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Abstract

Modern IDEs support automated refactoring for many pro-
gramming languages, but support for JavaScript is still prim-

itive. To perform renaming, which is one of the fundamental

refactorings, there is often no practical alternative to simple
syntactic search-and-replace. Although more sophisticated

alternatives have been developed, they are limited by whole-
program assumptions and poor scalability.

We propose a technique for semi-automatic refactor-

ing for JavaScript, with a focus on renaming. Unlike tra-
ditional refactoring algorithms, semi-automatic refactoring

works by a combination of static analysis and interaction

with the programmer. With this pragmatic approach, we can
provide scalable and effective refactoring support for real-

world code, including libraries and incomplete applications.

Through a series of experiments that estimate how much
manual effort our technique demands from the programmer,

we show that our approach is a useful improvement com-
pared to search-and-replace tools.

Categories and Subject Descriptors D.2.7 [Distribution,

Maintenance, and Enhancement]: Restructuring, reverse en-

gineering, and reengineering

General Terms Languages

1. Introduction

Refactoring is the process of transforming the source code

of a program to enhance its internal structure while preserv-

ing its external behavior. Many kinds of refactoring are used
in modern software development, for example, renaming of

fields or methods, extracting blocks of code into separate

methods, or moving code from one package to another [4].
Refactoring tools in IDEs assist the programmer in perform-

ing the necessary source code transformations and check-
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ing that the program behavior is preserved. However, the
most powerful existing techniques that provide such auto-

mated support for refactoring have been developed for stat-

ically typed programming languages, such as Java and C#.
As those techniques critically depend on static information

about class hierarchies, packages, and types of fields and
methods, they cannot easily be adapted to dynamically typed

languages. In JavaScript, for example, the object properties

change at runtime, and classes and packages are at best mim-
icked by meta-programming in libraries, which are difficult

to reason about statically. The refactoring techniques that ex-

ist for dynamically typed languages, in particular JavaScript,
remain primitive or impractical:

(1) One approach, introduced in the Smalltalk Refactor-
ing Browser [9], is to use runtime instrumentation to detect

the consequences of tentative program transformations. This

requires extensive test suites to ensure that the program be-
havior is preserved, and we are not aware of this approach

being used in practice for JavaScript.

(2) In previous work [3], we showed that static points-to
information can be used in lieu of static types as the founda-

tion for automated refactoring for JavaScript. Although this

approach works well in many situations, we have observed
some practical limitations. Pointer analysis is hard to scale to

large JavaScript programs without sacrificing the necessary
precision. Despite much effort, no existing pointer analy-

sis can handle typical JavaScript programs that use libraries.

Moreover, the technique only works for complete programs,
which means it cannot reliably be applied to library code,

except if a comprehensive test suite is available, or to ap-

plication code that is under development where parts of the
code have not yet been written.

(3) If we consider one of the most common kinds of
refactoring—renaming an object property—the working

programmer’s best tool is still search-and-replace. This can

be based on the plain text or the abstract syntax tree of the
program source code, in either case without any consid-

eration toward its semantics. If the programmer wishes to

rename an object property, he may choose to rename all
occurrences of the selected symbol in one fell swoop, or

pick one-by-one the occurrences he wishes to rename. The

former is prone to errors since unrelated objects may have
properties with the same name, while the latter can be rather

tedious if there are many occurrences.



Several IDEs exist for JavaScript programming, includ-

ing Eclipse JSDT, Eclipse Orion, NetBeans, Visual Studio

for Web, Komodo IDE, Cloud9, and WebStorm. Among all
these, we find only one—WebStorm1—that supports rename

refactoring for JavaScript. While this tool is quite effec-

tive for renaming local variables, it seems to fall back to
search-and-replace when renaming object properties. Based

on brief experimentation, it appears that it always replaces
all occurrences of the given object property name. Web-

Storm is closed source and its algorithms are not publicly

documented, so we cannot verify how the tool works.
In this work, we propose a semi-automatic technique for

renaming object properties in JavaScript programs. Renam-

ing is among the most common kinds of refactoring [8, 12].
Making better tool support for renaming than search-and-

replace requires information about how object property ac-

cess operations in the program code are related to each other.
Such information is also fundamental for other refactorings,

for example, property encapsulation [3]. Our approach may
be seen as a middle ground between fully automated refac-

toring and tedious one-by-one search-and-replace.When the

programmer decides that some occurrence of an object prop-
erty x in the program needs to be renamed to y, we use

a lightweight static analysis to divide all occurrences of x

into groups. Two occurrences of x are placed in the same
group if the analysis infers that they are related in the sense

that they must either both be renamed or neither be renamed.
The refactoring tool then asks the programmer whether each

group should be renamed entirely or left unchanged. In this

way, the programmer gets one question for each group, and
each question only mentions one occurrence of x. Compared

to traditional search-and-replace, this approach requires less

effort by the programmer since we avoid asking questions
where the answer can be inferred from previous answers.

Compared to the fully automated approach from our pre-
vious work, we circumvent the computationally expensive

pointer analysis and the whole-program assumption.

For an incomplete program—for example, a library or
an application under development—ultimately only the pro-

grammer knows whether two object property operations are

related or not, given that no formal specification exists of the
desired program behavior. Still, we can define an informal

notion of soundness for our static analysis: if the heuristics

employed by the analysis group together two occurrences of
x, then it should not be the case that the programmer wants

one of them to be renamed but not the other, since he only
gets a question for one of them. Our static analysis therefore

aims to compute a lower approximation of relatedness. The

converse case, dividing the occurrences of x into too many
groups, is tolerable although undesirable, since the program-

mer must then answer more questions to complete the refac-

toring. For complete programs, which have a well-defined
meaning, it is reasonable to assume that two occurrences of

1 http://www.jetbrains.com/webstorm/

x are related if they refer to the same object property in some

execution of the program. This makes our analysis akin to

alias analysis, but designed to work also on incomplete pro-
grams. The analysis is expressed as a set of rules reminiscent

of a type system. We evaluate how it works on incomplete

programs by measuring the stability of the analysis behavior
when source code is added or removed from the codebase.

The analysis is theoretically unsound, but our experiments
indicate that it is sound in practice.

Some refactoring tools follow a tradition of performing

safety checks to ensure that the program behavior will re-
main unchanged when performing refactorings. If a precon-

dition is violated, such tools will abort or issue a warning to

the programmer. For example, a common precondition for
renaming a field in a Java program is that it does not cause

a name clash. These safety checks are usually not sound in

practice. Java refactoring tools typically ignore the possibil-
ity of reflection, while refactoring for JavaScript may give

some leeway regarding use of the eval function. In the op-
posite end of the spectrum, other refactoring tools assume

that programmer knowswhat he is doing, so no safety check-

ing is performed. We follow the latter approach. The fore-
most rationale for this decision is that proper precondition

checking requires static analysis that scales to large real-

world codebases, has high precision, and works on incom-
plete programs, which is beyond the capabilities of existing

JavaScript analysis techniques. We argue that this decision
is not as detrimental to safety for semi-automatic refactor-

ing as it would be for a fully automatic tool: the programmer

will observe a number of proposed changes in the code while
interacting with the tool, so he is more likely to detect prob-

lematic situations.

Reflective property access is common in JavaScript. Such
expressions access an object property whose name is com-

puted at runtime. Reflective property accesses cannot be re-
named directly, since the source code does not mention the

property name explicitly, and it lies beyond the scope of our

proposed algorithm to update the relevant string operations
that compute the property name. Our algorithm will only re-

name identifier tokens in the source code, and the user is

expected to know this. Apart from this assumption, the in-
ternals of our proposed algorithm do not concern the pro-

grammer when performing refactorings.

Our contributions can then be summarized as follows:

• We present a novel approach to semi-automatic refactor-

ing, based on an algorithm for finding groups of related
identifier tokens. A key component of this algorithm is a

type inference technique reminiscent of alias analysis.

• We present experiments that evaluate the practical use-
fulness of the approach. The results show that (1) it asks

significantly fewer questions than search-and-replace, (2)

it scales to large real-world codebases, (3) it does not re-
quire the whole program to be useful, and (4) although

unsound in theory, the unsoundness rarely manifests in

practice.



In Section 2 we motivate our technique using a real-world

code snippet. In Section 3 we present the algorithm and

demonstrate it on a few examples, and in Section 4 we
present research questions and results of the experimental

evaluation. Related work is discussed in Section 5, and our

conclusions and suggestions for further work are given in
Section 6.

2. Motivating Example

Renaming a local variable is trivial in most cases, as the

scoping rules in JavaScript let us find all tokens that refer

to the variable. However, renaming object properties is non-
trivial. In this section, we will demonstrate some of the chal-

lenges involved in renaming object properties.

Consider the code fragment in Figure 1, taken from the
popular jQuery library.2 We shall intentionally withhold in-

formation about the rest of jQuery for now, and see what
we can learn about the code without providing any context.

The code fragment contains a top-level statement that cre-

ates a new object with six properties, three of which are
initialized to function expressions. The new object is then

stored in the prototype property of the jQuery.Event

object. The prototype property has a special meaning in
JavaScript: informally, objects created using a construc-

tor call new jQuery.Event will inherit the properties of
jQuery.Event.prototype.

We will now discuss how an editor with our refactor-

ing technique reacts to various renaming request from a
programmer, assuming the code in Figure 1 is the only

code open in the editor. Although refactoring a fragment

of jQuery is an unusual scenario, the code in Figure 1 is
representative of some of the issues we generally encounter

when refactoring incomplete programs.

Consider the three preventDefault tokens on lines 2, 6,
and 7. Suppose the programmer has decided to rename the

token on line 2. It is not immediately evident whether the
tokens on line 6 and 7 should be renamed as well. The IDE

therefore asks the programmer whether the token on line 6

should be renamed also. However, regardless of the answer,
the IDE will not ask a second time whether the token on

line 7 should be renamed. Clearly, if one of these tokens

were to be renamed, the other must also be renamed. We
call such tokens related. In this particular case, our technique

will determine that they are related because they both occur
as the name of a property accessed on the e variable. In short,

we say they access the same property on e.

The originalEvent tokens on lines 4 and 14 access a
property on this but in different functions. Technically, any

function can be invoked with an arbitrary this argument,

and thus the two uses of this could refer to very differ-
ent objects that just happen to both have a property called

originalEvent. In practice, though, such a scenario is un-

likely. Due to the function call semantics of JavaScript, the

2 http://jquery.com/

1 jQuery.Event.prototype = {

2 preventDefault: function() {

3 this.isDefaultPrevented = returnTrue;

4 var e = this.originalEvent;

5 if ( !e ) { return; }

6 if ( e.preventDefault ) {

7 e.preventDefault();

8 } else {

9 e.returnValue = false;

10 }

11 },

12 stopPropagation: function() {

13 this.isPropagationStopped = returnTrue;

14 var e = this.originalEvent;

15 if ( !e ) { return; }

16 if ( e.stopPropagation ) {

17 e.stopPropagation();

18 }

19 e.cancelBubble = true;

20 },

21 stopImmediatePropagation: function() {

22 this.isImmediatePropagationStopped

23 = returnTrue;

24 this.stopPropagation();

25 },

26 isDefaultPrevented: returnFalse,

27 isPropagationStopped: returnFalse,

28 isImmediatePropagationStopped: returnFalse

29 };

Figure 1. A fragment of jQuery (any version after 1.5.1).

object on which a function is stored is often the this ar-
gument or a prototype thereof. Hence our analysis will de-

termine that the two originalEvent tokens are related.
By similar reasoning, the isDefaultPrevented tokens on

lines 3 and 26 are also considered related.

Consider now stopPropagation on lines 12, 16, 17,
and 24. The tokens on lines 16 and 17 are considered related,

as are those on lines 12 and 24. But it is not evident whether

these two groups are also related to each other. Two of them
access a property on a jQuery event object or its prototype,

while the other two access a property on e, which is an alias
for this.originalEvent. There is no reliable indicator

as to whether these refer to the same kind of object. The

call on line 17 could be a recursive call to the function
defined on line 12, or it could be a call to a lower-level event

object whose method happens to have the same name. Our

analysis considers the two groups of tokens unrelated from
each other, and to rename the four tokens the programmer

must thus answer two questions, one for each group.
In jQuery, the originalEvent property happens to refer

to a native event object, created by the browser. As such, the

stopPropagation tokens on lines 16 and 17 refer to a prop-
erty on a native event object, while the tokens on lines 12

and 24 refer to a property on jQuery’s own event objects,

which function as wrappers around the native event objects.



Indeed, it is possible to rename the stopPropagationprop-

erty on jQuery’s event objects by updating the tokens on

lines 12 and 24 and one other token elsewhere in jQuery
(outside the code shown in Figure 1), while leaving the to-

kens on lines 16 and 17 unaltered. The result is a refactored

version of the jQuery library that remains compatible with
most jQuery applications. Only applications that explicitly

invoke stopPropagation on a jQuery event object are in-
compatible with the new version. In this way, the program-

mer remains responsible for ensuring backward compatibil-

ity in case a renaming interferes with the public API of the
library, but our techniquemakes it easier for the programmer

to perform the desired refactorings of the library code.

Moreover, consider what would happen if we were to up-
date every stopPropagation token in the previous exam-

ple, that is, including those on lines 16 and 17. The call on

line 17 would then no longer work as intended, because the
browser would still use the name stopPropagation when

creating native event objects, regardless of any source code
transformation we have performed. As discussed previously,

our technique does not perform safety checking, so we trust

that the programmer does not attempt to perform such refac-
torings. This allows our technique to work without modeling

the browser API.

A final concern when renaming a property is that all
references to the property must be updated consistently. For

instance, suppose we renamed only the stopPropagation
token on line 12. Clearly, the call on line 24 would then fail.

In this particular case, our technique groups these tokens

together, and it is thus impossible for the programmer to
perform the erroneous renaming using our refactoring tool.

But this is not always the case; in general, the consistency of

a renaming depends on the programmer answering correctly
to the questions posed by the refactoring tool, which is no

different than ordinary search-and-replace.
While our tool does not actively prevent inconsistent re-

namings, it should be able to carry out any consistent re-

naming that can be done by renaming of identifier tokens,
assuming the programmer answers its questions correctly.

To demonstrate the importance of this criterion, suppose

our technique incorrectly determined that all four stop-
Propagation tokens in Figure 1 were related. In this case,

the previously mentioned refactoring of jQuery would not

have been possible, because it involves renaming only a sub-
set of these tokens. Indeed, if the programmer decided to

rename the token on line 12, he would not get the opportu-
nity to tell the tool not to rename those on lines 16 and 17,

leading to a different refactoring that was intended. When

working with a large codebase, the programmer might not
immediately notice that his renaming did not go as intended,

thereby introducing a bug in his code. Such behavior is there-

fore highly undesirable, and while our technique is not im-
pervious to this type of failure, our evaluation shows that it

is unlikely to occur in practice.

This example demonstrates that we need a static analysis

that is able to approximate how object property tokens are

related in JavaScript programs. This analysis must be sound
in practice to avoid undesired refactorings, it must be suffi-

ciently precise to enable a significant reduction of program-

mer effort compared to traditional search-and-replace, and
it must be scalable and fast to be usable during program-

ming. In addition, we want the analysis to work robustly on
incomplete programs, such as libraries or applications under

development. As we discuss in Section 5, no existing static

analysis analysis satisfies these requirements, which moti-
vates the design of our new analysis described in the follow-

ing section.

3. Finding Related Identifier Tokens

Our proposed refactoring algorithm depends on a reliable

method for finding related tokens in the program code. We
define an ad-hoc type inference system, based on how ob-

jects appear to be used. Unlike most type systems, ours does

not perform type checking, that is, there is no such thing as
a static type error; all programs can be typed. A program

typing is an equivalence relation between expressions, de-
noting which expressions have the same type. Given two

occurrences of expressions, e1.f and e2.f , we can subse-

quently say that the two f tokens are related if e1 and e2
have the same type. The type inference is considered sound

if it is never the case that two tokens are found to be related

while the programmer only intends to rename one and not
the other.

The type inference is performed in two phases, denoted

basic type inference and receiver type inference. Each phase
traverses the abstract syntax tree once, generating a set of

constraints. At the end of each phase, these constraints are
saturated under a collection of closure rules using an aug-

mented union-find data structure.

Our type analysis is reminiscent of alias analysis, in par-
ticular, the Steensgaard style [11], however, with important

differences. Alias analysis determines which expressions in

a program are aliased, that is, refer to the same object. The
most common kind is may-alias analysis, which finds pairs

of expressions that may, in some execution, evaluate to the
same object. Given two expressions e1.f and e2.f , one

might consider the two f tokens to be related if e1 and e2
are may-aliased. However, may-alias analysis is conserva-
tive in the direction opposite of what we want: it may report

some expression pairs as may-aliased even if they can, in

fact, never be aliased. When this happens, unrelated tokens
may be classified as related, which, as previouslymentioned,

is highly undesirable. Instead, one may consider must-alias
analysis, which finds pairs of expressions that are aliases in

every execution. This will result in a sound construction of

related tokens, however, the resulting precision will be poor,
even for a perfectly precise must-alias analysis. As an ex-

ample, consider a composite expression x.f + y.f where

x and y are aliases in some program executions but not in



others. In this case, using a must-alias analysis will result

in the two f tokens to be considered non-related. However,

we would like to treat them as related, because there exists
an execution where they refer to the same object property.

This means that we wish to design a must-sometimes-alias

analysis that finds pairs of expressions that must be aliases
in some execution. We are not aware of existing analyses of

that kind.
Moreover, our analysis must account for object proto-

types, which JavaScript uses for mimicking inheritance, and

certain common programming patterns, such as, prototype
methods and object extension functions. For reasons ex-

plained in the following sections, these patterns indicate re-

latedness without involving aliasing, so we refer to our anal-
ysis as a type inference rather than an alias analysis.

3.1 Constraint Syntax

The constraints generated are of form t1 ≡ t2 where t1, t2
are terms. A term may either be an expression e, or a com-

pound e⋄f representing the f property on expression e. The
≡ relation is called the same-type relation. We say that two

terms, t1 and t2, have the same type when t1 ≡ t2. As an
example, x ⋄ f ≡ y means that the variable x points to an

object with an f property that has the same type as the vari-

able y.
The schema below summarizes the syntax and our nam-

ing conventions:

o, v, e ∈ expressions
g ∈ function bodies

f ∈ identifiers

t ∈ terms
t ::= e | e ⋄ f
≡ ⊆ terms× terms

We reserve the meta-variable o for object literals, v for pro-
gram variables, and e for any type of expression. The no-

tion of an expression is used quite liberally, but the meaning

should be clear from the context: We use it primarily when
referring to an occurrence of a JavaScript expression in the

abstract syntax tree; thus, identical expressions at different
positions in the program code are considered distinct. In a

slight abuse of terminology, we also refer to variable decla-

rations, such as a var statement or the token of a parame-
ter name, as expressions. Finally, we include the following

pseudo-expressions:

glob : expression representing the global object

ret(g): expression representing return value of function g

this(g): expression representing this inside function g

Unlike expressions, the notion of an identifier does not de-

note a specific occurrence in the abstract syntax tree; two
identifiers are indistinguishable if they consist of the same

string of characters. We will use the notion of tokens when

different occurrences of the same identifier should be con-

statement or expression e constraints

variable v e ≡ decl(v)
property e1.f e ≡ e1 ⋄ f

dyn. prop. e1[e2] see text
∗assignment e1=e2 e ≡ e1 ≡ e2
∗conditional e1 ? e2 : e3 e ≡ e2 ≡ e3
∗logical or e1 || e2 e ≡ e1 ≡ e2
logical and e1 && e2 e ≡ e2

this this e ≡ this(fun(e))
return return e1 e1 ≡ ret(fun(e))
call e1(~e2) see text

new-call new e1(~e2) see text

function function f(~v){ . . . } see text

array literal [ e1,e2, . . . ] e ⋄ [array] ≡ ei
object literal { . . . } see below

member of object literal o constraints

initializer f:e1 o ⋄ f ≡ e1

getter get f(){g . . . }
o ⋄ f ≡ ret(g)
o ≡ this(g)

setter set f(v){g . . . }
o ⋄ f ≡ v

o ≡ this(g)

Figure 2. Constraints for basic type inference. A star ∗

indicates that an exception to the rule is described in the text.

sidered distinct. The artificial identifier [array] refers to

array entries.

3.2 Saturation

At the end of each phase, we saturate the ≡ relation until it

satisfies a collection of closure rules. In particular, we ensure
that ≡ is an equivalence relation:

t ≡ t
(refl)

t1 ≡ t2

t2 ≡ t1
(sym)

t1 ≡ t2 t2 ≡ t3

t1 ≡ t3
(trans)

and that ≡ moreover satisfies the following rule:

e1 ≡ e2

e1 ⋄ f ≡ e2 ⋄ f
(prty)

Informally, the prty rule states that same-typed expressions

have same-typed properties. Examples in the next section
demonstrate the consequence of the saturation rules. We

present an efficient algorithm for performing the saturation

in Section 3.5.

3.3 Basic Type Inference

In the first phase we traverse the abstract syntax tree and for
each expression generate constraints according to Figure 2.

We use the notation e1 ≡ e2 ≡ e3 as shorthand for the two

constraints e1 ≡ e2 and e2 ≡ e3. We also introduce the
following two auxiliary definitions:

decl(v): the declaration of v, or glob ⋄ v if v is global

fun(e): the innermost function containing e



We will now discuss each rule in detail.

Variable For an expression e that is a variable v, we add the
constraint that v should have the same type as its declaration:

e ≡ decl(v). By transitivity, all uses of the variable will

thereby have the same type.

Example The three uses of v below will have same type as
the declaration of v on line 30 due to the variable rule. After

saturation (Section 3.2), they will then all have the same type

due to transitivity, and thus the two x tokens will ultimately
be considered related:

30 function f(v) {

31 v.x = v.y;

32 return v.x;

33 }

Property When a property expression e of form e1.f is

encountered, we add the constraint e ≡ e1 ⋄ f . Due to the
prty rule, if f is accessed on a similarly typed expression,

the two accesses will then be given the same type.

Example As per the previous example, the three uses of v

below are same-typed. We use subscripts to name tokens in
the example code:

34 function f(v) {

35 v1.x.y3 = v.y;

36 return v2.x.y4;

37 }

Because v1 ≡ v2, the prty rule yields the typing v1 ⋄ x ≡
v2 ⋄ x. Since v1.x ≡ v1 ⋄ x and v2.x ≡ v2 ⋄ x were

generated while traversing the abstract syntax tree, we get
by transitivity that the two v.x expressions are same-typed.

Thus, y3 and y4 will ultimately be considered related.

Dynamic property An expression of form e1 [ e2 ] per-

forms an array access or a reflective property access on e1
(technically, they are the same in JavaScript). The name of

the property being accessed depends on the value of e2 at

runtime. If e2 is a string constant "f" we treat the expres-
sion as e1.f ; in all other cases, we ignore the expression.

Assignment For an expression e of form e1 = e2, we add

the constraints e ≡ e1 and e ≡ e2. There is an exception to

this rule, however. Consider this chain assignment:

38 x = y = null;

Such a statement is often employed as a compact way to

clear the value of several variables, but is generally not a
good indicator of the variables x and y having the same

type. Indeed, no object could be assigned to both x and y
by executing the statement. We classify certain expressions

as primitive when they definitely cannot evaluate to an ob-

ject. Null expressions are primitive, and an assignment ex-
pression is primitive if its right-hand side is primitive. If the

right-hand side of an assignment is primitive, then we dis-

regard the above rule for assignments and generate no con-

straints. No constraints are generated for compound assign-

ment operators, such as, +=.

Conditional An expression e of form e1 ? e2 : e3 evaluates

e1 and then evaluates and returns the value of either e2 or e3,

depending on whether e1 was true or false. We therefore add
the constraints e ≡ e2 and e ≡ e3.

There is an exception to the above rule, however, since

programmers occasionally use the ?: operator in situations
where an if-statement would have been appropriate. The fol-

lowing two statements are semantically equivalent:

39 if (b) x = y else z = w;

40 b ? (x = y) : (z = w);

In the latter case, the result of the ?: expression is immedi-
ately discarded. We say that such expressions occur in void

context. When a ?: expression occurs in void context, we

disregard the rule above and generate no constraints. Other-
wise, x and y would have been considered same-typed with

z and w after saturation due to transitivity.

Logical or An expression e of form e1 || e2 will at run-

time evaluate e1, and then if e1 is false, it will evaluate e2
and return its result. If e1 is true, the result of e1 is returned.
Although the operator is called logical or, its result need not

be a boolean. Objects are considered to be true when co-

erced to a boolean value. Hence, an object from either e1 or
e2 may be returned; we therefore add the constraints e ≡ e1
and e ≡ e2. As for the ?: operator, we disregard this rule
when e occurs in void context.

Logical and An expression e of form e1 && e2 will at run-
time evaluate e1. If e1 is true, it will then evaluate e2 and re-

turn the result of e2, and otherwise it will return the value of

e1. Since objects cannot be false when coerced to a boolean,
only objects from e2 may be returned. Thus, we add the con-

straint e ≡ e2. The void context exception could be applied

to this rule as well, but in this case it makes no difference,
since e ≡ e1 is not generated either way.

This For an expression e of form this we add the con-
straint that e should have the same type as the this argu-

ment in the enclosing function: e ≡ this(fun(e)). Thus, all
uses of this in a given function will be given the same type.

Return For a return statement e of form return e1, we
add the constraint e1 ≡ ret(fun(e)). This ensures that all

returned expressions will have the same type.

Example In the function below, a and bwill be same-typed

because they are both returned within the same function.

Thus the two x tokens will ultimately be considered related:

41 function minX(a,b) {

42 if (a.x < b.x) return a;

43 else return b;

44 }

Call and new Most function calls are ignored by our al-

gorithm. Precise inference of function types is complicated



for a language such as JavaScript. If a call graph were avail-

able, we could connect arguments to parameters and return

values to results, but if done in a context-insensitive manner,
the transitivity of the ≡ relation would in practice declare

too many expressions as same-typed, which, as previously

discussed, is highly undesirable. If done context-sensitively,
scalability would be jeopardized. In our setting, the conser-

vative action is to exclude constraints rather than include
them, and as such, ignoring function calls can be tolerated.

One particular type of function call is easily handled,

however. JavaScript programs often use one-shot closures to
obtain encapsulation:

45 (function(self) {

46 var x; // ‘x‘ not visible in outer scope

47 /* ... */

48 })(this);

A function call e of form e0(e1,e2, . . . ) in which e0 is

an anonymous function expression is easily handled for two
reasons: (a) the called function is known, and (b) no other

call can invoke that function. For this type of call, we add the

constraint ei ≡ vi for each corresponding argument ei and
parameter vi. Likewise, we add the constraint ret(e0) ≡ e. If

the call was made with the new keyword, we further add the

constraint this(e0) ≡ e, and otherwise this(e0) ≡ glob since
the global object is passed as this argument in that case.

Example One-shot closures are often used together with
for-loops as in the following example:

49 for (var i=0; i<10; i++) {

50 var panel = panels[i];

51 var handler = (function(panel) {

52 return function() {

53 panel.activated(true);

54 }

55 })(panel);

56 panel.button.addEvent("click", handler);

57 panel.activated(false);

58 }

If the one-shot closure was not used, all ten event handlers
would refer to the same panel variable, so the ith event han-

dler would invoke activated on the last panel, rather than

the ith panel. By handling one-shot closures, our analysis
finds that the two uses of panel on lines 53 and 57 have the

same type, despite referring to different variables. Thus, the
two activated tokens are ultimately considered related.

Function Functions are first-class objects in JavaScript,

and thus may themselves have properties. One property of
particular interest is the prototype property of a function

object. When a function is invoked using the new keyword,
a newly created object is passed as the this argument. This

object has its internal prototype link initialized to the object

pointed to by the prototype property of the function object,
effectively inheriting the properties of this object. For any

function expression e with body g, we therefore add the

constraint e ⋄ prototype ≡ this(g). For named functions,

we similarly add the constraint v ⋄ prototype ≡ this(g)
where v is the function name declaration.

Using the prototype property for a purpose other than
inheritance is highly unusual, even for functions that are

never invoked using new. Thus, the constraint will typically

have no impact for functions that are not intended to be
invoked using new.

Example In the code below, a string builder function is

defined, and two functions are placed on its prototype object.

Due to the above rule, this on line 60 will have the same
type as StringBuilder.prototype on line 62, and the

two clear tokens will thus be considered related:

59 function StringBuilder() {

60 this.clear();

61 }

62 StringBuilder.prototype.clear = function() {

63 this.array = [];

64 };

65 StringBuilder.prototype.append = function(x) {

66 this.array.push(x);

67 };

68 StringBuilder.prototype.toString = function() {

69 return this.array.join("");

70 };

During the second phase of the algorithm, which we describe
in Section 3.4, the three uses of this on lines 63, 66 and 69

will also get the same type, and the three array tokens will

thus also become related.

Array literal An array literal e of form [e1,e2, . . . ] cre-
ates a new array object, initialized with the value ei in its

ith entry. We assume such array objects are intended to be

homogeneous, and add the constraint e ⋄ [array] ≡ ei for
each i. A homogeneous array is an array for which all ele-

ments have the same type. Not all arrays are intended to be

homogeneous, but we found that those created using array
literals typically are.

Note that the artificial [array] property is not referenced
by any of the other rules. In particular, there is no rule that

handles array access expressions, since such expressions are

hard to distinguish from reflective property accesses, and the
array being accessed might not be homogeneous.

Example Array literals are often used to write out constant

tables in JavaScript source code, as in the below snippet

taken from Mozilla’s JavaScript PDF reader:

71 var QeTable = [

72 {qe: 0x5601, nmps: 1, nlps: 1, switchFlag: 1}

73 ,{qe: 0x3401, nmps: 2, nlps: 6, switchFlag: 0}

74 ,{qe: 0x1801, nmps: 3, nlps: 9, switchFlag: 0}

75 /* ... */

76 ];

Since each member of the array is assigned the same type,

each qe token will be considered related, and likewise for

the three other property names.



Object literal An object literal o is an expression of form

{ . . . } containing zero or more object literal members. Such

an expression creates a new object, with the object literal
members denoting the initial values of its properties. There

are three types of members: initializers, getters, and setters.

An initializer is of form f : e1 and assigns the value of e1
to the f property of the new object. For each such initializer,

we add the constraint o ⋄ f ≡ e1.
A getter is of form get f(){ . . . }. This assigns a getter

function for the f property on the new object. Whenever the

f property is read from the object, the getter is invoked, and
the value it returns is seen as the value of the f property. For

each getter, we add the constraint o ⋄ f ≡ ret(g), where g

denotes the getter function’s body. We also add o ≡ this(g),
since the object is passed as this argument when the getter

is invoked.

A setter is of form set f(v){ . . . }. This assigns a setter
function for the f property. Whenever the f property is

assigned to on the object, the setter is invoked with the new
value passed as argument. We therefore add the constraints

o ⋄ f ≡ v and o ≡ this(g), where g denotes the setter

function’s body.
Getter and setters were introduced in ECMAScript 5 [2]

and are now used in many applications; other recently intro-

duced language features are ignored by our analysis.

3.4 Receiver Type Inference

In the second phase, we classify certain functions asmethods
and add additional type constraints accordingly. However,

reliably classifying functions as methods requires knowl-

edge of namespace objects, as we shall discuss shortly. We
need the same-type relation inferred during the previous

phase to detect such namespace objects, hence the division
into two phases. We will nowmotivate the informal concepts

of methods as namespaces, and then discuss the type infer-

ence algorithm for this phase.
JavaScript has no first-class concept of methods or con-

structors, only functions and invocation conventions that let

programmers mimic these features. Function calls of form
e.f( . . . ) will receive the value of e as the this argument,

while calls of form new e( . . .) and new e.f( . . . ) receive a
newly created object as the this argument. Although pro-

grammers may mix and match these invocation types for

any one function, most functions are in practice designed
to be called exclusively one way or the other. Functions de-

signed to be called with new are referred to as constructors.

Likewise, a non-constructor function stored in a property on
some object is sometimes referred to as a method of that ob-

ject.
JavaScript also has no built-in support for namespaces,

packages, or modules. This has led to a tradition of using

objects to mimic namespaces. When a function is stored in
some property of a namespace object, it may be wrong to

consider it a method on the namespace, as it could just as

well be a constructor.

77 obj.onmouseover = function() {

78 this.active = true;

79 };

80 obj.onmouseout = function() {

81 this.active = false;

82 };
(a)

83 util.Rect = function(x1,y1,w,h) {

84 this.x = x1;

85 this.y = y1;

86 this.width = w;

87 this.height = h;

88 };

89 util.Vector2 = function(x1,y1) {

90 this.x = x1;

91 this.y = y1;

92 };

93 /* ... */

94 new util.Vector2(0,10);

(b)

Figure 3. Functions stored as (a) methods on an object, and

(b) constructors in a namespace.

Figure 3 demonstrates examples of methods and con-

structors stored on objects. To motivate the need to distin-
guish these cases, suppose the programmer has decided to

rename the active token on line 78. For this type of code, it

is generally safe to assume that the active token on line 81
is related to the one on line 78.

However, if instead the programmer had decided to re-
name the x token on line 84, it is not generally safe to assume

that the x token on line 90 should be renamed as well. The

key difference is that Rect and Vector2 are constructors,
and thus their this arguments are not related to the object

on which the function is stored.

Unfortunately, the two cases are structurally quite similar.
Given a statement of form e.f=function( . . . ){ . . .}, we

cannot immediately tell if the function is a method or a
constructor.

In this phase, we exploit two indicators of a function be-

ing a constructor. The most direct indicator is that it is in-
voked using the new keyword. The second indicator is that

the source code mentions its prototype property. As previ-

ously mentioned, this property has a special meaning when
used on functions, and is typically only used for constructor

functions.
Generally detecting how a function is called is a hard

problem involving call graph construction, but our situa-

tion is much simpler than that. We are primarily interested
in functions that are accessed through namespace objects,

which we can easily recognize statically using the following

heuristic.



Namespace detection After the constraints from the prior

phase have been generated, we saturate the ≡ relation under

the closure rules in Section 3.2. Then, for any expression of
form new e.f( . . . ) or e.f.prototype we mark the type

of e as a namespace type. Any expression with same type as

e will be considered to be a namespace. Namespaces are not
considered to have any methods.

Using the above heuristic, the Rect function in Figure 3
will not be considered a method on the util object, because

util has been marked as a namespace by the new-call on

line 94.
There is an inherent whole-program assumption in this

heuristic. If the programmer has created a namespace with

two functions intended to be used as constructors, but is not
yet using any of them, the heuristic may fail to detect the

namespace object. For example, if the new call on line 94

were not yet written, the two x tokens in Figure 3(b) would
be treated as being related. The practical implications of this

are discussed in the evaluation section.

Method definition Once namespaces have been identified,
we look for method definitions. For an expression of form

e1.f = e2 where e1 was not marked as a namespace and e2 is

a function expression, we say e2 is a method definition with
e1 as its host expression. Likewise, for an initializer f : e2
inside an object literal o, we say e2 is a method definition

with o as its host expression. For any method definition
with body g and host expression e, we add the constraint

e ≡ this(g).

Example (prototype method) In the code below, the baz
function is considered a method on Foo.prototype, hence

its this argumentwill get the same type as Foo.prototype.

Since this inside the Foo function also has the same type as
Foo.prototype by the function rule from the prior phase,

the two uses of this have the same type. Hence, the two

uses of x will ultimately be considered related.

95 function Foo(x1) {

96 this.x = x1;

97 }

98 Foo.prototype.baz = function() {

99 alert(this.x);

100 };

101 new Foo(5).baz(); // alerts "5"

Example (extend function) The code below uses the extend

function commonly found in third-party libraries, which
copies all properties from one object to another. The host

object of the baz method is thus a temporary object that ex-
ists only briefly until its properties have been copied onto

the Foo object. Even though this temporary object is never

actually passed as this to the baz method on line 105, the
method definition constraint ensures that the object literal

has the same type as this, which has the desired effect: the

two uses of x will be considered related.

102 var Foo = {};

103 Object.extend(Foo, {

104 x: 5,

105 baz: function() {

106 alert(this.x);

107 }

108 });

109 Foo.baz(); // alerts "5"

This example, as well as the following one, also demon-

strates why our analysis is technically not an alias analysis:

the this expression on line 106 is not an alias of the object
literal, so if we used a precise alias analysis instead of our

type inference, the two uses of x would not be considered

related.

Example (class system) The code below uses a popular

class system provided by the prototype.js library3 to simulate
the creation of a class. As with the extend function, the

host object for the two methods is in fact not passed as this
to either method, but again, receiver type inference has the

desired effect: the two uses of x become related.

110 var Foo = Class.create({

111 initialize : function(x1) {

112 this.x = x1;

113 },

114 baz : function() {

115 alert(this.x);

116 }

117 });

118 new Foo(5).baz(); // alerts "5"

3.5 Saturation Algorithm

At the end of each phase, the ≡ relation is saturated until

it satisfies the closure rules in Section 3.2. Since the result

is an equivalence relation, it can be represented efficiently
using a union-find data structure [1]. In the following, we

assume the reader is familiar with union-find and associated
terminology.

The only rule not immediately satisfied by virtue of the

traditional union-find algorithm is the prty rule. We aug-
ment the union-find data structure such that each node has

a prty field, in addition to the standard parent pointer and

rank fields. The prty field holds a map from strings (property
names) to nodes of the union-find data structure. Initially,

one union-find node is created for each program expression,
including the pseudo-expressions defined in Section 3.1. We

informally refer to these nodes as types, since two expres-

sions have the same type exactly if their nodes have a com-
mon representative. The type of a term e ⋄ f is the node

pointed to by the f entry in the prty map of the representa-

tive of e. If no such node exists, then e ⋄ f is not same-typed
with any other term.

3 http://prototypejs.org/



When two nodes n1, n2 are unified, such that n1 becomes

the new root, their prty maps are merged by the following

procedure. For property names present only in n2’s prty
map, the corresponding entry is copied over to n1’s prty
map. For property names present in both maps, the nodes

they refer to are recorded in a worklist of node-pairs that
should be unified. As a simple and effective optimization to

this procedure, we initially swap n1 and n2’s prty pointers
if n2’s prty map is bigger than n1’s, so fewer entries need to

be copied. At the end of each phase, node pairs are removed

from the worklist and unified until the worklist is empty.
We also store an isNamespace boolean on each node,

for marking nodes as namespaces during the second phase.

The namespace detection can be done while traversing the
abstract syntax tree in the first phase.

A pseudo-code implementation of the augmented union-

find data structure is given in Figure 4. The code does not
include the generation of constraints during traversal of the

abstract syntax tree.
When a constraint of form e1 ≡ e2 is discovered, we

invoke the unify method with the corresponding nodes. For a

constraint of form e1 ⋄ f ≡ e2, we invoke unifyPrty instead.
The constraints need not be stored explicitly; invoking the

corresponding method on the Unifier instance is sufficient.

At the end of each phase, we invoke the complete method to
ensure that the prty closure rule is satisfied.

4. Evaluation

We implemented a renaming plugin4 for Eclipse, based on

the algorithm described in the previous section. We use the
same underlying implementation for this evaluation.

Ideally, the primary metric of usefulness of a refactoring
tool is its impact on programmer productivity. This is unfor-

tunately hard to define and difficult to measure directly, so

we base our evaluation on the following more tangible met-
rics, which we consider good indicators of usefulness:

Manual Effort: How many questions must the programmer

answer to complete a renaming? Since the programmer
need only consider a single token per question, a ques-

tion issued by our tool is no more difficult than the corre-

sponding search-and-replace question.

Soundness: If given correct answers by the programmer,

how likely is it that a renaming is ultimately inconsistent?

In other words, is the analysis sound in practice?

Delay: How long must the programmer sit idle while wait-
ing for the tool to finish a computation?

Whole-Program: Does the tool apply to library code, with-

out having application code available? Does it apply to
incomplete application code, such as, code under devel-

opment or applications without libraries?

4 http://www.brics.dk/jsrefactor/plugin.html

1 class UnifyNode:
2 field parent = this

3 field rank = 0
4 field prty = <empty map>
5 field isNamespace = false

6

7 def rep():
8 if parent != this:
9 parent = parent.rep()
10 return parent
11

12 class Unifier:
13 field queue = <empty queue>
14

15 def unify(x,y):
16 x = x.rep()
17 y = y.rep()
18 if x == y:
19 return

20 if x.rank < y.rank:
21 swap x, y
22 else if x.rank == y.rank:
23 x.rank += 1
24 y.parent = x
25 x.isNamespace |= y.isNamespace
26 if x.prty.size < y.prty.size:
27 swap x.prty, y.prty
28 for k,v in y.prty:
29 if k in x.prty:
30 unifyLater(x.prty[k], v)
31 else:
32 x.prty[k] = v
33 y.prty = null

34

35 def unifyPrty(x,k,y):
36 x = x.rep()
37 if k in x.prty:
38 unify(x.prty[k], y)
39 else:
40 x.prty[k] = y
41

42 def unifyLater(x,y):
43 queue.add(x,y)
44

45 def complete():
46 while queue is not empty:
47 (x,y) = queue.pop()
48 unify(x,y)

Figure 4. Python-like pseudo-code implementation of the

augmented union-find data structure.



We collected 24 JavaScript applications for use as bench-

marks. Third-party libraries are used in 19 of the applica-

tions, constituting a total of 9 distinct libraries (some li-
braries are used by more than one application) that we also

include as benchmarks. Of these 24 applications, 10 were

taken from the 10k Event Apart Challenge,5 10 were taken
from Chrome Experiments,6 and 4 were found at GitHub.7

When selecting benchmarks, we aimed for diversity in com-
plexity, functionality, and use of libraries. The benchmark

collection is available online.8

To evaluate our technique along the above metrics, we
perform a series of experiments on these applications. The

benchmarks and experimental results are shown in Table 1.

In the following, we describe which experiments were used
to evaluate the various metrics, and the meaning of the

columns in Table 1.

4.1 Manual Effort

For both our technique and search-and-replace, the total

number of questions asked during a refactoring is indepen-

dent of whether the programmer answers yes or no to each
question. It is also independent of the new name for the iden-

tifier. This means there is a simple way to compute the num-

ber of questions each tool will ask, given the name of the
property to rename. For our approach,we can count the num-

ber of groups of related tokens with the given name, and for
search-and-replace we can count the number of tokens. To-

kens that refer to local variables are ignored in this statistic.

Renaming tools are typically invoked by selecting an
identifier token in the editor and then choosing the rename

action from a menu or using a shortcut. There is no reason to

ask a question for this initially selected token, so we subtract
one question per property name to represent this question

that is answered for free. Thus, the tool may potentially

ask zero questions to complete a refactoring. However, we
shall disregard properties that are only mentioned once in

the source code, so search-and-replacewill by design always
ask at least once. We also disregard the special property

name prototype since it is easily recognized as a built-in

property and is thus not renamed in practice.
To measure effort, we compare the number of questions

issued per benchmark by search-and-replace versus our ap-

proach, simulating one rename refactoring on each distinct
property name appearing in the benchmark. Application de-

velopers are unlikely to want to rename properties inside
third-party libraries, and vice versa, so we separate the set of

renaming tasks for application code and library code. How-

ever, we allow our refactoring tool to analyze the applica-
tion and library code together as a whole, to avoid interfer-

5 http://10k.aneventapart.com/

6 http://www.chromeexperiments.com/

7 http://www.github.com/

8 http://www.brics.dk/jsrefactor/renaming-benchmarks.zip

Figure 5. Number of questions asked by search-and-replace

(x axis) versus our tool (y axis). Each point represents a

property name in a benchmark.

Figure 6. Percentage of identifier tokens (y axis) belonging
to groups of size N (segment).

ence with the whole-programmetric that we address in Sec-
tion 4.4.

In Figure 5, each simulated renaming is plotted as a point

positioned according to the number of questions asked by
search-and-replace and by our tool, respectively. The diago-

nal highlights the place where the two tools are equally ef-
fective. The plot has been clamped to a limit of 100 ques-

tions, since the majority of points lie in this range. The most

extreme outliers excluded from the plot are the property
names c and f in pdfjs, which require 6,092 questions with

search-and-replace and 14 questions with our tool. A total of

4,943 renamings were simulated in this experiment. Figure 6
shows how tokens are distributed in groups of various sizes

during the simulated renamings.

To estimate the effect per benchmark, we sum the total
number of questions for each property name in each bench-

mark. In Table 1, the effect column denotes the reduced pro-
grammer effort, based on this estimate. It is computed using

this formula:

effect =
#search-replace-questions− #our-questions

#search-replace-questions



Figure 7. Number of property names (y-axis) renamable

with≤3 questions, relative to the number of candidate prop-
erty names in each benchmark. The bottom graph focuses on

the set of property names that search-and-replace cannot re-

name with≤3 questions, showing howmany can be handled
with our technique using ≤3 questions.

Thus, if our tool asks the same number of questions as

search-and-replace, we get an effect of 0%, while if we ask
no questions at all, we get an effect of 100%.

The effect is in most cases between 40% and 70% but

reaches 17% and 97% in extreme cases. The average and
median effect are both approximately 57.1%. Two thirds of

the benchmarks show an effect of more than 50%.

Each library that is used by multiple applications is an-
alyzed together with each client application. In each case,

we observe that the effect is exactly the same regardless of
which application is used.

Although this indicates a significant reduction in the ef-

fort required to perform renamings, it may be that the num-
ber of questions remains so high that programmers deem

the refactoring too costly and choose to omit an otherwise

desirable renaming altogether. If we regard renaming tasks
that require more than three questions as hard and renam-

ing tasks that require at most three as easy, we can consider
how many renaming tasks are easy when using search-and-

replace versus our tool.

Figure 7 (top) shows how many properties can be re-
named using at most three questions. All benchmarks ben-

efit from the new technique, and in many cases we observe

a substantial increase in the number of easy renamings. In

7spade jslinux

Figure 8. Number of property names (y-axis) renamable
with ≤N questions (x-axis). The horizontal line indicates

the number of candidate property names in the benchmark.

Figure 7 (bottom) we focus on the property names for which
search-and-replace requires more than three questions. This

plot demonstrates that many of the renamings that are hard

when using search-and-replace are easy when using our tool.
For two thirds of the benchmarks, more than half of the hard

renamings become easy.

In Figure 8 we vary the number of questions allowed,
while focusing on two benchmarks, one with low and one

with high effect. While the bound of three questions in Fig-

ure 7 was arbitrary, these figures indicate similar improve-
ments for other bounds as well.

These figures indicate that even programmerswho are un-
willing to invest much time in renaming tasks may benefit

from our tool. In summary, this part of the evaluation indi-

cates a substantial reduction of programmer effort compared
to traditional search-and-replace.

4.2 Soundness

As described in Section 3, our program analysis is theo-

retically unsound, but designed to work soundly on com-

mon programming patterns. We define a failure as a situ-
ation where unsoundness occurs in practice, that is, where

our technique classifies two identifier tokens as related, even
though they were not intended to refer to the same property.

To estimate how likely this is to happen, we used a combi-

nation of dynamic analysis and manual inspection.
We exercise instrumented versions of each application,

including the libraries they use, and record aliasing informa-

tion at runtime. In these executions, we manually provide
user input to each application, aiming to use all of its fea-

tures at least once. High coverage is desirable, as it reduces
the amount of manual inspection we must do afterward.

Given two expressions e1.f and e2.f , if e1 and e2 evalu-

ate to the same object at some point in the execution, then we
have strong evidence to support that the two f tokens should

indeed be related. If our technique classifies these as related,

we therefore consider the classification as correct.



whole isolated fragmented

Applications lines libraries used effect failure ∆effect failure ∆effect failure

7spade 959 29.3% - - - - -
airstrike 1,508 prototype 68.5% - - - −0.03 pp -
bpmster 990 jquery 49.6% - −0.41 pp - −0.63 pp X
bytesjack 685 jquery, typekit 52.7% - −0.15 pp - - -
film-buffr 203 jquery, typekit 29.3% - - - - -
nspiration 575 jquery, typekit 35.1% - −0.70 pp - −1.60 pp -
phrase 176 jquery, typekit 60.4% - - - - -
space-mahjong 344 jquery, typekit 17.2% - - - - -
sun-calc 589 67.1% - - - - -
top-of-the-world 158 jquery, typekit 49.1% - - - - -
ball-pool 347 box2d, prototype 55.5% - - - - -
fluid-simulation 484 97.0% - - - - -
google-gravity 6,621 71.1% - - - −0.05 pp -
htmleditor 1,835 codemirror, esprima 43.9% - - - - -
minesweeper 562 jquery 90.8% - - - - -
procedural-flower 2,215 dat.gui 67.9% - - - - -
sketchtoy 959 jquery, show_ads 61.0% - - - - -
texter 246 dat.gui 64.3% - - - - -
webgl-water 1,627 57.4% - - - - -
ztype 3,581 show_ads 72.3% - - - −0.06 pp -
impress.js demo 448 twitter_widgets 57.1% - - - - -
jsgb 3,815 show_ads 44.9% - - - - -
jslinux 10,054 80.4% - - - −0.27 pp -
pdfjs 38,958 72.5% - - - −0.02 pp -

Libraries

jquery 6,098 48.4% - - - −0.03 pp X
typekit 1,359 51.1% - - - −0.04 pp -
prototype 4,954 48.7% - - - −0.15 pp -
box2d 6,081 72.1% - - - −0.03 pp -
esprima 3,074 63.9% X - (X) - (X)
codemirror 5,008 52.0% - - - −0.03 pp -
dat.gui 2,149 58.8% - - - - -
show_ads 590 54.1% - - - - -
twitter_widgets 2,965 41.7% - - - −0.22 pp -

Table 1. Experimental results. The effect column denotes reduced programmer effort (higher is better). The ∆effect columns

are in percentage points (pp), relative to the effect column (zero is better). An ‘X’ denotes a potential failure discussed in the
text. The symbol ‘-’ indicates zero.

In situations where our tool classifies two tokens as re-

lated, but the dynamic alias information does not provide
evidence supporting this relationship, we resort to manual

inspection. This may happen because of incompleteness in

the concrete execution, or more commonly, because of meta-
programming patterns in which properties are copied be-

tween objects, which our dynamic analysis cannot detect.
This experiment uncovers a single potential failure, which

takes place in the esprima library—a JavaScript parser writ-

ten in JavaScript. This library represents abstract syntax trees
with objects, and all such objects have a type property de-

noting the type of the node it represents. Different types of

nodes occasionally have same-named properties; a property
name, such as, value is quite common among these. How-

ever, an esprima developer might hypothetically want to re-

name the value property for some AST nodes, but not all of

them. Such a renaming could be done consistently, but our

technique will not permit such a refactoring, because dif-
ferently typed AST nodes are occasionally returned from

within the same function, hence regarded as same-typed.

This potential failure is marked with an X in the leftmost
failure column in Table 1. Except for this single case, the

experiments confirm that our analysis is sound in practice
when the complete program code is available.

4.3 Delay

For each application, we measure the time required to ana-

lyze the application code together with its library code. We
analyze each benchmark eleven times, discard the timings

from the initial warm-up run, and record the average time of

the other ten runs.



The analysis takes less than one second in every case,

with 780 milliseconds for pdfjs being the slowest. Alto-

gether, our implementation handles an average of around
50,000 lines per second on a 3.00 GHz PC running Linux.

When the user initiates a renaming, he must first enter a

new name for the renamed property. The parsing and anal-
ysis do not depend on this new name and can therefore be

performed in the background while the user is typing. As
long as the user takes more than one second to type in the

new name, there should therefore be no observable delay in

practice when using our renaming technique.

4.4 Whole-Program

For the experiments described in the preceding sections, our
static analyzer has an entire application available. However,

library developers will typically not have a range of client

applications ready for when they want to rename something.
To measure how well our tool works for library code, we

repeat the experiment from Section 4.1, except that each li-

brary is now analyzed in isolation. As result, we observe no
difference in the effect for any library compared to the previ-

ous experiment, in which the application code was included.
This is indicated in the isolated/∆effect column of Table 1.

For completeness, we also did the converse experiment:

we analyze the applications without their libraries, even
though application developers will typically have a copy

of their libraries available. For three applications, the effect

diminishes slightly, but never by more than a single per-
centage point. In the most pronounced case, the effect drops

from 35.1% to 34.6% in the nspiration application.

These experimental results indicate that our approach is
effective without a whole-program assumption.

We also want to support refactoring of code that is under
development, which we call incomplete code. Such code

might have radically different characteristics than finished

code.
To estimate how well our tool works on incomplete code,

once again we repeat the experiment from Section 4.1, ex-

cept now with random pieces of code removed from each
benchmark. We say the source code has been fragmented.

Concretely, we replace random function bodies with empty
bodies, which simulates incomplete code while avoiding in-

troduction of syntax errors. For each benchmark, we pro-

duce ten fragmented versions randomly, each being roughly
half the size of the original version. For each fragmented

version, we then compute groups of related identifier tokens

and compare these with the corresponding groups from the
original version. We then record which token pairs were no

longer considered related after fragmentation and compute
the difference in effect accordingly (while only considering

tokens that were not removed).

As result, the effect diminishes for seven applications
and six libraries, in each case only slightly. The largest

change is for a fragmented version of nspiration, in which

the effect drops from 69.8% to 66.7% (again, for identifier

tokens that were not removed in the fragmentation). The

fragmented/∆effect column in Table 1 shows the reduction

in effect, averaged over the ten fragmented versions. The
numbers demonstrate that our analysis is robust, even when

major parts of the code are omitted.

This experiment also exposes a type of unsoundness
caused by our namespace detection mechanism discussed

in Section 3.4. The benchmarks bpmster and jquery both
contain constructor functions in namespace objects. After

fragmentation, all the new calls that allowed us to classify

these functions as constructors were occasionally deleted,
causing the receiver type inference phase to treat the con-

structors as methods. This in turn causes some unrelated to-

kens to be classified as related. As discussed in Section 3.4,
the namespace detection uses a whole-program assumption,

which surfaces in these few cases where the relevant code

is not available to the analysis. In principle, these failures
could be averted by allowing the programmer to provide a

single namespace annotation to each benchmark, marking a
few global variables as namespaces.

4.5 Threats to Validity

The validity of these encouraging experimental results may

be threatened by several factors. Most importantly, the sim-
ulated refactorings may not be representative of actual use

cases. An alternative evaluation approach would be to con-

duct extensive user studies, but that would be major endeav-
our in itself, which is also the reason why most literature on

refactoring algorithms settle for automated experiments.

The fragmented code we produce might not be represen-
tative of code under development. Revision histories from

version control systems might provide a more faithful repre-
sentation of incomplete code, but we did not have access to

such data for most of our benchmarks.

Finally, our selection of benchmarks might not represent
all mainstream JavaScript coding styles, although they have

been selected from different sources and vary in complexity,

functionality, and use of libraries. All our benchmarks are
browser-based. However, our approach works without any

model of the host environment API, so it seems reasonable
that it should work well also for other platforms.

5. Related Work

In previous work [3], we showed that points-to information
can be used to perform various refactorings on JavaScript

programs, fully automatically and with safety checks to en-

sure that program behavior is preserved. That technique,
however, has some practical limitations regarding scalability

and whole-program assumptions of the points-to analysis, as
discussed in the introduction. Our new more pragmatic ap-

proach requiresmoremanual effort from the user, but applies

to a wider range of codebases.
Fast alias analyses in the style of Steensgaard [11] use

union-find data structures to efficiently find aliased expres-

sions in a program. Our type inference system is inspired



by this kind of analysis, but as discussed in Section 3, it is

technically not an alias analysis, since we occasionally want

non-aliased expressions to have the same type.
Several related static analysis techniques have been de-

veloped specifically for JavaScript. The type analysis by

Jensen et al. [6] is based on flow-sensitive dataflow analy-
sis, Vardoulakis [13] uses a pushdown flow analysis to infer

type information, and the flow analysis by Guha et al. [5]
relies on reasoning about control flow. The notion of types

we use here is different, and the application of our analy-

sis is not type checking but refactoring. Sridharan et al. [10]
havemade advancements toward analyzing library code with

points-to analysis, andMadsen et al. [7] have devised a prac-

tical technique for analyzing application code without in-
cluding library source code or modeling external APIs. None

of all these approaches scale to JavaScript programs of the

size we consider here. Moreover, these analyses are conser-
vative in the direction opposite of what we want: what they

classify as spurious flow translates into unsoundness in our
setting, and vice versa.

6. Conclusion

We have presented a technique for semi-automatic refactor-
ing of property names in JavaScript programs, based on a

static analysis for finding related identifier tokens. The anal-

ysis is easy to implement, and our experiments demonstrate
that it is fast enough to be usable in IDEs. By simulating

renaming tasks, our technique reduces the manual effort re-
quired to rename object properties by an average of 57%
compared to the search-and-replace technique in existing

JavaScript IDEs. This substantial improvement diminishes
only slightly when used on incomplete code, and seemingly

not at all when used on libraries without client code.

Although the analysis is theoretically unsound, the exper-
iments show that it is sound in practice, except for a few rare

cases, most of which could be eliminated entirely with sim-
ple source code annotations.

Our technique is based on a set of typing rules reminis-

cent of alias analysis. While we have focused on renaming
so far, we would like to explore further applications of these

typing rules in future work, such as, other refactorings, code

completion, and documentation, to provide additional IDE
support for JavaScript programmers.
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