
PowerForms:
Declarative Client-Side Form Field Validation

Claus Brabrand Anders Møller Mikkel Ricky
Michael I. Schwartzbach

BRICS, Department of Computer Science
University of Aarhus, Denmark

{brabrand,amoeller,ricky,mis }@brics.dk

Abstract

All uses of HTML forms may benefit from validation of the specified input
field values. Simple validation matches individual values against specified formats,
while more advanced validation may involve interdependencies of form fields.

There is currently no standard for specifying or implementing such validation.
Today, CGI programmers often use Perl libraries for simple server-side validation
or program customized JavaScript solutions for client-side validation.

We present PowerForms, which is an add-on to HTML forms that allows a
purely declarative specification of input formats and sophisticated interdependen-
cies of form fields. While our work may be seen as inspiration for a future ex-
tension of HTML, it is also available for CGI programmers today through a pre-
processor that translates a PowerForms document into a combination of standard
HTML and JavaScript that works on all combinations of platforms and browsers.

The definitions of PowerForms formats are syntactically disjoint from the form
itself, which allows a modular development where the form is perhaps automati-
cally generated by other tools and the formats and interdependencies are added
separately.

PowerForms has a clean semantics defined through a fixed-point process that
resolves the interdependencies between all field values. Text fields are equipped
with status icons (by default traffic lights) that continuously reflect the validity of
the text that has been entered so far, thus providing immediate feed-back for the
user. For other GUI components the available options are dynamically filtered to
present only the allowed values.

PowerForms are integrated into the<bigwig> system for generating interac-
tive Web services, but is also freely available in an Open Source distribution as a
stand-alone package.

1 Introduction

We briefly review some relevant aspects of HTML forms. The CGI protocol enables
Web services to receive input from clients through forms embedded in HTML pages.

1

An HTML form is comprised of a number of input fields each prompting the client for
information.

The visual rendering of an input field and how to enter the information it requests is
determined by its type. The most widely used fields range from expecting lines of tex-
tual input to providing choices between a number of fixed options that were determined
at the time the page was constructed. Many of the fields only differ in appearance and
are indistinguishable to the server in the sense that they return the same kind of in-
formation. Fields of typetext andpassword , although rendered differently, each
expect one line of textual input from the client. Multiple lines of textual input can be
handled through thetextarea field. The fields of typesradio andselect both
require exactly one choice between a number of static options, whereas an arbitrary
number of choices are permitted by thecheckbox andselect (multiple) fields.
Individualradio andcheckbox fields with common name may be distributed about
the form and constitute a group for which the selection requirements apply. The op-
tions of aselect field, on the other hand, are grouped together in one place in the
form. In addition, there are the more specialized fields,image , file , button , and
hidden , which we shall not treat in detail. Finally, two fields control the behavior of
the entire form, namelyreset andsubmit , which respectively resets the form to its
initial state and submits its contents to the server.

Input validation

Textual input fields could possibly hold anything. Usually, the client is expected to
enter data of a particular form, for instance a number, a name, a ZIP-code, or an e-
mail address. The most frequent solution is to determine on the server whether the
submitted data has the required form, which is known asserver-side input validation.
If some data are invalid, then those parts are presented once again along with suitable
error messages, allowing the client to make the necessary corrections. This process
is repeated until all fields contain appropriate data. This solution is simple, but it has
three well-known drawbacks:

• it takes time;

• it causes excess network traffic; and

• it requires explicit server-side programming.

Note that these drawbacks affect all parties involved. The client is clearly annoyed
by the extra time incurred by the round-trip to the server for validation, the server
by the extra network traffic and “wasted” cycles, and the programmer by the explicit
programming necessary for implementing the actual validation and re-showing of the
pages. An obvious solution to the first two drawbacks is to move the validation from the
server to the client, yieldingclient-side input validation. The third drawback, however,
is only partially alleviated. All the details of re-showing pages are no longer required,
but the actual validation still needs to be programmed.

The move from server-side to client-side also opens for another important benefit,
namely the possibility of performing the validationincrementally. The client no longer
needs to click the submit button before getting the validation report. This allows errors

2

Figure 1: Conference questionnaire.

to be be signalled as they occur, which clearly eases the task of correctly filling out the
form.

Field interdependencies

Another aspect of validation involves interdependent fields. Many forms contain fields
whose values may be constrained by values entered in other fields. Figure 1 exhibits
a simple questionnaire from a conference, in which participants were invited to state
whether they have attended past conferences and if so, how this one compared. The
second question clearly depends on the first, since it may only be answered if the first
answer was positive. Conversely, an answer to the second question may be required if
the first answer was “Yes”.

Such interdependencies are almost always handled on the server, even if the rest of
the validation is addressed on the client-side. The reason is presumably that interdepen-
dencies require some tedious and delicate JavaScript code. This kind of validation is
explicitly requested in the W3C working draft on extending forms [13]. One could eas-
ily imagine more advanced dependencies. Also, it would be useful if illegal selections
could somehow automatically be deselected.

JavaScript programming

Traditionally, client-side input validation is implemented in JavaScript. We will argue
that this may not be the best choice for most Web authors.

First of all, using a general-purpose programming language for a relatively spe-
cific purpose exposes the programmer to many unnecessary details and choices. A
small high-level domain-specific language dedicated to input validation would involve
only relevant concepts and thus be potentially easier to learn and use. Many assisting
libraries exist [6], but must still be used in the context of a full programming language.

Secondly, JavaScript code has an operational form, forcing the programmer to think
about the order in which the fields and their contents are validated. However, the
simplicity of the input validation task permits the use of a purelydeclarativeapproach.
A declarative specification abstracts away operational details, making programs easier
to read, write, and maintain. Also, such an approach is closer to composing HTML
than writing JavaScript, making input validation available to more people. As stated in
the W3C working draft on extending forms:

3

“It should be possible to define a rich form, including validations,
dependencies, and basic calculations without the use of a scripting lan-
guage.”

Our solution will precisely include such mechanisms for validations and dependencies.
Finally, the traditional implementation task is further complicated by diverging

JavaScript implementations in various browsers. This forces the programmer to stay
within the subset of JavaScript that is supported by all browsers—a subset that may be
hard to identify. In fact, a number of sites and FAQs are dedicated to identifying this
subset [15, 9]. A domain-specific language could be compiled into this common subset
of JavaScript, implying that only the compiler writer will be concerned with this issue.

Our solution: PowerForms

As argued above, our solution is to introduce a high-leveldeclarativeand domain-
specificlanguage, called PowerForms, designed for incremental input validation.

Section 2 presents our solution for simple validation; Section 3 extends this to han-
dle field interdependencies; Section 4 exhibits how other common uses of JavaScript
also can be handled through declarative specification; Section 5 presents the overall
strategy of the translation to JavaScript; and Section 6 describes the availability of the
PowerForms packages.

Related work

Authoring systems like Cold Fusion [7] can automate server-side verification of some
simple formats, but even so the result is unsatisfactory. A typical response to invalid
data is shown in Figure 2. It refers to the internal names of input fields which are
unknown to the client, and the required corrections must be remembered when the
form is displayed again.

Active Forms [14] is based on a special browser supporting Form Applets pro-
grammed as Tcl scripts. It does not offer high-level abstractions or integration with
HTML.

Web Dynamic Forms [8] offer an ambitious and complex solution. They propose a
completely new form model that is technically unrelated to HTML and exists entirely
within a Java applet. Inside this applet, they allow complicated interaction patterns
controlled through an event-based programming model in which common actions are
provided directly and others may be programmed in Java. When a form is submitted,
the data are extracted from the applet and treated as ordinary HTML form data. The
intervening years have shown that Web authors prefer to use standard HTML forms
instead and then program advanced behavior in JavaScript. Thus, our simpler approach
of automatically generating this JavaScript code remains relevant. An important reason
to stay exclusively with HTML input fields is that they can be integrated into HTML
tables to control their layout.

The XHTML-FML language [12] also provides a means for client-side input val-
idation by adding an attribute calledctype to textual input fields. However, this

4

Figure 2: Typical server-side validation.

attribute is restricted to a (large) set of predefined input validation types and there is no
support for field inderdependency.

Our PowerForms notation is totally declarative and requires no programming skills.
Furthermore, it is modular in the sense that validation can be added to an input field
in an existing HTML form without knowing anything but its name. The validation
markup being completely separate from the form markup allows the layout of a form
to be redesigned at any time in any HTML editor.

2 Validation of Input Formats

The language is based on regular expressions embedded in HTML that is subsequently
translated into a combination of standard HTML and JavaScript. This approach bene-
fits from an efficient implementation through the use of finite-state automata which are
interpreted by JavaScript code.

Named formats may be associated to fields whose values are then required to belong
to the corresponding regular sets. The client is continuously receiving feedback, and
the form can only be submitted when all formats are satisfied. The server should of
course perform a double-check, since the JavaScript code is open to tampering.

Regular expressions denoting sets of strings are a simple and familiar formalism for
specifying the allowed values of form fields. As we will demonstrate, all reasonable
input formats can be captured in this manner. Also, the underlying technology of finite-
state automata gives a simple and efficient implementation strategy.

Syntax

We define a rich XML syntax [5] for regular expressions on strings:

5

regexp → <const value= stringconst /> |
<empty/> |
<anychar/> |
<anything/> |
<charset value= stringconst /> |
<fix low= intconst high= intconst /> |
<relax low= intconst high= intconst /> |
<range low= charconst high= charconst /> |
<intersection> regexp * </intersection> |
<concat> regexp * </concat> |
<union> regexp * </union> |
<star> regexp </star> |
<plus> regexp </plus> |
<optional> regexp </optional> |
<repeat count= intconst > regexp </repeat>
<repeat low= intconst high= intconst > regexp </repeat>
<complement> regexp </complement> |
<regexp exp= stringconst /> |
<regexp id= stringconst > regexp </regexp> |
<regexp idref= stringconst /> |
<regexp uri= stringconst /> |
<include uri= stringconst />

Here, regexp * denotes zero or more repetitions ofregexp . The nonterminals
stringconst , intconst , andcharconst have the usual meanings.

Note that the verbose XML syntax also allows standard Perl syntax for regular
expressions through the construct<regexp exp= stringconst /> . Our full syn-
tax is however more general, since it includes intersection, general complementation,
import mechanisms, and a richer set of primitive expressions.

A regular expression is associated with a form field through a declaration:

formatdecl → <format name= stringconst
help= stringconst
error= stringconst >

regexp
</format>

The value of the optionalhelp attribute will appear in the status line of the browser
when the field has focus; similarly, the value of the optionalerror attribute will
appear if the field contains invalid data.

The format takes effect for a form field of type typetext , password , select ,
radio , or checkbox whose name is the value of thename attribute. The need for
input formats is perhaps only apparent fortext andpassword fields, but we need
the full generality later in Section 3.

Semantics of regular expressions

Each regular expression denotes an inductively defined set of strings. Theconst ele-
ment denotes the singleton set containing itsvalue . Theempty element denotes the

6

empty set. Theanychar element denotes the set of all characters. Theanything
element denotes the set of all strings. Thecharset denotes the set of characters in its
value . Thefix element denotes the set of numerals fromlow to high all padded
with leading zeros to have the same length ashigh . Therelax element denotes the
set of numerals fromlow to high . Therange element denotes the set of singleton
strings obtained from the characterslow to high . Theintersection element de-
notes the intersection of the sets denoted by its children. Theconcat element denotes
the concatenation of the sets denoted by its children. Theunion element denotes the
union of the sets denoted by its children. Thestar element denotes zero or more
concatenations of the set denoted by its child. Theplus element denotes one or more
concatenations of the set denoted by its child. Theoptional element denotes the
union of the set containing the empty string and the set denoted by its child. There-
peat element with attributecount denotes a fixed power of the set denoted by its
child. Therepeat element with attributeslow andhigh denotes the correspond-
ing interval of powers of the set denoted by its child, wherelow defaults to zero and
high to infinity. Thecomplement element denotes the complement of the set de-
noted by its child. Theregexp element with attributeexp denotes the set denotes
by its attribute value interpreted as a standard Perl regular expression. Theregexp
element with attributeid denotes the same set as its child, but in addition names it by
the value ofid . Theregexp element with attributeidref denotes the same set as
the regular expression whose name is the value ofidref . It is required that eachid
value is unique throughout the document and that eachidref value matches some
id value. Theregexp element with attributeuri denotes the set recognized by a
precompiled automaton. Theinclude element performs a textual insertion of the
document denoted by itsurl attribute.

Semantics of format declarations

The effect on a form field of a regular expression denoting the setS is defined as
follows. For atext or password field, the effect is to decorate the field with one of
four annotations:

• green light, if the current value is a member ofS;

• yellow light, if the current value is a proper prefix of a member ofS;

• red light, if the current value is not a prefix of a member of a non-emptyS; or

• n/a, if S is the empty set.

The form cannot be submitted if it has a yellow or red light. The default annotations,
which are placed immediately to the right of the field, are tiny icons inspired by traffic
lights, but they can be customized with arbitrary images to obtain a different look and
feel as indicated in Figure 3. Other annotations, like colorings of the input fields, would
also seem reasonable, but current limitations in technology make this impossible.

For a select field, the effect is to filter theoption elements, allowing only
those whose values are members ofS. There is a slight deficiency in the design of
a singularselect , since it in some browser implementations will always show one
selected element. To account for the situation where no option is allowed, we introduce

7

traffic star check ok blank

green light

yellow light

red light

n/a

Figure 3: Different styles of status icons.

an extension of standard HTML, namely<option value="foo" error> which
is legal irrespective of the format. The form cannot be submitted if theerror option
is selected, unlessS is the empty set.

For aradio field, the effect is that the button can only be depressed if its value is
a member ofS; if S is not the empty set, then the form cannot be submitted unless one
button is depressed. Note that the analogue of theerror option is the case where no
button is depressed.

For acheckbox field, the effect is that the button can only be depressed if its
value is a member ofS.

Using our mechanism, it is possible to create adeadlockedform that cannot be
submitted. The simplest example is the following, assuming the input field below is
the only one in theradio button group namedfoo :

<input type="radio" name="foo" value="aaa">
<format name="foo"><const value="bbb"></format>

Regardless of whether the radio buttonfoo is depressed or not,foo will never satisfy
its requirements. Thus, the form can never be submitted. This behavior exposes a flaw
in the design of the form, rather than an inherent problem with our mechanisms.

Examples

All reasonable data formats can be expressed as regular expressions, some more com-
plicated than others. A simple example is the password format for user ID registration,
seen in Figure 4, which is five or more characters not all alphabetic:

<regexp id="pwd">
<intersection>

<repeat low="5"><anychar/></repeat>
<complement>

8

<star>
<union>

<range low="a" high="z"/>
<range low="A" high="Z"/>

</union>
</star>

</complement>
</intersection>

</regexp>

or alternatively using the Perl syntax where possible:

<regexp id="pwd">
<intersection>

<regexp exp=".{5,}"/>
<complement>

<regexp exp="[a-zA-Z]*"/>
</complement>

</intersection>
</regexp>

To enforce this format on the existing form, we just add the declarations:

<format name="Password1"><regexp idref="pwd"/></format>
<format name="Password2"><regexp idref="pwd"/></format>

Figure 4: User ID registration.

At our Web site we show more advanced examples, such as legal dates including leap
days, URIs, and time of day. As a final example, consider a simple format for ISBN
numbers:

9

Figure 5: Checking ISBN numbers.

<regexp id="isbn">
<concat>

<repeat count="9">
<concat>

<range low="0" high="9"/>
<optional><charset value=" -"/></optional>

</concat>
</repeat>
<charset value="0123456789X"/>

</concat>
</regexp>

or more succinctly:

<regexp id="isbn">
<regexp exp="([0-9]([-]?)){9}[0-9X]"/>

</regexp>

An input field that exploits this format is:

Enter ISBN number: <input type=text name="isbn" size=20>
<format name="isbn"

help="Enter an ISBN number"
error="Illegal ISBN format">

<regexp idref="isbn"/>
</format>

Initially, the field has a yellow light. This status persists, as seen in Figure 5, while we
enter the text"0-444-50264-" which is a legal prefix of an ISBN number. Entering
another"-" yields a red light. Deleting this character and entering5 will finally give
a legal value and a green light.

While the input field has focus, thehelp string appears in the status line of the
browser. If the client attempts to submit the form with invalid data in this field, then
theerror text appears in an alert box.

An ISBN format that includes checksums can be described as a complex regular
expression that yields a 201-state automaton. This full format would only accept5 as
the last digit, since that is the correct checksum. Such a regular expression could hardly

10

be written by hand; in fact, we generated it using a C program. But as precompiled
automata may be saved and provided as formats, this shows that our technology also
allows us to construct and publish a collection of advanced default formats, similarly
to the datatypes employed in XML Schema [2] and the predefinedctype formats
suggested in [12].

3 Interdependencies of Form Fields

We present a simple, yet general mechanism for expressing interdependencies. We
have strived to develop a purely declarative notation that requires no programming
skills. Our proposal is based on dynamically evolving formats that are settled through
a fixed-point process.

Syntax

We extend the syntax for formats as follows:

formatdecl → <format name= stringconst > format </format>

format → regexp |
<if> boolexp

<then> format </then>
<else> format </else>

</if> |
<format id= stringconst > format </format> |
<format idref= stringconst />

boolexp → <match name= stringconst > regexp </match> |
<equal name= stringconst value= stringconst /> |
<and> boolexp * </and> |
<or> boolexp * </or> |
<not> boolexp * </not>

Now, the format that applies to a given field is dependent on the values of other fields.
The specification is a binary decision tree, whose leaves are regular expressions and
whose internal nodes are boolean expressions. Each boolean expression is a propo-
sitional combination of the primitivematch andequal elements that each test the
field indicated byname. Even this simple language is more advanced than required for
most uses.

Semantics of boolean expressions

A boolean expression evaluates to true or false. For atext or password field,
equal is true iff its current value equalsvalue ; match is true iff its current value
is a member of the set denoted byregexp . For aselect field, equal is true iff
the value of a currently selected option equalsvalue ; match is true iff the value of a
currently selected option is a member of the set denoted byregexp . For a collection

11

of radio or checkbox fields,equal is true iff a button whose value equalsvalue
is currently depressed;match is true iff a button whose value is a member of the set
denoted byregexp is currently depressed.

For the boolean operators,and is true iff all of its children are true,or is true if
one of its children is true, andnot is true if all of its children are false.

Semantics of interdependencies

Given a collection of form fieldsF1,. . . ,Fn with associated formats and values, we
define aniterationwhich in order does the following for eachFi:

• evaluate the current format based on the current values of all form fields;

• update the field based on the new current format.

The updating varies with the type of the form field:

• for a text field, the status light is changed to reflect the relationship between
the current value and the current format;

• for a select field, the options are filtered by the new format, and the selected
options that are no longer allowed by the format are unselected; if the current
selection of a singularselect is disallowed, theerror option is selected;

• for a radio or checkbox field, a depressed button is released if its value is no
longer allowed by the format.

An iteration ismonotonic, which intuitively means that it can only delete user data.
Technically, an iteration is a monotonic function on a specific lattice of form status
descriptions. It follows that repeated iteration will eventually reach a fixed-point. In
fact, if b is the total number ofradio andcheckbox buttons,p is the total number of
select options, ands is the number of singularselect s, then at mostb+ p+ s+1
iterations are required. Usually, however, the fixed-point will stabilize after very few
iterations; also, a compile-time dependency analysis can keep this number down. Only
complex forms with a high degree of interdependency will require many iterations.

The behavior of a PowerForm is to iterate to a new fixed-point whenever the client
changes an input field; furthermore, the form data can only be submitted when all the
form fields are in a status that allows this.

Note that the fixed-point we obtain is dependent on the order in which the form
fields are updated: permuting the fields may result in a different fixed-point. We choose
to update the fields in the textual order in which they appear in the document. This is
typically the order in which the client is supposed to consider them, and the resulting
fixed-point appears to coincide with the intuitively expected behavior. For simpler
forms, the order is usually not significant.

With form interdependency it is not only possible to create a deadlocked form that
can never be submitted, but also to create buttons that can never be depressed. Consider
again the example from Section 2. Since the valueaaa is different frombbb , thefoo
button will instantly be released whenever it is depressed. Such behavior can of course
also stem from more complicated interdependent behavior.

12

The possible behaviors of PowerForms can in principle be analyzed statically. De-
fine the size|R| of a regular expression to be the number of states in the correspond-
ing minimal, deterministic finite-state automaton, and the size|F | of an input field
to be the product of the sizes of all regular expressions that it may be tested against.
Then a collection of input fieldsF1, . . . , Fn determines a finite transition system with
|F1||F2| · · · |Fn| states for which the reachability problem is decidable but hardly fea-
sible in practice. We therefore leave it to the Web author to avoid aberrant behavior.

Examples

As a first example, we will redo the questionnaire from Figure 1:

Have you attended past WWW conferences?
<input type="radio" name="past" value="yes">Yes
<input type="radio" name="past" value="no">No

 If Yes, how did WWW8 compare?
<input type="radio" name="compare" value="better">Better
<input type="radio" name="compare" value="same">Same
<input type="radio" name="compare" value="worse">Worse

To obtain the desired interdependence, we declare the following format:

<format name="compare">
<if><equal name="past" value="yes"/>

<then><complement><const value=""/></complement></then>
<else><empty/></else>

</if>
</format>

Only if the first question is answered in the positive, may the second group of radio
buttons may be depressed and an answer is also required. A second example shows
how radio buttons may filter the options in a selection:

Favorite letter group:
<input type="radio" name="group" value="vowel" checked>vowels
<input type="radio" name="group" value="consonant">consonants

Favorite letter:
<select name="letter">

<option value="a">a
<option value="b">b
<option value="c">c
...
<option value="x">x
<option value="y">y
<option value="z">z

</select>

The unadorned version of this form allows inconsistent choices such asgroup having
valuevowel andletter having valuez . However, we can add the following format:

13

Figure 6: Only vowels are presented.

<format name="letter">
<if><equal name="group" value="vowel"/>

<then><charset value="aeiouy"/></then>
<else><charset value="bcdfghjklmnpqrstvwxz"/></else>

</if>
</format>

Apart from enforcing consistency, the induced behavior will make sure that the client is
only presented with consistent options, as shown in Figure 6. Next, consider the form:

Personal info
<p>
Name: <input type="text" name="name" size="30">

Birthday: <input type="text" name="birthday" size="20">

<table border="0" cellpadding="0" cellspacing="0">
<tr><td valign="top">Marital status:</td>
<td><input type=radio name="marital" value="single" checked>single

<input type="radio" name="marital" value="married">married

<input type="radio" name="marital" value="widow">widow[er]
</td>
</tr>
</table>
<p>
Spousal info
<p>
Name: <input type="text" name="spouse" size="30">

Deceased <input type="radio" name="deceased" value="deceased">

Several formats can be used here. For the birthday, we select from our standard library
a 35-state automaton recognizing legal dates including leap days:

<format name="birthday">
<regexp uri="http://www.brics.dk/bigwig/powerforms/date.dfa"/>

</format>

14

Figure 7: Collecting personal information.

Among the other fields, there are some obvious interdependencies. Spousal info is only
relevant if themarital status is notsingle , and the spouse can only bedeceased
if the marital status iswidow :

<format name="spouse">
<if><equal name="marital" value="married"/>

<then><regexp idref="handle"/></then>
<else>

<if><equal name="marital" value="single"/>
<then><empty/></then>
<else><regexp idref="handle"/></else>

</if>
</else>

</if>
</format>

<format name="deceased">
<if><equal name="marital" value="widow"/>

<then><const value="deceased"/></then>
<else><empty/></else>

</if>
</format>

Here,handle refers to some regular expression for the names of people. Note that
if the marital status changes fromwidow to single , then thedeceased button
will automatically be released. Dually, it seems reasonable that after a change from

15

Figure 8: Collecting customer information.

single to widow , thedeceased button should automatically be depressed. How-
ever, such action is generally not meaningful, since it may cause the form to oscillate
between two settings. In our formalism, this would violate the monotonicity property
that guarantees termination of the fixed-point iteration. Still, the form cannot be sub-
mitted until thedeceased button is depressed for awidow . The initial form is shown
in Figure 7.

An example of a more complex boolean expression involves the form in Figure 8.
Here, simple formats determine that the correct style of phone numbers is used for the
chosen country. The option of requesting a visit from the NYC office is only open
to those customers who live in New York City. This constraint is enforced by the
following format:

<format name="nyc">
<if><and><equal name="country" value="US"/>

<match name="phone">
<concat>

<union>
<const value="212"/>
<const value="347"/>
<const value="646"/>
<const value="718"/>
<const value="917"/>

</union>
<anything/>

</concat>
</match>

</and>
<then><anything/></then>
<else><empty/></else>

</if>
</format>

16

Figure 9: Collecting user information.

Residents from other cities will find that they cannot depress the button.
As a final example of the detailed control that we offer, consider the form in Fig-

ure 9 which invites users to request a new version of a product. Until the client has
stated whether he has a license or not, it is impossible to choose a version. Once the
choice has been made, licensed users can choose between all versions, others are lim-
ited to versions 1.1 and 1.2. The format on the last group of radio buttons is:

<format name="version">
<if><equal name="license" value="yes"/>

<then><anything/></then>
<else>

<if><equal name="license" value="no"/>
<then><union>

<const value="1.1"/>
<const value="1.2"/>

</union>
</then>
<else><empty/></else>

</if>
</else>

</if>
</format>

4 Applet results

Java applets can be used in conjunction with forms to implement new GUI components
that collect data from the client. However, it is not obvious how to extract and validate
data from an applet and submit it to the server on equal footing with ordinary form
data.

We propose a simple mechanism for achieving this goal. We extend the applet
syntax to allowresult elements in addition toparam elements. An example is the
following:

<applet codebase="http://www.brics.dk/bigwig/powerapplets"
code="slidebar.class">

<param name="low" value="32">
<param name="high" value="212">

17

<result name="choice">
</applet>

When this applet is displayed, it shows a slide bar ranging over the interval [32..212].
When the form is submitted, the applet will be requested to supply a value for the
choice result. This value is then assigned to ahidden form field namedchoice
and will now appear with the rest of the form data. If the applet is not ready with the
result, then the form cannot be submitted.

This extension only works for applets that are subclasses of the special classPow-
erApplet that we supply. It implements the methodputResult that is used by
the applet programmer to supply results, as well as the methodsresultsReady and
getResult that are called by the JavaScript code that implements the form submis-
sion.

In relation to PowerForms, applet results play the same role as input fields. Thus,
they can have associated formats and be tested in boolean expressions. The value of an
optionalerror attribute will appear in the alert box if an attempt is made to submit
the form with a missing or invalid applet result.

5 Translation to JavaScript

A PowerForms document is parsed according to a very liberal HTML grammar that
explicitly recognizes the special elements such asformat and regexp . The gen-
erated HTML document retains most of the original structure, except that it contains
the generated JavaScript code. Also, each input field is modified to includeonKeyup ,
onChange , andonClick functions that react to modifications from the client.

A function update foo is defined for each input field namefoo . This func-
tion checks if the current data is valid and reacts accordingly. Another functionup-
date all is responsible for computing the global fixed-point.

Each regular expression is by the compiler transformed into a minimal, determin-
istic finite-state automaton, which is directly represented in a JavaScript data structure.
It is a simple matter to use an automaton for checking if a data value is valid. For
text andpassword fields, the status lights green, yellow, and red correspond to
respectively an accept state, a non-accept state, and the crash state. For efficiency, the
generated automata are time-stamped and cached locally; thus, they are only recom-
piled when necessary.

The generated code is quite small, but relies on a 500 line standard library with
functions for manipulating automata and the Document Object Model [1].

6 Availability

The PowerForms system is freely available in an open source distribution from our Web
site located athttp://www.brics.dk/bigwig/powerforms/ . The package
includes documentation, the examples from this paper and many more, and the com-
piler itself which is written in 4000 lines of C. The generated JavaScript code has been
tested for Netscape on Unix and Windows and for Explorer on Windows.

18

PowerForms are also directly supported by the<bigwig> system which is a high-
level language for generating interactive Web services [4, 3, 11, 10]. It is likewise
available athttp://www.brics.dk/bigwig/ .

7 Conclusion

We have shown how to enrich HTML forms with simple, declarative concepts that
capture advanced input validation and field interdependencies. Such forms are subse-
quently compiled into JavaScript and standard HTML. This allows the design of more
complex and interesting forms while avoiding tedious and error-prone JavaScript pro-
gramming.

We would like to thank the entire<bigwig> team for assisting in experiments
with PowerForms. Thanks also goes to the PowerForms users, in particular Frederik
Esser, for valuable feedback.

References

[1] Vidur Apparao et al.Document Object Model (DOM) Level 1 Specification. W3C,
1998. URL:http://www.w3.org/TR/REC-DOM-Level-1/ .

[2] Paul V. Biron and Ashok Malhotra. XML Schema part 2: Datatypes. Technical
report, W3C, May 1999. World Wide Web Consortium Working Draft.

[3] Claus Brabrand, Anders Møller, Anders Sandholm, and Michael I. Schwartzbach.
A runtime system for interactive Web services.Computer Networks, 31:1391–
1401, 1999. Also in proceedings of WWW8.

[4] Claus Brabrand, Anders Møller, Anders Sandholm, and Michael I. Schwartzbach.
Designing a language for developing interactive Web services, 2000.
URL: http://www.brics.dk/bigwig/research/publications/ .

[5] Tim Bray, Jean Paoli, and C. M. Sperberg-McQueen, editors.Ex-
tensible Markup Language (XML) 1.0. W3C, February 1998.
URL: http://www.w3.org/TR/REC-xml .

[6] Netscape Corp. JavaScript form validation sample code.
URL: http://developer.netscape.com/docs/examples/
javascript/formval/overview.html .

[7] John Desborough.Cold Fusion 3.0 Intranet Application. International Thomson
Publishing, 1997.

[8] Andreas Girgensohn and Alison Lee. Seamless integration of in-
teractive forms into the web. InProceedings of WWW6, 1997.
URL: http://www.scope.gmd.de/info/www6/technical/
paper083/paper83.html .

19

[9] Jukka Korpela. JavaScript and HTML: possibilities and caveats.
URL: http://www.hut.fi/u/jkorpela/forms/javascript.html .

[10] Anders Sandholm and Michael I. Schwartzbach. Distributed safety controllers for
Web services. InFundamental Approaches to Software Engineering, FASE’98,
LNCS 1382, pages 270–284. Springer-Verlag, March/April 1998.

[11] Anders Sandholm and Michael I. Schwartzbach. A domain specific language for
typed dynamic documents. InProceedings of POPL’00, 2000.

[12] Sebastian Schnitzenbaumer, Malte Wedel, and Muditha Gunatilake, editors.
XHTML-FML 1.0: Forms Markup Language. Stack Overflow AG, 1999.
URL: http://www.mozquito.org/documentation/spec xhtml-
fml.html .

[13] Sebastian Schnitzenbaumer, Malte Wedel, and Dave Raggett, ed-
itors. XHTML Extended Forms Requirements. W3C, 1999.
URL: http://www.w3.org/TR/xhtml-forms-req.html .

[14] Paul Thistlewaite and Steve Ball. Active forms. InProceedings of WWW5,
1996. URL:http://www5conf.inria.fr/fich html/papers/P40/
Overview.html .

[15] Martin Webb and Michel Plungjan. JavaScript form FAQ knowledge base.
URL: http://developer.irt.org/script/form.htm .

20

