Stateless Model Checking of Event-Driven Applications

Casper S. Jensen Anders Mgller

Department of Computer Science
Aarhus University, Denmark

{csj,amoeller}@cs.au.dk

Abstract

Modern event-driven applications, such as, web pages and
mobile apps, rely on asynchrony to ensure smooth end-user
experience. Unfortunately, even though these applications
are executed by a single event-loop thread, they can still
exhibit nondeterministic behaviors depending on the execu-
tion order of interfering asynchronous events. As in classic
shared-memory concurrency, this nondeterminism makes it
challenging to discover errors that manifest only in specific
schedules of events.

In this work we propose the first stateless model checker
for event-driven applications, called R*. Our algorithm sys-
tematically explores the nondeterminism in the application
and concisely exposes its overall effect, which is useful
for bug discovery. The algorithm builds on a combination
of three key insights: (i) a dynamic partial order reduction
(DPOR) technique for reducing the search space, tailored to
the domain of event-driven applications, (ii) conflict-reversal
bounding based on a hypothesis that most errors occur with
a small number of event reorderings, and (iii) approximate
replay of event sequences, which is critical for separating
harmless from harmful nondeterminism.

We instantiate R* for the domain of client-side web ap-
plications and use it to analyze event interference in a num-
ber of real-world programs. The experimental results indi-
cate that the precision and overall exploration capabilities of
our system significantly exceed that of existing techniques.

Categories and Subject Descriptors D.2.4 [Software Engi-
neering]: Software/Program Verification; D.2.5 [Software
Engineering]: Testing and Debugging

Veselin Raychev ~ Dimitar Dimitrov
Martin Vechev

Department of Computer Science
ETH Zurich, Switzerland

{veselin.raychev,dimitar.dimitrov,martin.vechev}@inf.ethz.ch

Keywords Model checking; partial order reduction; data
races; web applications; event-driven applications

1. Introduction

Client-side computing platforms, such as, web pages and
mobile applications, use an event-driven execution model
to handle a diverse set of events in a responsive manner.
These events include timers, network communication, and
user-triggered actions (e.g., clicking a button on a web page
or a smartphone). Even though such applications run single-
threaded and without preemption, their execution is sen-
sitive to the precise timing of events, which is not fully
controlled by the user. As event handlers frequently access
shared memory, this may result in interference, leading to
potentially nondeterministic and erroneous results.

State-of-the-art To address this challenge in the setting
of event-driven applications, recent works have proposed
mechanisms for going beyond ordinary testing and detect-
ing sources of nondeterminism where event handlers may
interfere and can execute in any order [13, 14, 18, 26, 27].
While detecting interference is a useful building block, it still
lacks essential analysis capabilities. First, it does not explore
new schedules of events, which is critical for finding errors
that occur only in specific schedules. Second, it cannot easily
classify whether the detected interference is harmful or not.
Indeed, despite filtering techniques, state-of-the-art analyz-
ers, such as EVENTRACER [27], report too many false pos-
itives. Approaches that do explore more than one schedule,
including WAVE [12], suffer from serious drawbacks: first,
they do not detect interference and thus may keep exploring
equivalent schedules; second, they are inherently unable to
report the primary cause of the nondeterminism (making it
difficult to fix errors), and finally, they provide no meaning-
ful guarantees on the explored schedules.

In the setting of shared memory concurrent programming,
the problem of systematically exploring nondeterminism in
realistic concurrent applications is addressed via an elegant
technique referred to as stateless model checking [10]. A key
benefit of this approach is that it does not require storing
all reachable program states, which would be infeasible for

realistic applications. Due to its effectiveness, the technique
has been implemented in various tools targeting concurrency
testing [11, 22].

This work In this work we present the first stateless model
checker for event-driven applications, called R*. Our al-
gorithm consists of four phases: (1) Record: execute a
given event sequence while monitoring all nondeterminis-
tic choices. This initial event sequence may come from a
user, a test suite, or an automated testing tool (e.g., [3, 17]).
(2) Reorder: construct alternative event sequences by sys-
tematically reordering events. Here we adapt classic tech-
niques such as dynamic partial order reduction (DPOR)
[9], to the domain of event-driven applications and combine
these with conflict-reversal bounding. This step also lever-
ages advanced conflict and race detection algorithms. To
help programmers find the primary cause of harmful non-
determinism, the algorithm prioritizes event sequences with
few changes compared to the initial one. (3) Replay: execute
the alternative event sequences by introducing a notion of
approximate replay, allowing us to replay entire sequences
even when events in the sequence become disabled or new
events appear. (4) Report: analyze the consequences of the
reorderings and report the ones that are most likely to indi-
cate errors.

Contributions The main contributions of this paper are:

e We present the R* algorithm for stateless model checking
of event-driven applications. Our algorithm adapts DPOR
to the event-driven setting and supports conflict-reversal
bounding for controlling the number of changes in an
explored sequence and approximate replay for reducing
divergence from the initial execution.

e We instantiate R to the domain of client-side JavaScript
web applications and provide a complete end-to-end im-
plementation including both an integration with a WebKit
browser as well as state-of-the-art conflict detection tech-
niques.

e We evaluate R* on a set of real-world JavaScript web ap-
plications and demonstrate experimentally that it can sys-
tematically explore nondeterminism to detect errors with
higher precision than prior work. Not only is R* capa-
ble of producing concrete witnesses that explain the con-
sequences of alternative event schedules, it also shows
that 87% of the warnings produced by EVENTRACER
are harmless. We additionally find that WAVE reports an
overwhelming amount of false positives compared to R?.

Outline 1In Section 2, we provide an informal overview of
our approach illustrating the key concepts. Section 3 intro-
duces the formal notation that we use in Section 4 where our
model-checking algorithm is presented in more detail. Our
implementation and experimental evaluation are described
in Section 5. Related work is discussed in Section 6, and we
conclude in Section 7.

1 <!DOCTYPE html>

2 <html lang="en"><head>

3 <script>

4 var queue = Array(Q);

5 function lazyLoad(src) {
6 var img = new Image();
7 img.onload = function() {
8 queue.push(img);

9 };

10 img.src = src;

11 3;

12 function showNextImage() {
13 if (queue.length == 0) {

14 // show loading image

15 setTimeout (showNextImage, 100);

16 } else {

17 // replace the current image with
18 // the next image in the queue

19 }

20 }

21 window.onload = function() {
22 lazyLoad ("image2.png");

23 lazyLoad("image3.png");

24 //

25 };

26 </script>

27 </head><body>

28 <button onclick="showNextImage();">Next</button>

29
30 <script src="stats.js" defer></script>
31 </body></html>

Figure 1. A JavaScript application with nondeterminism.

2. Overview of R*

We begin with an informal overview of R* using an illus-
trative example. Although our stateless model checking al-
gorithm is generally applicable to event-driven applications,
the implementation and examples focus on client-side web
applications.

Illustrative example Figure 1 shows an example of a
JavaScript web application. It contains a slide show widget
that uses deferred loading of images to minimize the initial
load time and thereby maximize responsiveness. The wid-
get requests the images from the server when the page loads
(lines 21-25). Each time an image is received, it is added to
a queue (line 8). Whenever the user clicks the Next button
(line 28), the current image is replaced by the next one from
the queue (lines 17-18), provided that one is available. If the
queue is empty because the next image has not yet arrived,
a loading indicator is shown, and a timer is set to retry after
100ms (lines 14—15). In addition, an external statistics script
is fetched (line 30) using the defer attribute which defers
script execution until after page load.

During execution, the browser repeatedly selects a pend-
ing event and atomically executes the associated event han-
dler. After each execution of an event handler, we concep-
tually wait until all pending timeouts and server responses
have appeared, such that we have a well-defined set of en-

abled events for the next step. In practice, we find the en-
abled events by constructing the happens-before relation [26,
27].

As we will see below, this example already contains much
nondeterminism, making it a challenging program analysis
problem. In what follows, we will illustrate the operation of
each of the four phases of R* on the running example.

2.1 Reordering Events

An execution of the application is defined by a sequence of
events from the user (e.g., when clicking on a button) or
from the system (e.g., when an image has been loaded or
a timeout occurs). Given an initial execution, our goal is to
explore the state space of alternative schedules of the system
events to expose the consequences of the nondeterminism.
A key challenge is how to construct interesting alternative
event sequences (naively trying all possible event reorder-
ings is infeasible). To accomplish this task effectively, we
adapt and extend the DPOR algorithm [9], originally de-
signed for stateless model checking of traditional concur-
rent programs, to the domain of event-driven applications. In
particular, to determine backtracking points, the traditional
DPOR algorithm works in a forward manner by examining
all transitions from a given state and comparing them against
already executed transitions. However, precisely predicting
how a given transition affects the current state is generally
not possible in an event-driven application. The reason is
that the size of the (atomic) transition can comprise thou-
sands of statements (i.e., the instructions of an event han-
dler). Instead, our DPOR variant only works with the past
and compares transitions that have already been executed.

At any point in time, our algorithm maintains an event
sequence from the initial state of the application to the cur-
rent point in the exploration. An example of such a sequence
(consisting of six events) obtained from running our exam-
ple is shown in Figure 2a. In this sequence, called ()1, an
image is first loaded (event ey, line 8), then the user clicks a
button twice (events e; and e, line 28), then another image
is loaded (event eg, line 8), a timer event is executed (event
ey, line 15), and finally the external statistics script is parsed
(event es, line 30).

To explore the nondeterminism present in such an execu-
tion, we need to address two challenges: selection of relevant
conflicts and creation of new event sequences based on those
conflicts.

Selection of relevant conflicts To select relevant conflicts,
we analyze the current sequence for pairs of relevant con-
flicting events. Intuitively, two events x and y are conflict-
ing if when x and y are swapped: i) one of the two events
disables the other one, or ii) the two events do not disable or
enable each other, but they do interfere (e.g., access the same
shared memory). The precise notion of conflicting events
and a procedure for identifying such events are described
formally in Sections 3—4. We do not always select all possi-

Figure 2. Exploration of the nondeterminism in an example
execution. Figure 2a shows the explored states after one
execution, while Figure 2b shows the explored states after
six conflict reversals.

ble conflicting events, but a subset of these where it is pos-
sible to reorder the events without changing the order of any
other conflicting events.

As an example of relevant conflicts, consider again the
original sequence ()7 in Figure 2a. Here we have three con-
flicts involving the image load events ey and e, at points
S0, S2, and s3. The conflicts occur between the event pairs
(eo,e1), (€2, e3), and (e3, e4), respectively. These conflicts
arise since all of these events access the same memory loca-
tion (queue) and could have been executed in a reverse order
with a different nondeterministic scheduling.

Note that e; and es do not conflict because they are both
user events, which in our work are always ordered (because
we are not interested in exploring event sequences that differ
from the user’s point of view). Also note that, for example,
eo and ey do conflict but they are not relevant conflicts
in ()1 because reordering them would require reordering
conflicting events ey and e;. Furthermore, note that e5 does
not interfere with any of the other events, and we have thus
no conflicts between e; and any other event. As a result,
we achieve partial order reduction by not exploring event
sequences that only differ in the scheduling of es.

Comparing with traditional DPOR Recall that a tradi-
tional DPOR algorithm works in a forward manner by exam-
ining all transitions from a given state, even disabled ones,
and comparing them against already executed transitions.
For example, detecting that there is a conflict between e,
and e; would require the analysis to reason about effects of
the unexplored event e;, which is highly nontrivial since this
would require precise reasoning about the code of the entire
event handler triggered by e;.

Creating reordered event sequences When the relevant
conflicts have been identified, we create new event se-
quences where the order of the events participating in these
conflicts are swapped. To achieve this, we may also need to
reorder some non-conflicting events. We refer to the con-
struction of these new event sequences as conflict reversals.
The algorithm stores the new event sequences, which will
be explored later, in the data structure representing the event
sequence. For example, at state s, in Figure 2a, the event
sequence that arises from swapping e and ej is stored (ex-
cluding the prefix that is common to Q7).

The algorithm then selects the last unexplored conflict re-
versal from this data structure (i.e., the one with the maximal
prefix match with the current event sequence). The approx-
imate replay phase (described in Section 2.3) then tries to
execute the new event sequence, and the entire process will
repeat until all conflict reversals are explored.

As an example, the last occurring conflict in the event
sequence ()1 in Figure 2a is found at s3. This conflict leads
to the sequence (- in Figure 2b. The explored sequences
after five additional conflict reversals are also illustrated in
Figure 2b. Note how the three relevant conflicts identified
in Q1 have been expanded into ()3, @3, and Q4. Further,
exploring @3 leads to ()5, and Q)4 leads to Qg and Q7.
In R? the report phase is interleaved with the reordering
phase, meaning that each new execution (); is immediately
compared to the prior sequence, which consists of one less
conflict reversal than @); and is called the parent of Q;.
The executions (2, @3, and), are thus compared with
their parent ()1, (J5 is compared with its parent @3, and Qg
and Q7 are compared with their parent (4. In this simple
example, only adjacant events are being swapped, but that is
not always the case in practice.

A note on the term “stateless” Our use of the term “state-
less” is consistent with current literature (e.g., [22]) and sim-
ply means that the exploration algorithm does not store the
visited states or maintain a representation of the entire ex-
ecution tree shown in Figure 2b. The algorithm only keeps
track of the current event sequence as well as the associated
information about unexplored conflicts. To detect harmful
conflicts between events by comparing executions in the re-
port phase, the algorithm also keeps some information about
the final state of an explored event sequence until all of its
children have been explored.

Replaying sequences vs. single events The above ap-
proach differs from traditional DPOR, which only stores
a single event to be explored later and not a complete event
sequence. However, we want to permit reasoning about a
specific pair of conflicting events and to determine if revers-
ing that pair of events causes different results. Thus, we store
the entire event sequence (e.g. eses eq at so in Figure 2a)
such that we can observe the effect of reversing the identi-
fied conflict without changing the remaining event sequence
(and inevitably reversing other conflicts). This approach of

constructing sequences rather than single events, when com-
bined with the approximate replay (Section 2.3), is used
later in the reporting phase (Section 2.4) when classifying
conflicts as harmful or harmless.

Detecting conflicts in practice In practice, a set of conflict-
ing events for an execution is detected (approximated) by in-
voking a dynamic race detector on that execution. Therefore,
it is important that this race detector is scalable and precise.
In our work, we use the state-of-the-art dynamic race detec-
tor EVENTRACER [27].

Interestingly, however, direct use of such read-write race
detectors sometimes leads to benign conflicts. The reason
is that these detectors report read-write conflicts between
events even though the events actually commute. This has
the unfortunate consequence that R* explores many unnec-
essary event sequences. To handle this problem, we addi-
tionally employ logical commutativity detection techniques
inspired by Dimitrov et al. [6]. As we show in Section 5,
combining these techniques with R* allows us to explore
real-world applications in a clean and systematic manner.

2.2 Conflict-Reversal Bounding

The algorithm as described so far may explore a large num-
ber of conflict reversals. It is known that realistic event se-
quences in real world event-driven applications often contain
hundreds of conflicts [27], hence exploring all possible com-
binations is infeasible.

Similar to the hypothesis that many concurrency bugs
are found with a low number of context switches [22], we
conjecture that typical errors involving nondeterminism in
event-driven applications can be found with a low number
of conflict-reversals. We substantiate this hypothesis exper-
imentally in Section 5.5. Based on this hypothesis, we in-
troduce conflict-reversal bounding, inspired by the use of
delay-bounded scheduling in traditional reasoning for con-
current programs [7].

Let d denote the number of conflict reversals for a given
event sequence as compared to the initial one. Thatis, d = 0
for the initial event sequence, and for each subsequent event
sequence, the value is 1 higher than for its parent. For the
exploration in Figure 2b, we have that d(Q1) = 0, d(Q2) =
d(@3) = d(Qs) = 1,and d(Qu) = d(Qs) = d(Q7) = 2.
We can now bound the systematic exploration by a param-
eter k, meaning that we will only explore event sequences
with d < k. Intuitively, k represents the maximum number
of deviations to be explored in the nondeterministic behav-
ior compared to the initial execution. Figure 2b illustrates
the exploration with £ = 2. With a higher bound, we would
also explore, for example, the conflict {eg, e3) in Q5.

2.3 Approximate Replay

Whenever we swap two events, the resulting event sequence
may not be executable. From the point of the first change,
the subsequent events may no longer be enabled. That situa-

tion is particularly likely in an event-driven setting where the
event handlers are not just simple read and write transitions
but are complex operations that often use ad-hoc synchro-
nization [27], similar to the timeout in our running exam-
ple. Prior work, both in standard shared memory [24] and in
event-driven applications [12] essentially ignores this phe-
nomenon.

To handle this issue, we introduce the concept of approx-
imate replay, which tries to execute a modified event se-
quence as close to the original one as possible. This works
as follows: For each event in a given event sequence, exe-
cute the event if it is enabled and skip the event otherwise.
Nondeterministic values (e.g., random numbers, network re-
sponses) are kept consistent across executions. For example,
when performing approximate replay of an XHR response
event e, the server response data handled by e is repeated
from the execution of the parent event sequence.

Example Continuing with our running example, consider
the event sequence (1 and the conflict {e2, e3). In this situ-
ation, we execute the events e - e; exactly, followed by an
approximate replay of e3-e5-ey4, resulting in Q3 in Figure 2b.
The approximate replay will detect that the timer event ey is
not enabled and is hence skipped in this execution.

2.4 Reporting Errors

So far we have described the core exploration capabilities
of R*. These capabilities can be used for a range of bug de-
tection scenarios. For example, we can use them to check
for common issues, such as, harmfulness of conflicts, appli-
cation crashes, assertion failures, and output discrepancies
(e.g., [8, 12, 15, 20, 29]).

Our report phase classifies each conflict as either harm-
ful or harmless, helping identification of errors caused by
conflicts between event handlers. Since we have information
both on the conflict being reversed and the resulting DOM
and JavaScript heap state, we can benefit from some pow-
erful EVENTRACER race filters, as well as new techniques
based on comparing states.

Two useful EVENTRACER filters that we use are: (1) de-
tecting conflicts caused by a late registration of an event han-
dler, and (2) detecting conflicts involving an unload event.
Both of these filters match common patterns. For example,
to avoid harmful nondeterminism during load time, web ap-
plications developers often register event handlers only after
full page load. In this situation, interacting with a partially
loaded page will have no effects, which leads to some non-
determinism of the DOM and JavaScript heap that is usually
considered harmless.

Additionally, we classify conflicts by comparing the
states of executions with and without a reversed conflict.
In case the states are fully equivalent, we have detected a
harmless conflict due to a commutative operation. In some
other cases there are differences in the states, but only in the
enabled timer events. We classify these as harmless since

they typically encode ad-hoc synchronization. The common
pattern being matched is waiting until a condition is satisfied
by periodically checking it every few milliseconds.

Every error report issued by R* about conflicting events
includes two concrete event sequences that — in contrast to
prior work [12] — differ only by a single conflict reversal.
This is important for reducing the amount of false positives
and for making the error reports comprehensible.

Example Returning to our running example in Figures 1
and 2, recall that a timer is spawned because the user clicks
the next button (ez) before the next image is available (e3).
The conflict between e, and e is explored in ()5. However,
when exploring this conflict, approximate replay will skip
the timer event e4 because it is disabled (as the image is al-
ready available when the user clicks the next button). A race
detector such as EVENTRACER will report the conflict be-
tween e and e3 as a harmful race. Similarly, tools such as
WAVE will report an error (they do so whenever they are
unable to execute the given sequence exactly). As we show
in Section 5.4, such approaches suffer from a high number of
false positives. In this example, the conflict is clearly harm-
less, and the inability to execute the event sequence exactly
is caused by ad-hoc synchronization. The report phase of R*
will identify the conflict explored in Q3 as ad-hoc synchro-
nization and mark it as harmless.

2.5 Summary of R?

In summary, R* explores the nondeterminism relative to
a given execution, using DPOR techniques to reduce the
search space. Unlike traditional DPOR, which determines
the effect of a candidate transition, the variant used by R?
only deals with already executed transitions. This is neces-
sitated for our domain of event-driven applications where
it is difficult to predict the effect of executing the event
handler code. R* also uses conflict-reversal bounding based
on the hypothesis that most errors should be found with a
small number of conflict reversals. Finally, unlike traditional
DPOR techniques, which schedule single events for execu-
tion, R* supports approximate replay where entire sequences
of events are stored and considered for execution. This capa-
bility, combined with the fact that the exploration reverses
one conflict at a time, enables effective classification of con-
flicts.

3. Background

In this section we introduce the necessary formal concepts to
explain our model checking algorithm in Section 4. Most of
the definitions are standard [9], except that we need to adapt
them to the domain of event-driven applications.

Transitions and traces An event-driven application is cap-
tured by a labeled transition system, (S, so, E,), where S
is a set of states, so € S is the initial state, F/ is a set of
events (labels), and 6 C S x E x S is the transition relation.

For example, a state can capture the HTML DOM and the
JavaScript heap of a running web application, and events in-
clude both user and system events. We assume that the tran-
sition relation is deterministic: for a given state s and event
e, there exist at most one state s’ such that (s,e,s’) € §
(note that the overall system behavior may still be nondeter-
ministic due to the scheduling order of different events). We
further assume that the events communicate only by reading
and writing to shared locations, and that if one event e; en-
ables or disables another event e5, then e writes to a shadow
location associated with es.

A finite trace 7 of the transition system is defined as
T = 80 —% - 5,1 % s, where (si, ei41,5i41) € 0
for all 0 < ¢ < n and sq is the initial state of the transition
system. To reduce clutter, we sometimes omit intermediate
states and write 7 = sg “Lgn Sy, or omit all states and only
write 7 as a sequence of events T = e1 - e2 - - - €,,. We use 7;
to refer to the event e; in 7, 7;.__; to refer to the sub-sequence
ofeventse;...e; € T,and 7 - 7' to denote concatenation of
two traces 7 and 7’.

The function enabled(s) captures the set of events en-
abled in state s, that is, enabled(s) = {e| (s, e, s’) € §}. We
say that s is a final state if enabled(s) = (. We use the short-
cut enabled(7) to denote the set of events enabled in the last
state s,, of the trace 7, that is, enabled(7) = enabled(s,,).
A trace T is maximal if enabled (7) = (.

Independence We say that two events =,y € F are inde-
pendent iff they do not affect each other in any executable
event sequence in the transition system, that is, z and y do
not enable or disable each other and they are commutative.

Definition 1 (Independence). An independence relation be-
tween events is any irreflexive and symmetric binary relation
I C E X E, such that for all pairs (x,y) € I and any state
s the following conditions hold:

1. y € enabled(s) iff y € enabled(s') for all s = ', and

2. ifx,y € enabled(s) then s =% s and s L5 s for
some s".

There may be multiple event sequences that only differ in
the order of independent events, which motivates the use of
transitive dependence.

Definition 2 (Transitive Dependence). The transitive depen-
dence relation —, between the events of a given sequence T
is the smallest partial order such that T; —, T; whenever
i < jand(7;,7j) & I.

The transitive dependence relation is an important con-
cept as it enables partial order reduction: an exploration al-
gorithm need not explore other linearizations of the partial
order —, than 7 itself, thus reducing the total number of
explored event sequences.

In our work, we will use a stronger definition of indepen-
dence, called read-write independence.

Definition 3 (Read-Write Independence). An independence
relation I is a read-write independence relation if for any
(z,y) € I and for any trace 7, if x /. y and y /> « then
there is no shared location written by one of the two events
and read or written by the other.

We say that two events z, y € E conflict iff they are both
enabled and dependent (i.e., not read/write independent).

Definition 4 (Conflict). The relation conflict is symmetric
over E such that conflict(r, x,y) holds for x,y € E and the
trace T if:

1. (z,y) €1, and
2. x,y € enabled(T).

Intuitively, the conflict relation w.r.t a trace 7 is similar
to the definition of dependence, except the conflict relation
excludes events from the relation where one event enables
the other. Later, we will relate the definition of conflict to
data races, which will allow us to leverage state-of-the-art
dynamic analysis techniques for computing conflicts.

Fartial order reduction Partial order reduction can be
achieved by exploring only a subset of events from any vis-
ited state. This set is typically referred to as a persistent set.

Definition 5 (Persistent Set). A ser of events X C enabled(s)
is persistent for the state s iff for every sequence s — t such
that X N7 = & it holds that (x,7;) € I for every x € X
and T; € T.

The value of the persistent set concept is that at a given
point in the exploration, we only need to explore the events
in the persistent set and not the other enabled events.

Example As an example, suppose three events x, y and
z are enabled in a state s and (z,y) € I, (z,2) € I, and
(y,2) & I. Then {x} is a persistent set for s since all event
sequences not including the event = (i.e., y, 2, y - z, and 2z - i)
reach events that are independent of z. Likewise, {y, z} is a
persistent set since the only other event sequence (i.e., x) is
independent of both y and z.

4. Stateless Model Checking

We now present our stateless model checking algorithm tar-
geting event-driven applications. Our algorithm is based on
three key ideas: dynamic partial order reduction (DPOR) [9]
extended and adapted to the domain of event-driven applica-
tions, approximate replay, and conflict-reversal bounding. In
what follows, we first discuss the core exploration algorithm
and then describe each of the three concepts.

The procedure, shown in Algorithm 1, takes as input
an event sequence 7;,;; and explores the state space of se-
quences derived from it by reordering events. In our setting,
this input sequence is obtained from the record phase, how-
ever the exploration algorithm is general and is independent
of how the input sequence is obtained. To avoid exploring

Algorithm 1: Our stateless model checking algorithm
for event-driven applications. The algorithm explores
schedules starting from the initial input trace 7;,,;;.

1 procedure explore(T;y,;:) begin

2 T = Tinit

3 updatePersistentSets(T)

4 updateVisited()

5 while 7 # € V unexplored(t) # () do

6 // Case I, explore a new event sequence
7 if 3b € unexplored(r) then

8 7 := replay(t - b)

9 updatePersistentSets(T)

10 updateVisited(T)

11 end

12 // Case II, backtrack

13 else

14 V(r)=0;T(r) =0

15 T:=Ti.|7—-1 //remove lastevent
16 end

17 end

18 end

19 procedure unexplored(r) begin
20 return {e|e € T(T) ANe € V(T)}

21 end

22 procedure updateVisited(T) begin
23 fori:=1...|7| do

24 ‘ V(T1mi_1) U:= {Ti}

25 end

26 end

all valid permutations of events, Algorithm 1 uses persistent
sets to prune the set of explored events in each visited state.
We show in our evaluation that pruning is essential when
exploring long sequences of events.

The algorithm maintains two maps T, V : E* — 2F from
states to sets of events, where a state is described by a list of
events that lead to that state. The map 7" contains a (partial)
persistent set, which consists of all events that must be ex-
plored, for each state. The map V' keeps a set of events that
have been explored for each state, thus for every 7 we have
V(r) C T(r) C enabled(r). Both maps T and V are ini-
tially empty. They are updated by updatePersistentSets and
updateVisited, respectively. The function unexplored takes a
state and returns the set of events from that state that are in
the persistent set and have not yet been explored.

We illustrate portions of the operation of Algorithm 1
in Figure 3. Given a trace 7, Algorithm 1 first updates the
persistent sets and visited events for each state. We show
these sets in Figure 3b. The events of the trace 7 at their
corresponding states are marked as visited (which is shown

T }
T T ;\b
b € unexplored ()

(a) (b) () (d)

maximal

Figure 3. Illustration of operation of Algorithm 1: (a) Start
with a trace 7; (b) update persistent sets and visited transi-
tions; (c) backtrack (lines 13-16) until the first unexplored
transition (d) explore a new trace (line 8) by extending 7 - b
maximally.

in the figure as \, while an unvisited event from a persistent
set is displayed by ™).

Then, Algorithm 1 reduces the trace 7 until its final state
has an unexplored event. Reduction of the trace happens on
lines 13-16 of the algorithm, marked as Case II, backtrack.
We show the result of a reduction in Figure 3c.

Exploring a new event is marked as Case I on lines 7-11
of the algorithm. There, a replay procedure takes as input the
event sequence 7-b and executes the sequence 7-b- . where p
can be any event sequence such that 7 - b - ¢ is maximal. The
primary reason why we require the trace to be maximal is
to ensure that Theorem 1 (discussed later) holds in this ide-
alized setting. In practice, creating a trace that is maximal
may be infeasible if, for instance, event handlers repeatedly
create new system events (this is akin to dealing with an un-
bounded number of threads). In that case, one could still run
and benefit from our exploration algorithm (though we will
then be unable to provide complete exploration guarantees).
In addition, regardless of whether the trace is maximal or
not, a key question arising in practice is how the suffix pu is
selected. In Section 4.2, we discuss an extended version of
replay that ensures control over how to create u. A result of
the exploration is illustrated in Figure 3d.

The process is repeated until 7 has been reduced to an
empty sequence and there are no unexplored events.

The remaining question is how to compute the persistent
sets T'. This is handled by the updatePersistentSets proce-
dure that we discuss next.

4.1 Constructing Persistent Sets

When selecting an instruction to be placed in the persistent
set, classic DPOR algorithms require knowing the effect of
that instruction on the program state. This requires either
speculatively executing the instruction or analyzing its ef-
fects statically. Both of these approaches are feasible in a tra-
ditional concurrent system where each instruction is a primi-
tive operation (e.g., a shared read or a write). However, in an
event-driven setting, such “look-ahead” is highly nontrivial
because we are not dealing with a single instruction but with
an atomic code fragment potentially containing thousands
of instructions, as discussed in Section 2.1. Therefore, we
instead update the persistent sets by comparing events that

Algorithm 2: Procedures for updating persistent sets in
T given an executed event sequence 7.

1 procedure updatePersistentSets(T) begin

2 fori:=1...|7| do

3 (P, 7%) i= (T1.im15 Ti...|7|)

4 insertIntoT (TP, 75, T)

5 foreach e € enabled(7?) \ enabled(r? - 7;) do
6 | insertIntoT (77 e - 7°,7)

7 end

8 forj:=i+1...|7|do

9 w := findRace Witness(7P, i, j, T)

10 if w # € then

1 | insertIntoT (77, w,T)

12 end

13 end

14 end

15 end

16 procedure findRaceWitness(tP, 1, j, 7) begin

17 if 3 linearization 70 - X\ - 7; - T - o of =, such that

1. conflict(t? - A\, 7, 7;) and

22 A=¢€co0r A =, T

18 then

19 | return -7 -7 p
20 else

21 | returnc

22 end

23 end

24 procedure insertintoT (TP, 75, T) begin
25 ‘ T(7P) U:= {7}
26 end

have already been executed in an event sequence 7. Thus,
updatePersistentSets operates on a trace 7 after getting the
trace either as an initial trace or from a replay. However, note
that the persistent sets in 7" are incrementally built from all
executions explored to a point and not only from the last ex-
ecution.

The updatePersistentSets procedure, shown in Algo-
rithm 2, iterates over each event 7; in 7, updating the per-
sistent set for the prefix 77 of 7;. The procedure builds the
persistent set 7'(7P) from the events that conflict with 7;.
It starts with {7;} (line 4) using the insertIntoT procedure
(here, insertIntoT does not refer to its parameter 7; in later
sections, 7 will be used). It then extends {7;} according to
Definition 5, by checking for two kinds of conflicts: conflicts
caused by events being disabled (lines 5-7) and conflicts
caused by non-commuting events (lines 8—13).

Next, we discuss the conditions for an event e to be
inserted into the persistent set at a state (via intertIntoT).
We illustrate the conditions on Figure 4. The first case,

2
B

linearization of — s
17 ! A =e€or
Lo - Al = Tj
TPt TPt conflict
2 3
[71 i
. o~ _ _ A)\
,l, 7, ¢ enabled »l' Ti T
| * | Ti /\Ti
7s{ ' edisabled by 7; s M Ti\,
| 17 R
| M W=
| P
< insertIntoT: << insertlntoT:
T(rP)U :={e} T(P)U:={(A-15)1}
(a) (b)

Figure 4. Visualization of the updatePersistentSets proce-
dure for (a) event 7; disables event e (lines 5-7), and (b) con-
ditions in findRaceWitness.

considered on lines 5-7 in Algorithm 2, is illustrated in
Figure 4a. In this situation, an event e is disabled by event
7; and thus e must be explored before 7;. The second case
(lines 8-13) is illustrated in Figure 4b. In this case, there is
a linearization of — . such that two events 7; and 7; can be
made adjacent and conflicting by reordering the events after
T; into appropriate sequences A and p. Checking existence
of such a linearization where 7; and 7; are adjacent can be
done by checking that there is no k between ¢ and j where
7; — T and 7, — 7;. Intuitively, these are requirements
that would allow for the order of the two conflicting events
7; and 7; to be reversed. If \ is the empty sequence e then
conflicting means that 7; is enabled at 77 and thus 7; is put
in the persistent set. In case A is nonempty and Ay —, 7,
we add \; to the persistent set since it makes a step towards
a state where 7; can be executed before ;. We note that, if
there exists a linearization that satisfies only the first point at
line 17, then there exists one that satisfies the second point as
well. This is because if e; —, y and e /4 y, then we can
always build our linearization such that e; occurs before es.
In Section 4.4, we give a way to obtain these requirements
via dynamic analysis on the trace 7.

The key correctness properties of the algorithm are cap-
tured by the following theorem.

Theorem 1. If Algorithm 1 searches an acyclic transition
system using a read-write independence relation, then upon
backtracking at a trace T

1. T(7) is a persistent set, and moreover, T(1) = @ iff
enabled (1) = @;

2. every trace T - v in the system is a prefix of a linearization
Of =1y for some explored trace T - V'

Proof. See the appendix.

Algorithm 3: Updated procedures to support approxi-
mate replay.

Algorithm 4: Updated procedures to support conflict
reversal bounding.

procedure unexplored.,(7) begin
return {7/ | 7' € Tyeq(T) AT € V(T)}
end
procedure updatePersistentSetss.,(T) begin
updatePersistentSets(T)
fori:=1...|7|do
Tseq (Tl‘..i) U:=
{0 oy |7/ € Toeq(T1..i-1), 71 = 73}
end
end
procedure insertintoT scq(Tp, Ts, T) begin
| Toeq(rp) U= {75}
end

N-T- R L7 I N S R S

—
W N =S

This theorem essentially states that the algorithm pre-
sented so far will explore all reachable events as well as all
reachable final states of the transition system. However, in
practice, full exploration is typically infeasible, and thus, in
addition to the partial order reduction technique discussed
so far, we next present two targeted strategies to focus the
exploration on parts of the search space that are more likely
to reveal bugs.

4.2 Approximate Replay

Algorithms 1 and 2 use persistent sets to represent what
must be explored. Recall that the exploration of an event b
in a persistent set requires the replay procedure to execute
an event sequence 7 - b - w (line 8 in Algorithm 1) where
w is picked arbitrarily (but such that the event sequence is
maximal). This suffices for Theorem 1, however, executing
w can be substantially different compared to the original
event sequence that caused us to reach 7 - b. As motivated
in Section 2.3, we would like to minimize the difference
between the original event sequence and the event sequence
to be explored. We address this challenge by introducing the
concept of approximate replay, a technique for guiding the
exploration along a desired path.

To achieve approximate replay, we extend each persistent
set to store event sequences and not single events. The map 7'
is then changed into the map T's., with the type E* — 2F "
This change is an extension of persistent sets, that is, the set
Tieq(T) can be translated into a persistent set by extracting
the first event in each sequence: T'(7) = {7{ | 7" € Tiq(T)}-
Here, the name seq stands for conflict reversal sequences,
which are the result of reversing the order of two conflicting
events (in Section 4.3 we introduce a bound on the number
of conflict reversals).

Algorithm 1 and 2 stay as-is and simply use the pro-
cedures shown in Algorithm 3. In addition, the procedure
updatePersistentSets;., handles a tricky corner case where

procedure insertintoT ., (Tp, 75, T) begin
Tseq(Tp) U= {7s}
d(tp - 715) ==d(1) +1

procedure unexplored .., (7) begin
return
{77 € Tseq(T) N1 € V(T) Nd(T - T") < k}

1
2
3
4 end
5
6

7 end

for a given explored sequence T and some prefix 7 of 7,
there are two sequences a,b € T, (7') where a = p - r and
b = p - q share the same prefix p. In that case, if sequence
a is explored, its prefix p will be marked as visited, preclud-
ing exploration of sequence b (even though b is not yet fully
explored). To ensure that b is explored, we update the entry
Tseq(T' - p) to contain ¢ (the unexplored suffix of b).

Finally, the semantics of the replay procedure is adjusted
as follows. It will execute any enabled event in the given
sequence, and simply skip events that are not enabled. For
example, the prefix 7 given to the replay procedure in line 8
in Algorithm 1 will always be executed as every event in 7
is enabled.

4.3 Conflict-Reversal Bounding

In general, an event-driven application (e.g., a web page)
may contain thousands of conflicts and full exploration (at
arbitrary depth) of all such conflicts is practically impossi-
ble, even with partial order reduction. Based on the hypoth-
esis that most errors can be found within a small number of
reversals derived from a given sequence, we introduce the
concept of conflict-reversal bounding which limits the num-
ber of conflict reversals.

To enforce bounding, we maintain a conflict-reversal
depth map d: E* — N from event sequences to natural
numbers (the entries of this map are initialized to 0). Intu-
itively, we associate each event sequence 7° inserted into
Tseq(7P) with a conflict-reversal depth, d(7? - 7%). When
exploring an event sequence 7 with depth d, all newly dis-
covered event sequences are assigned depth d + 1 (the use
of approximate replay ensures that the new event sequence
has only one additional conflict reversal). Conflict reversal
bounding prevents exploration of any event sequence with
d > k where £ is the conflict-reversal bound. To incorporate
conflict reversal bounding, the algorithms can simply use
the procedures insertintoT .., and unexplored ., shown in
Algorithm 4.

4.4 Computing Persistent Sets with a Race Detector

An important consideration when building a stateless model
checker is ensuring that the computation of the persistent

sets is as efficient as possible. To compute persistent sets as
defined in updatePersistentSets, we use a dynamic race de-
tector for every explored trace. That is, for each trace, we
instrument the execution in order to obtain two types of in-
formation. First, we need to collect the set of enabled events
for each intermediate state of a trace. This is needed to han-
dle the case illustrated in Figure 4a where an event e is added
to the persistent sets based on the observation that 7; dis-
ables e. Second, we collect a set of races, called uncovered
races, which handles the case illustrated in Figure 4b. Next,
we provide a few definitions for race detection.

Happens-before relation A happens-before relation
=< C E x FE is a partial order defined for the events of
a given trace 7, with two properties: (i) if e; <X ey then
e1 —, eo, and (ii) if 7 is a prefix of a linearization of —
and conflict(m,eq,e1) then e; A ey and es A ey. The first
condition implies that if e; < ey then e; occurs before es in
the trace 7 (denoted e; <, e3). The second condition says
that if one event happens before another then the two do not
participate in any conflict.

Races and uncovered races Two events ey, e; € T with
e1 <, ey participate in a race (eq, e2) if e; A ey and there
exists a shared location written by one of the two events and
read or written by the other. The definition of a race implies
that if two events race in some trace then they cannot be
read-write independent (Definition 3). Indeed, if e; and es
are unrelated by —, then by condition (i) above they are
unrelated by <. Therefore, if they race, then they cannot
satisfy the read-write disjointness condition in Definition 3.
Thus, assuming that all events communicate only via reads
and writes, races induce a valid read-write independence: let
(e1,e2) € Iiff eq # ey and they race in no trace 7.

While the existence of a conflict with respect to a read-
write independence implies that the two conflicting events
race, the converse is not necessarily true (existence of a
race need not imply a conflict). That is why Raychev et
al. [27] introduce a stronger definition of a race — that of
an uncovered race.

An uncovered race (e1, e2) is a race for which there is no
other race (ef, e$) in the same trace such that e; < e$ and
e§ = ey. For every uncovered race (7;, 7;), there exists a pre-
fix m = 7. ;—1 - A of a linearization of 7 such that 7;, 7; ¢
and 7;, 7; € enabled(Ty__;—1 - A) [27]. The construction is as
shown in Figure 4b. If an uncovered race (7;,7;) is detected
then conflict(m, 7;, 7;) holds with respect to any read-write
independence relation I. The first condition for a conflict
(cf. Definition 4) requires that the events are not read-write
independent (Definition 3), which was already established
for arbitrary races. The second condition is satisfied as both
events 7; and 7; are enabled in the end state of 71 ;1 - A.

This means that for every uncovered race we can use
EVENTRACER [27] to obtain a trace linearization and add
a valid event to the corresponding persistent set. Next, we
show that considering uncovered races alone is sufficient:

when using the independence induced by uncovered races,
Algorithm 1 explores exactly the same persistent sets as with
the read-write independence induced by all races.

Sufficiency of uncovered races Consider the procedure
findRaceWitness, which is invoked when updating the persis-
tent sets of a trace 7. An element is added to a persistent set if
for some pair of independent events (7;,7;) € I there exists
a linearization of —, inthe form 7y _;_1-A-7;-7; - p, i.e., a
linearization where they occur next to each other. However,
if the race (7;, 7;) is covered, i.e., there exists another race
(1§, 77) such that 7, = 7¢ and 77 < 75, then by the proper-
ties of < we have 7; =, 70 =, 77 —; 75, and so 7; and 75
cannot appear next to each other in any linearization of — .

R* In summary, the combined system R* conceptually
works in four phases: Recording provides an initial event
sequence T;p;;. Algorithms 14 perform state space explo-
ration of the transition system that is defined by reordering
events in 7;,;:. Reordering is controlled via the unexplored
persistent sets. Replaying and Reporting correspond to line 8
in Algorithm 1, performing approximate replay and report-
ing errors as explained in Sections 4.2 and 2.4.

5. Evaluation

In this section we present a detailed experimental evalua-
tion of our R* algorithm. We evaluate the effectiveness of
R* compared to state of the art systems for finding concur-
rency bugs in real-world web pages: EVENTRACER [27] and
WAVE [12]. We also evaluate the use of conflict-reversal
bounding and partial order reduction.

5.1 Implementation

Our implementation' is built using: (1) an instrumented ver-
sion of the WebKit browser to observe and control execution
of event sequences, similar to Burg et al. [4], Hong et al.
[12], and (2) a modified version of EVENTRACER.

In our implementation, we use the instrumented WebKit
browser both to obtain an initial trace for Algorithm 1 and
to perform the replay procedure. In all cases, together with
each trace, the browser outputs instrumentation information
for EVENTRACER, as well as a screenshot and additional
debug information to help diagnose the reports of R*. Then,
R? updates the persistent sets on each explored trace 7 as
described in Section 4.4. For this, R* calls EVENTRACER to
obtain the happens-before relation < and the set of uncov-
ered races. We also use the < relation to obtain the enabled
events. At a state s, event e € enabled(s) iff there is an al-
ready explored trace 7 with s = 713, ¢ € T4y, |7 and
Ve € 741, |7- € £ eV e = e. This essentially means
that we are exploring reorderings of events from already ex-
plored traces.

To obtain a more precise indicator of conflicts than un-
covered races, we identify simple patterns of events that are

1 Implementation and experimental data: http://www.brics.dk/r4/

independent because of commutativity (similarly to Dim-
itrov et al. [6]). For example, the statement x = x 7 x : {} is
used for lazy initialization of a variable x with an object if
x is uninitialized. This pattern causes races that are spurious
dependencies. Filtering out the writes that do not modify the
value of = reduces the number of races and makes a signif-
icant difference in some cases: with the filter, R* identified
a bug at conflict-reversal depth 1, while without it, the bug
was not discovered at all within a reasonable time limit.

5.2 [Experimental Setup

We performed all our evaluation on a 4-core 3.5GHz work-
station with 16GB of RAM, 256GB SDD, and running
Ubuntu 14.04. For our evaluation, we randomly picked 32
of the Fortune 100 websites used in the main EVENTRACER
bug detection study. We only picked a sample of the sites,
because we wanted to perform a number of experiments,
some of which take one hour per site. For each website,
one initial recording was created by loading the website and
triggering events (having corresponding event handlers) in
an arbitrary order, for either 15 seconds or until 250 user-
generated input events had been triggered, whichever came
first. We note that 250 is a realistic number of events to ex-
plore on a webpage, because pages tend to contain a large
number of user interface elements such as buttons, menus,
etc. The exploration interacts by first sending mouse move
or key press events and not clicks to avoid navigating away
from the page.

5.3 Effectiveness Compared to EVENTRACER

To evaluate the effectiveness of R* compared to EVENT-
RACER we explored systematically our 32 test sites with a
conflict-reversal depth of 1 (to fairly compare the two tools).
We recorded the initial execution and then the reorder, re-
play, and report phases were applied, exploring and classi-
fying event sequences. The total analysis time was on av-
erage 21 minutes for each benchmark, or approximately 18
seconds for each explored event sequence.

We summarize our results in Table 1. Each row in the ta-
ble gives the number of reports by EVENTRACER, as well
as the filters enabled by R*. The first row gives the number
of races reported by EVENTRACER—these are uncovered
races that are not classified as attachment of event handler
during onload or race with an unload event (see Section 2.4),
and obtained using the same commutativity patterns as R*
(see Section 5.1). For each such race, EVENTRACER shows
the racing events as well as debug information such as stack
traces of the racing operations. In comparison, R* explores
one trace for each uncovered race and displays an actual wit-
ness of potential bugs for each conflict, including screen-
shots of the final state of the webpage before and after the
conflict reversal.

For each explored trace, R? automatically identifies full
and approximate equivalence between the trace and its par-
ent (as described in Section 2.4). From 66.1 explored traces

Metric Number per website
Mean Median Max
Reported by EVENTRACER 66.1 19 1032

R’— Reordered traces compared to original trace

Fully equivalent 49.5 6 987
Approximately equivalent 8.0 4 73
Different 8.6 4 52

R*— Details about differences from original trace

Different JavaScript heap 7.7 3 46
Different uncaught exceptions 0.3 0 3
Different DOM 0.2 0 2
Different XHR communication 0.5 0 3

Table 1. Explored event sequences for 32 tested websites.

on average per initial trace, the majority (49.5) are fully
equivalent to the original exploration trace and 8.0 traces
on average only contain minor differences, such as, disabled
events due to later attachment of event handlers or ad-hoc
synchronization using timers. Thus, on average a total of
57.5 out of 66.1 races were marked as harmless, which is
a substantial improvement over EVENTRACER.

The remaining traces (8.6 on average) lead to different
states compared to the original recorded traces. To further
analyze the actual effect on the webpage, R* automatically
raises warnings in a number of cases summarized in the last
four rows of Table 1. Multiple warnings can be raised for
the same trace. While most of the differences only surface
as a difference in the JavaScript heap, a number of cases
lead to different DOM than in the original page. R* also
warns if the JavaScript runtime exceptions differ between
the explored event sequence and its parent event sequence,
or when the rescheduling leads to different XHR network
communication.

In total, R* reports 275 warnings about potentially harm-
ful conflicts in the 32 websites. Manually inspecting a ran-
dom selection of 79 of those warnings indicates 13 actual
bugs, which is a significant reduction of the false positives
compared to EVENTRACER. Typical examples of bugs are
when a script registers a load event handler after the load
event occurs, resulting in a missing banner ad, and functions
that are invoked before they are defined during parsing, re-
sulting in missing widgets or user events having no effect.

Note that manual inspection of the warnings is inevitably
necessary, despite the use of trace comparison and other
classification techniques (Section 2.4), since conflicts may
have significant effects on the final state without necessarily
being harmful to the functionality or user experience. For
example, we encounter code that collects user statistics and
periodically sends collected data to a server, such that the
order of events may affect the data being sent, although that
does not reflect bugs in the software. Other typical cases

% fully explored 4

= >3 5

8

S 31 1

3 2 6

s 1] |14
s o |2

(®]

Number of websites

Figure 5. Given one hour of exploration for each of the
32 tested websites, we show the maximal conflict-reversal
bound that we could explore. As an example, 6 websites
could be explored up to conflict-reversal bound 2 but not 3.

that we classify as false positives involve animations that are
affected by the timing of events.

In summary, compared to EVENTRACER, R* provides
additional information about explored traces, by including
concrete witnesses in the warning messages, with screen-
shots, DOM state, and a description of why the two traces
differ. Furthermore, R* is able to identify, on average, 87%
of the races reported by EVENTRACER as harmless based on
comparing traces.

5.4 Bug Isolation Capabilities Compared to WAVE

We also evaluated the bug isolation capabilities of R* with
that of WAVE. First, we note that an exact implementation
of the WAVE algorithm is not practically feasible with pre-
cise happens-before as that algorithm requires the enumera-
tion of all event sequences ordered by a happens-before re-
lation. In our evaluation, we operate on substantially longer
event sequences. The recordings contain 3 742 events on av-
erage, while Hong et al. [12] report on sequences averaging
only 7.2 events, due to lacking any happens-before informa-
tion, ignoring events at page-load time, and targeting only
specific interaction scenarios. To ensure a fair comparison,
we therefore compare R* with an algorithm that samples
traces in a manner similar to WAVE as follows: (1) gen-
erate x copies of the recorded event sequence, where x is the
number of explored events in the original recorded sequence;
(2) swap multiple random pairs of events in each event se-
quence if allowed by the happens-before relation; (3) exe-
cute each resulting event sequence, and apply the same de-
tectors for erroneous event sequences as WAVE: DOM state
differences, existence of uncaught exceptions, and inability
to execute an event sequence.

This experiment resulted in 100% of the explored exe-
cuted event sequences flagged as erroneous. However, man-
ual inspection of a subset of the executed event sequences
confirmed that most of them were in fact caused by harm-
less behavior such as ad-hoc synchronization, while other
sequences contained a mixture of harmless and harmful
changes. We observe, from our manual inspection, that it is
very difficult to identify and classify the causes of different
behaviors in event sequences with many changes, compared

Site # Events Explored seqs Depth Time
Gallery3 516 3 1 <1Im
TYPO3 1556 24 1 5m
WordPress 2043 22 3 <1m
AjaxPlorer 1528 38 1 28m
Feng Office 1451 24 1 9Im

Table 2. List of web applications with one confirmed bug
each, as used in the WAVE paper. The length of the ini-
tially recorded event sequence is reported, together with the
number of event sequences explored, the required conflict-
reversal depth to expose the bug, and the running time for
the analysis.

to inspecting event sequences with only one change (as R*
does). Combining a high number of harmless races with
WAVE’s approach of maximizing change, results in many
event sequences with many changes that all require manual
inspection. Thus, even though errors may be triggered us-
ing the WAVE approach, we find that they tend to drown
in harmless and ad-hoc synchronization races, which R%is
designed to avoid.

We also observe cases, such as, for the FedEx website,
where the explored event sequences all trigger a user click
early in the sequence, which stops parsing and directs the
user to a different page, thus pruning away any bugs that
could have been discovered in the first page.

5.5 Effects of Conflict-Reversal Bounding

To explore the cost of increasing the conflict-reversal bound
k, we additionally performed exploration with increasing
bound until a time limit of one hour was reached for each
benchmark. The results are summarized in Figure 5. For
around one half of the websites, only £ = 1 was feasible
within this time limit, while only for two sites we could
not complete bound 1 within the limit, and four sites were
fully explored within the time limit. Thus, without conflict-
reversal bounding, a number of the benchmarks would not
terminate within reasonable time.

To further evaluate the effects of conflict-reversal bounds,
we selected five web applications each with a single known
timing related bug as described by Hong et al. [12]. For each
web application and bug, one initial recording was made by
manually following a series of steps given by Hong et al. to
reproduce the target bug. The steps are reproduced such that
the timing dependent bug is not triggered in the initial trace.
For each benchmark, we ran R* with increasing conflict-
reversal depth until the bug is exposed.

Table 2 shows the results. We observe how four of the
five bugs are found at conflict-reversal depth 1, while a
single bug, in WordPress, is found at depth 3. The WordPress
bug is caused by a load event, x, which defines a function,
and a user click event, y, which triggers the same function.

25 30
|

20

density (%)

10

enabled events/visited events per state

Figure 6. Distribution of ratios between enabled and visited
events for reached states in the experiment detailed in Sec-
tion 5.3. For example, the graph shows that in over 27% of
all reached states (third bar), we observed between 4 and 6
enabled events for each visited event.

A conflict-reversal depth of 3 is required because of (1) a
conflict between y and the DOM load event triggered by x,
and (2) a conflict between x and a user click event which
immediately precedes y. However, only the conflict between
z and y is harmful.

This experiment indicates that a low conflict-reversal
depth is sufficient to expose bugs, and at least a small set
of known bugs are found within this low bound. Of course,
no guarantees are made that this is always the case. Specifi-
cally, we observe that the approximation of dependence and
the amount of independence between events has a measur-
able impact on the results of the overall algorithm.

5.6 Effect of Partial Order Reduction

The use of partial order reduction is known to reduce the
search space in stateless model checking for shared memory
concurrency settings, and we observe a similar effect in our
domain. To illustrate this, we measure the ratio between vis-
ited events and enabled events for each reachable state in our
experiment described in Section 5.3. The distribution of ra-
tios is shown in Figure 6. On average, partial order reduction
prunes away 77% of the enabled events in each reachable
state. This pruning amounts to a substantial reduction in the
search space.

Summary Overall, our results demonstrate that R* is a
promising approach for systematically exploring the nonde-
terminism in event-driven applications, and is a substantial
improvement over the state of the art.

When tested on real-world obfuscated web pages, our
tool proved useful in finding and reproducing concurrency
errors triggering exceptions or nondeterminism of the DOM.
For other errors, such as, JavaScript heap nondeterminism,
the reports should be investigated on a non-obfuscated ver-
sion of the site and possibly by inserting assertions. Finally,
when assertions are present, the system can check if a web-
site is free of errors up to the specified bound of conflict
reversals, given an initial execution.

6. Related Work

We next survey some of the work that is most closely related
to ours.

Testing event-driven applications WebRacer [26] intro-
duced dynamic race detection for JavaScript based on a
happens-before relation. EVENTRACER [27] improved that
technique using the notion of race coverage to reduce the
number of false positives. As discussed in the previous sec-
tions, a fundamental limitation of these techniques is that
they only discover races, irrespective of whether the races
cause errors (e.g., exceptions). By leveraging systematic
stateless model checking techniques, R* builds on top of
EVENTRACER to pinpoint the effects of races. This enables
R*to classify many races as harmless and to show concretely
how races affect the application state.

Fuzzing schedules to uncover timing related bugs is a
known technique in the domain of concurrent programs, for
example, as done by Sen [29], Narayanasamy et al. [24] for
Java applications, Andrica and Candea [2], and the WAVE
tool by Hong et al. [12] for web applications. A central chal-
lenge for each of these tools is the identification of errors if
they occur while fuzzing schedules: Sen [29] detects raised
exceptions; Narayanasamy et al. [24] and WAVE check if a
fuzzed schedule can be executed and lead to the same final
state, while Andrica and Candea [2] use manual validation
only. However, as discovered by Raychev et al. [27], web
applications contain many races, hence manually inspecting
all of these races is infeasible.

Furthermore, web applications frequently use ad-hoc syn-
chronization, and therefore reordering events is expected to
impact the enabledness of other events as well as the states of
an execution, as discussed in Section 2.3. It is also common
for web applications to raise exceptions even in normal op-
eration. Therefore, approaches, such as, Narayanasamy et al.
[24] and Hong et al. [12], which simply compare the state,
are not effective in this setting (as they will flag almost every
interference as harmful). Our proposed solution uses approx-
imate replay to continue execution even when the expected
event sequence cannot be executed exactly. Moreover, we
introduce a report phase that classifies explored conflicts as
harmful or not.

Mutlu et al. [23] discuss the problem of benign races in
the domain of web applications and coin the term observable
races, i.e., races that can be observed by comparing two

Algorithm Domain Comparison Granularity Bounding
Classical DPOR [9] multi-threaded forwards single -
Optimal DPOR [1] multi-threaded backwards subsequence -
Bounded DPOR [5] multi-threaded forwards single preemption
R* event-driven backwards approximate conflict-reversal

Table 3. Different styles of dynamic partial order reduction. The Comparison column shows the direction of comparisons;
Granularity shows if the method adds a single transition to the persistent set, a subsequence of transitions, or a complete
sequence of transitions that may be realizable (approximate); and finally, Bounding shows the form of bounding used during

the search.

renderings of the same web page. In their position paper,
they also discuss the possibility of systematically exploring
observable races as a possible research direction. R* is one
such example approach of systematic exploration.

Tools such as Artemis [3], Kudzu [28], and CrawlJax [19]
perform automated testing, or crawling, typically aiming
for achieving high code coverage with various heuristics to
guide the exploration and not specifically targeting errors re-
lated to nondeterminism. As an example, running Artemis
on the five web applications with known bugs mentioned
in Section 5.5 with a time budget of one hour per web ap-
plication detected none of the bugs. However, as suggested
in Section 1, such tools may be useful for providing initial
event sequences for R?.

A number of tools exist for recording and deterministi-
cally replaying JavaScript executions, taking into account
nondeterministic inputs and scheduling. Mugshot [21] and
Jalangi [30] use instrumentation of JavaScript and external
proxies to record the timing of events and selected inputs. R?
instruments the browser directly, allowing for finer control of
the execution, including exact control of HTML parsing, at
the cost of less flexibility. This approach is similar to Time-
lapse [4], which also instruments the browser directly in or-
der to implement deterministic record and replay. However,
Timelapse is only concerned with program understanding,
and not exploring alternative event sequences and the effects
of nondeterminism.

Model checking and DPOR The reorder phase of R* is
based on the DPOR [9] algorithm modified to fit the domain
of event-driven applications. An overview for how R* com-
pares with state-of-the-art existing work in DPOR is shown
in Table 3.

R* differs from classical DPOR by comparing executed
events to identify conflicts (denoted backwards comparison),
while classical DPOR reasons about transitions that may or
may not have been executed in a reached state (denoted for-
wards comparison). Classical DPOR uses the concept of pro-
cesses when reasoning about instructions that must be exe-
cuted prior to other instructions, whereas R?* uses enabled
events. In addition, we extend DPOR with approximate re-
play, which stores not only single events in persistent sets but

entire event sequences in order to observe the consequences
of each conflict.

The optimal DPOR algorithm [1] also uses backwards
comparison, however, their reason is different: they use
backwards comparison because their proposed extension
to classical DPOR involves precision of maximal event se-
quences, while we use backwards comparison to avoid the
need for predicting the effects of complex event handlers.
Furthermore, optimal DPOR introduces wakeup trees, which
store sub-sequences of events for backtracking, to ensure
that any new iteration will explore the reversal of two con-
flicting events. This differs from approximate replay, which,
in addition to the subsequence leading to the reversal of a
conflict, also stores additional events to guide the explo-
ration following the reversal. Finally, the DPOR algorithm
does not operate on single-threaded event-driven applica-
tions, but on concurrently executing processes.

Sleep sets [10], which are often used to optimize DPOR,
is trivially applicable to R?, but we have omitted them to sim-
plify the presentation and implementation. Finally, our pro-
posal of conflict-reversal bounding is related to delay bound-
ing [7] in terms of intent. Specifically, our bound limits the
deviation from an initial execution, while delay bounding
limits the amount of times a scheduler is forced to deviate
from the expected schedule.

Due to the event-driven execution model, other related
approaches of bounding the search are not applicable (e.g.,
preemption bounding [5, 22], which limits the number of
preemptions when switching between processes).

Model checking has been applied to a range of applica-
tions from multi-threaded programs [9] to distributed sys-
tems, protocols, and hardware [16, 25, 31]. While some of
these applications resemble event-driven apps with related
notions of events, they differ in the number of events they
can handle and in the necessary algorithms to explore them
thoroughly.

In general, such model checking techniques use either
random exploration [16] or user-provided hints [31] to guide
the search towards executions with error states. In contrast,
the kinds of event-driven applications we consider in this
work have tens of user interface controls and thousands of
events to explore. Thus, to effectively handle these applica-
tions, we had to develop the appropriate analysis algorithms,

and in particular, a stateless model checker based on conflict-
aware partial order reduction. Exploring the application of
our techniques to the domain of distributed protocols and
systems is an interesting item for future work.

7. Conclusion

We have presented the first practical stateless model checker
for event-driven applications, called R*. Our algorithm can
systematically and efficiently explore the scheduling nonde-
terminism in a given execution.

The algorithm builds on three key insights: (i) an adap-
tation of DPOR to the domain of event-driven applications
where we only work with transitions occurring in the past
and do not require determining the effects of a future tran-
sition, (ii) a conflict-reversal bound based on the idea that
most harmful errors occur with a small number of event re-
orderings, and (iii) approximate replay which minimizes the
divergence from the original execution.

We implemented R* for the domain of client-side web
applications and showed that the technique is robust and
scalable enough to analyze real-world programs. Further, the
evaluation indicates that our analysis is significantly more
precise in classifying harmful nondeterminism than state-of-
the-art alternatives.

References

[1] P. Abdulla, S. Aronis, B. Jonsson, and K. Sagonas. Opti-
mal dynamic partial order reduction. In Proc. 41st ACM
SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, 2014.

[2] S. Andrica and G. Candea. Warr: A tool for high-fidelity web
application record and replay. In Proc. 41st IEEE/IFIP In-
ternational Conference on Dependable Systems & Networks,
2011.

[3] S. Artzi, J. Dolby, S. H. Jensen, A. Mgller, and F. Tip. A
framework for automated testing of JavaScript web applica-
tions. In Proc. 33rd International Conference on Software
Engineering, 2011.

[4] B. Burg, R. Bailey, A. J. Ko, and M. D. Ernst. Interactive
record/replay for web application debugging. In Proc. 26th
Symposium on User Interface Software and Technology, 2013.

[5] K. E. Coons, M. Musuvathi, and K. S. McKinley. Bounded
partial-order reduction. In Proc. 28th ACM SIGPLAN Interna-
tional Conference on Object Oriented Programming Systems
Languages & Applications, 2013.

[6] D. Dimitrov, V. Raychev, M. Vechev, and E. Koskinen. Com-
mutativity race detection. In Proc. 35th ACM SIGPLAN Con-
ference on Programming Language Design and Implementa-
tion, 2014.

[71 M. Emmi, S. Qadeer, and Z. Rakamari¢. Delay-bounded
scheduling. In Proc. 38th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, 2011.

[8] J. Erickson, M. Musuvathi, S. Burckhardt, and K. Olynyk. Ef-
fective data-race detection for the kernel. In Proc. 7th USENIX

Symposium on Operation Systems Design and Implementa-
tion, 2010.

[9] C. Flanagan and P. Godefroid. Dynamic partial-order re-
duction for model checking software. In Proc. 32th ACM
SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, 2005.

[10] P. Godefroid. Partial-order methods for the verification of
concurrent systems: an approach to the state-explosion prob-
lem. PhD thesis, Universite de Liege, faculté des sciences ap-
pliquées, 1996.

[11] P. Godefroid. Model checking for programming languages
using VeriSoft. In Proc. 24th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, 1997.

[12] S. Hong, Y. Park, M. Kim, et al. Detecting concurrency
errors in client-side JavaScript web applications. In Proc.
6th International Conference on Software Testing, Verification
and Validation, 2014.

[13] C.-H. Hsiao, J. Yu, S. Narayanasamy, Z. Kong, C. L. Pereira,
G. A. Pokam, P. M. Chen, and J. Flinn. Race detection
for event-driven mobile applications. In Proc. 35th ACM
SIGPLAN Conference on Programming Language Design and
Implementation, 2014.

[14] J. Ide, R. Bodik, and D. Kimelman. Concurrency concerns in
rich internet applications. In Proc. Workshop on Exploiting
Concurrency Efficiently and Correctly, 2009.

[15] B. Kasikci, C. Zamfir, and G. Candea. Data races vs. data
race bugs: telling the difference with Portend. In Proc. 17th
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, 2012.

[16] C. E. Killian, J. W. Anderson, R. Jhala, and A. Vahdat. Life,
death, and the critical transition: Finding liveness bugs in
systems code. In Proc. 4th Symposium on Networked Systems
Design and Implementation, 2007.

[17] A. Machiry, R. Tahiliani, and M. Naik. Dynodroid: An input
generation system for Android apps. In Proc. European Soft-
ware Engineering Conference and Symposium on the Founda-
tions of Software Engineering, 2013.

[18] P. Maiya, A. Kanade, and R. Majumdar. Race detection for
Android applications. In Proc. 35th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation,
2014.

[19] A.Mesbah, A. van Deursen, and S. Lenselink. Crawling Ajax-
based web applications through dynamic analysis of user in-
terface state changes. ACM Transactions on the Web, 6(1):
3:1-3:30, 2012.

[20] A. Mesbah, A. van Deursen, and D. Roest. Invariant-based

automatic testing of modern web applications. /EEE Transac-
tions on Software Engineering, 2012.

[21] J. Mickens, J. Elson, and J. Howell. Mugshot: Deterministic
capture and replay for JavaScript applications. In Proc. 7th
USENIX Conference on Networked Systems Design and Im-
plementation, 2010.

[22] M. Musuvathi and S. Qadeer. Iterative context bounding
for systematic testing of multithreaded programs. In Proc.
28th ACM SIGPLAN Conference on Programming Language
Design and Implementation, 2007.

[23] E. Mutlu, S. Tasiran, and B. Livshits. I know it when I see it:
Observable races in JavaScript applications. Technical report,
Microsoft Research, 2014.

[24] S. Narayanasamy, Z. Wang, J. Tigani, A. Edwards, and
B. Calder. Automatically classifying benign and harmful data
races using replay analysis. In Proc. 28th ACM SIGPLAN
Conference on Programming Language Design and Imple-
mentation, 2007.

[25] J. W. O’Leary, M. Talupur, and M. R. Tuttle. Protocol verifica-
tion using flows: An industrial experience. In Proc. 9th Inter-
national Conference on Formal Methods in Computer-Aided
Design, 2009.

[26] B. Petrov, M. T. Vechev, M. Sridharan, and J. Dolby. Race de-
tection for web applications. In Proc. 33rd ACM SIGPLAN
Conference on Programming Language Design and Imple-
mentation, 2012.

[27] V. Raychev, M. T. Vechev, and M. Sridharan. Effective race
detection for event-driven programs. In Proc. 28th ACM
SIGPLAN Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, 2013.

[28] P. Saxena, D. Akhawe, S. Hanna, S. McCamant, D. Song, and
F. Mao. A symbolic execution framework for JavaScript. In
Proc. 31st IEEE Symposium on Security and Privacy, 2010.

[29] K. Sen. Race directed random testing of concurrent programs.
In Proc. 29th ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2008.

[30] K. Sen, S. Kalasapur, T. Brutch, and S. Gibbs. Jalangi: A
selective record-replay and dynamic analysis framework for
JavaScript. In Proc. Symposium on the Foundations of Soft-
ware Engineering, 2013.

[31] M. Talupur and H. Han. Biased model checking using flows.

In Proc. 17th International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems, 2011.

A. Proof of Completeness of Exploration
We next provide a proof of Theorem 1.

Lemma 1. For a transition diagram where the event x
is read-write independent of every event in the sequence
€1...6p—1,

, €1...
Sq Sn—1 S

e1... €n—1

S —— 3 Sp—-1 ——— Sp,

if y € enabled(sy,) is an event different from x, then

1. y € enabled(s1) and y & enabled(s}), or
2. y € enabled(s),)).

Proof. Consider the case e; = e,_1, i.e., the diagram has
only one square and $1 = $,,—1, S, = So. If the conclusion
of the lemma does not hold, for example, y is enabled in
s1, S2, and s} but not in s/, then the events x and e;
must coordinate via reads and writes in order to disable y
in the state s}, alone. This would contradict the read-write
independence of x and e;. The general case follows directly
by induction on n. O

Theorem 1. If Algorithm 1 searches an acyclic transition
system using a read-write independence relation, then upon
backtracking at a trace T

1. T(7) is a persistent set, and moreover, T(1) = & iff
enabled(T) = &;

2. every trace T - v in the system is a prefix of a linearization
of = .. for some explored trace T - V.

Proof. Consider the subsystem induced by the sequence of
transitions sg Iy sy and all the states visited after s; but
before backtracking (lines 13—16) from s;. The acyclicity
implies that this subsystem satisfies the ascending chain
condition, and therefore we can apply Noetherian induction.

We have to prove the statement for a trace so — s1, given
the induction hypothesis, i.e., that the statement holds for

every longer trace so — s; — s’ where s is reachable
from s in one or more steps.

We begin with the first point of the theorem. Observe
that the emptiness condition follows directly from lines 5—
11 of Algorithm 1 and line 4 of the updatePersistentSets
procedure. In order to establish the persistency of T'(7),
we shall prove the contrapositive of Definition 5, i.e., that
T(r)Nv-y # @ for any x € T(7) and any transition
sequence s, — Sy, Y5 ¢ such that (z,v;) € I for all v;, and
(z,y) ¢ I. This situation matches the premise of Lemma 1
since x belongs to T'(7) C enabled(sy) and x is independent
of the events in v. We obtain a transition diagram involving
the sequences s; — s, — s, and s; —) > s
According to the lemma there are two possibilities:

1. y € enabled(s1) and y & enabled(s}), or

2.y € enabled(s)).

In the first case, the updatePersistentSets procedure adds y
to T'(7) at lines 5-7 (7-x has been explored since x € T'(T)),
implying that y € T'(7) N v - y. Thus, let us focus on the
second case where we have the diagram:

S0 S1 Sn t

By the induction hypothesis, the algorithm explored some

sequence sy — 51 — s, = t” suchthat 7 -z -v-yisa
prefix of some linearization of —;.,.,,,. By assumption, x
is independent of every event in v, and therefore = can be
moved forward to obtain the transitions 7 - v - x - y as a pre-
fix of some linearization of —.,...,». The events in v can be
partitioned into two: transitive dependencies of y, and events
that are incomparable with both = and y in —;.,.,,/. The in-
comparables can be moved past y, resulting in the transition
sequence T - A - x - y - u which is a linearization of 7 - z - v/
with A consisting only of dependencies of y. Thus, point 2 of
line 17 in the findRaceWitness procedure is satisfied. Point 1
is also satisfied, because conflict(7 - v, x,y), and during the
reordering, only events that are independent of both = and y
are moved past them. Therefore, either y or A; were added
to T'(7) by updatePersistentSets at line 11. In the first case,
the event y was added to T'(7), and y € T'(7) Nv - y follows
directly. Otherwise, we have A1 € T'(7) and A\ —;.2.0 ¥,
thus A\; precedes y in every linearization of —.,.,/, and in
particular in the one that 7-x-v -y is a prefix of. This implies
that \y € vleadingto \y € T(7)Nwv - y.

We now move on to establish the second point of the the-
orem, i.e., that every trace sg I sy 5 ¢/ is a linearization
of — ...+ for some explored trace 7 - v’. Let v factor into
7 - o where 7 is the maximal prefix such that T'(7) N7 = @.
If v = ¢, then we are done. Otherwise, enabled(s1) # @
and so there is at least one event x € T(7). As o1 € T(7)
we can let x equal o1, in case of o # &, (otherwise, pick
any x € T(7)). By the persistency of T'(7), the event x is
independent of every event in v, thus we have a diagram:

02..|0|
sh s, t/

S0 S1 Sn

Here either 7 or 03, |5 can be empty. By the induction
hypothesis, the trace 7 - z - 7 - 03, || is a prefix of some
linearization of — ..., for some explored trace 7-x - v’. By
the independence of x and the events in 7, the same holds for
the trace 7+ - x - 03 |4, and therefore for 7- v as well. [

