ortin. Type inference to optimize a hybrid statically and dynamically
typed language. Comput. J., 54(11):1901–1924, 2011.

[19] J. Palsberg and M. I. Schwartzbach. Safety analysis versus type
inference. Inf. Comput., 118(1), 1995.

[20] A. Rastogi, A. Chaudhuri, and B. Hosmer. The ins and outs of gradual
type inference. In Proc. 39th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL), 2012.

[21] J. G. Siek and W. Taha. Gradual typing for functional languages. In
Scheme and Functional Programming Workshop, 2006.

[22] J. G. Siek and M. Vachharajani. Gradual typing with unification-based
inference. In Proc. Symposium on Dynamic Languages (DLS), 2008.

[23] J. G. Siek, P. Thiemann, and P. Wadler. Blame and coercion: together
again for the first time. In Proc. 36th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), 2015.

[24] J. G. Siek, M. M. Vitousek, M. Cimini, and J. T. Boyland. Refined
criteria for gradual typing. In Proc. 1st Summit on Advances in
Programming Languages (SNAPL), 2015.

[25] M. Sridharan, S. Chandra, J. Dolby, S. J. Fink, and E. Yahav. Alias
analysis for object-oriented programs. In Aliasing in Object-Oriented
Programming. Types, Analysis and Verification, volume 7850 of LNCS,
pages 196–232. Springer, 2013.

[26] A. Takikawa, D. Feltey, B. Greenman, M. S. New, J. Vitek, and
M. Felleisen. Is sound gradual typing dead? In Proc. 43rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL), 2016.

[27] The Mypy Project. mypy – optional static typing for Python, 2016.
https://mypy-lang.org/.

