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Abstract—A static analysis can check programs for potential
errors. A natural question that arises is therefore: who checks
the checker? Researchers have given this question varying at-
tention, ranging from basic testing techniques, informal mono-
tonicity arguments, thorough pen-and-paper soundness proofs, to
verified fixed point checking. In this paper we demonstrate how
quickchecking can be useful for testing a range of static analysis
properties with limited effort. We show how to check a range of
algebraic lattice properties, to help ensure that an implementation
follows the formal specification of a lattice. Moreover, we offer
a number of generic, type-safe combinators to check transfer
functions and operators on lattices, to help ensure that these are,
e.g., monotone, strict, or invariant. We substantiate our claims by
quickchecking a type analysis for the Lua programming language.

I. INTRODUCTION

Fundamentally, most static analyses boil down to monotone
functions operating over lattices [19]. To gain confidence in a
static analysis implementation, one would thus hope that the
code implements, at least, (1) the formal specification of being a
lattice, and (2) functions that are in fact monotone. For example,
consider a simple two-element lattice expressed as an OCaml
module:

module L = struct

let name = "example lattice"

type elem = Top | Bot

let leq a b = match a,b with

| Bot, _ -> true

| _, Top -> true

| _, _ -> false

let join e e’ = if e = Bot then e’ else Top

let meet e e’ = if e = Bot then Bot else e’

(* ... *)

let to_string e = if e = Bot then "Bot" else "Top"

end

How can we be sure that the above module implements a
lattice? Provided we extend the lattice module with a generator
of arbitrary elements, as in

let arb_elem = Arbitrary.among [Bot; Top]

we present a framework that offers a range of property tests to
boost confidence in the implementation (here shown with the
user’s input in bold font):

# let module LTests = GenericTests(L) in run_tests

LTests.suite;;

check 19 properties...

∗Current affiliation: DTU Compute, Technical University of Denmark

testing property leq reflexive in example lattice...

[✓] passed 1000 tests (0 preconditions failed)

testing property leq transitive in example lattice...

[✓] passed 1000 tests (0 preconditions failed)

testing property leq anti symmetric in example lattice...

[✓] passed 1000 tests (0 preconditions failed)

... (32 additional lines cut)...

tests run in 0.02s

[✓] Success! (passed 19 tests)

Furthermore, to ensure that a static analysis implementation
is guaranteed to reach a fixed point, the involved lattice opera-
tions should be monotone. For example, consider the following
non-monotone operation:

let flip e = if e = L.Bot then L.Top else L.Bot

In this paper we provide a type-safe, embedded domain-specific
language (EDSL) to check and catch such operator errors, by
expressing property signatures in a syntax that resembles the
standard mathematical syntax, flip : L

⊑
−→ L:

# let flip_desc = ("flip",flip) in

run (testsig (module L) -<-> (module L) =: flip_desc);;

testing property ’flip monotone in argument 1’...

[✗] 270 failures over 1000 (print at most 1):

(Bot, Top)

Pure coverage testing would leave such property-based errors
uncaught. In fact one needs only two inputs (top and bottom) to
achieve full coverage of flip’s implementation. Undoubtedly,
this is a simplistic example, but the need to test implementations
still stands. Today’s static analyses can establish interesting
properties about programs in higher-order, dynamically typed
languages, for example JavaScript. The intricate semantics of
such languages induces complexity in the underlying lattices
and in the operations over these. In this paper we demonstrate
how quickchecking [6] can be used as an effective lightweight
methodology to test a range of algebraic properties in static
analyses. In situations where lattices and transfer functions are
subject to change, for example, in the design phase or in the
revision of an analysis, the approach can become a valuable
tool. Our approach can also act as a supplement to pen-and-
paper proofs or mechanized reasoning within a proof assistant.
Towards this goal, this paper makes the following contributions:

• We explore how the ideas in quickchecking (briefly sum-
marized in Section II) can be applied to static analysis.

• We demonstrate how to lift generators of simple lattices to
generators of composite lattices and how to use the gener-



ators to check a number of fundamental lattice properties
expressed as a reusable lattice test suite (Section III).

• We formulate a type-safe EDSL of property signatures for
testing operations over lattices for a number of desirable
properties (Section IV).

• We present a case study of quickchecking a nontrivial
static type analysis for Lua, where the tests supplement
a basic test suite of hand-written programs to collectively
achieve nearly full coverage (Section V).

II. BACKGROUND

This section provides relevant background information on
QuickCheck, Lua, and static type analysis.

A. A QuickCheck summary

Quickchecking [6] is a popular methodology within the func-
tional programming community for performing property-based

testing. It involves two components: (1) a generator for produc-
ing arbitrary input, and (2) properties that should be tested on
the arbitrary input. Two domain-specific languages (DSLs) are
used for this purpose, one for each component. The original
QuickCheck technique was based on DSLs embedded into
Haskell using a Haskell library [6]. Since then, the approach
has been ported to numerous other programming languages,
both statically and dynamically typed. For the remainder of this
paper, we use the qcheck implementation of QuickCheck in
OCaml. However, we stress that the approach is not specific to
OCaml.

Suppose we wish to test the (incorrect) property from the
introduction, that flip is a monotone function, hence satisfying
the property ∀a,b. a ⊑ b ⇒ flip a ⊑ flip b. By translating the
universally quantified variables a and b into function parameters,
this property can be expressed as an OCaml function with
Boolean result type:

fun (a,b) ->

Prop.assume (L.leq a b); L.leq (flip a) (flip b)

The implication of our specification is modeled using the
operator Prop.assume of the property DSL, which will test its
precondition and (i) continue if it is true, or (ii) accept the test
and bail early if it is false (while keeping track of the number of
failed preconditions). This faithfully models logic implication:
false implies anything. In general, properties concerning a
value of type ’a become predicates of type ’a -> bool.

To test the above property on arbitrary
pairs, we need to generate some input. Recall
Arbitrary.among : ’a list -> ’a Arbitrary.t from the
introduction: it is an example of a combinator from the
generator DSL that will supply arbitrary elements selected
from its argument list. We can lift this generator to a generator
of pairs, using another built-in combinator, Arbitrary.pair

(from here on we will sometimes abbreviate qcheck’s Arbitrary

module to Arb):

let arb_pair = Arbitrary.pair L.arb_elem L.arb_elem

We are now in position to write a test with mk_test and
subsequently run it, which exposes the error:

# let mon_test =

mk_test arb_pair

(fun (a,b) ->

Prop.assume (L.leq a b); L.leq (flip a) (flip b));;

val mon_test : QCheck.test = <abstr>

# run mon_test;;

testing property <anon prop >...

[✗] 27 failures over 100

The error message neither names the failed property nor pro-
vides a counterexample. To do so, mk_test accepts a range of
optional, named arguments (prefixed with tilde in OCaml). An
example:

mk_test ~n:1000 ~pp:pp_pair ~name:"flip monotone"

arb_pair

(fun (a,b) ->

Prop.assume (L.leq a b); L.leq (flip a) (flip b))

This will instead run the test on 1000 arbitrary pairs, it
will identify the particular failed property by the supplied
string "flip monotone", and it will pretty-print up to ten
counterexamples, using a supplied pretty-printer pp_pair (de-
fined as a combination of its component’s pretty-printers,
let pp_pair = PP.pair L.to_string L.to_string).

B. The Lua programming language

Lua is a dynamically typed programming language in the
ALGOL family of lexically scoped languages. In addition to
the usual built-in data types, such as numbers and strings, it
features both first-class hash tables and first-class functions.
Lua is widely adopted within the computer game industry [15].
Appendix A provides a simplified BNF of the language, leaving
out a number of details that are inessential for this presentation.
As an example, consider the following, higher-order Lua pro-
gram:

1 function mktable(f)

2 return { x = f("x"), y = f("y") }

3 end

4

5 mktable(function (z) return z.." component" end)

The program calls a function mktable, passing a function as
parameter. The function mktable will then allocate a table with
two entries, x and y, initialize the entries with the result of
invoking the function parameter, and return the resulting table.

C. A static analysis for Lua

To statically predict dynamic type properties of Lua pro-
grams, we build a forward, interprocedural static analysis along
the lines of TAJS, Jensen et al.’s type analysis of JavaScript [16].
Fundamentally, the analysis consists of a composite lattice to
model the state of Lua programs, as well as operations (e.g.,
transfer functions) over the involved lattices, and a tree-walker
to model program execution.

The analysis is centered around an allocation site abstrac-

tion [5] in which tables and function values are identified by
unique labels denoting their origin. Hence, we assume that table
literals and functions are uniquely labeled.

Diagrammatically, we illustrate the lattice structure of the
type analysis in Fig. 1. Starting from the bottom, we compute
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Fig. 1: Lattice structure of type analysis.

invariants over analysislattice, which holds an abstract state
(statelattice) for each program point (before and after each
statement) of an input program. An abstract state consists of
an abstract store (storelattice) and an abstract environment
(envlattice) that represents scope chains. An abstract store
associates to each label ℓ an element from proplattice, repre-
senting the properties (keys and values) of tables originating
from label ℓ. Unlike JavaScript, keys in Lua tables can be any
value (even tables), except the special nil value. The lattice
proplattice therefore uses an additional lattice valuelattice

to over-approximate these. The latter is a Cartesian product
of stringlattice, numberlattice and a few set-based lattices to
keep track of allocation sites (of tables and functions) and other
value tags (e.g., Booleans and nil).

We express each of the above lattices as OCaml modules
with a signature satisfying Fig. 2. Each of the components
corresponds to an entry in the formal definition of a lattice:
〈L;⊑,⊥,⊤,⊔,⊓〉. We leave an explicit top element optional,
as it is not needed in practice for all lattices, for example,
valuelattice. For lattices with an explicit top element we pro-
vide an extended lattice signature. We also include a to_string

coercion operation in the signature for pretty printing.
When applied to the example program of Section II-B, our

analysis will infer that the resulting store after line 5 contains
a table allocated in line 2. With the help of absencelattice, the
lattice proplattice reveals that the allocated table definitely con-
tains x and y entries, and valuelattice reveals that both entries
can be any string. Because the analysis is monomorphic [19],

module type LATTICE_TOPLESS =

sig

type elem

val leq : elem -> elem -> bool

val bot : elem

(* val top : elem *)

val join : elem -> elem -> elem

val meet : elem -> elem -> elem

val to_string : elem -> string

end

Fig. 2: Lattice signature without explicit top element.

passing two different string arguments to f forces the result to
top in stringlattice.

A static analysis such as the above is typically tested on a
range of example programs, to ensure that the analysis soundly
accounts for all corner cases of the language. However, a num-
ber of underlying properties are seldom given similar attention.
In the following sections we will develop the infrastructure for
quickchecking such properties.

III. TESTING LATTICES

Formally, a lattice 〈L;⊑,⊥,⊤,⊔,⊓〉 satisfies a number of
properties, which should be reflected in an implementation.
First, 〈L;⊑〉 is a partial order, meaning the ordering is reflexive
(∀a ∈ L. a ⊑ a), transitive (∀a,b,c ∈ L. a ⊑ b ∧ b ⊑ c ⇒ a ⊑ c),
and anti-symmetric (∀a,b∈ L. a⊑ b ∧ b⊑ a⇒ a= b). Second,
a lattice has a range of algebraic properties:

∀a ∈ L. ⊥⊑ a ∧ a ⊑⊤ (⊥/⊤ is lower/upper bound)

∀a,b ∈ L. a⊔b = b⊔a ∧ a⊓b = b⊓a

(⊔,⊓ commutative)

∀a,b,c ∈ L. (a⊔b)⊔ c = a⊔ (b⊔ c) ∧ (a⊓b)⊓ c = a⊓ (b⊓ c)
(⊔,⊓ associative)

∀a ∈ L. a⊔a = a ∧ a⊓a = a (⊔,⊓ idempotent)

∀a,b ∈ L. a⊔ (a⊓b) = a ∧ a⊓ (a⊔b) = a

(⊔-⊓,⊓-⊔ absorption)

∀a,b ∈ L. a ⊑ b ⇔ a⊔b = b ⇔ a⊓b = a

(⊑-⊔-⊓ compatible)

In addition, ⊥ should be the greatest lower bound and ⊤ should
be the least upper bound (in lattices with an explicit ⊤ element).

In order to test such properties, we need (1) a way to compare
elements for equality (e.g., to test commutativity), and (2) a
scheme for generating arbitrary lattice elements. To this end,
we extend the lattice signature of Fig. 2 with two additional
operations for testing equality and for generating arbitrary
elements:

val eq : elem -> elem -> bool

val arb_elem : elem Arbitrary.t

To avoid clutter and to separate our partial analysis speci-
fication from the implementation, we keep the quickchecking
source code (including generators such as the above) in separate
modules, on which the analysis proper does not depend. We
can then achieve an “object-oriented sub-classing effect” by
means of OCaml’s module system: quickchecking code defines
extended lattice modules that include the original lattice mod-
ules and extend their signature with additional operations, such
as, arb_elem. In the following sections, we investigate how to
formulate this operation.

A. Basic generators

We first consider the simple two-element lattice
absencelattice that is used to signal whether a table entry
is definitely present, in which case a table lookup is bound
to succeed. Since there are only two choices of elements, an
arbitrary element will necessarily be one of the two. Hence
absencelattice’s definition of arb_elem coincides with that of L

from the introduction.



For infinitely wide lattices, such as, the flat constant prop-
agation of strings, the situation is more interesting. What
do we mean by an arbitrary element? Potentially this could
mean several things, for example: (1) a “uniform choice”
where each element is equally likely to be chosen, (2)
an “algebraic choice” where each datatype constructor (e.g.,
Bot | Const of string | Top in the string lattice) represents a
choice reflected in the code and hence should give rise to
equally likely choices, or (3) a “concretization choice” where
each element is chosen based on weights reflecting how many
concrete elements it represents.

For the flat constant propagation lattice, which is infinitely
wide, a uniform choice would mean that top and bottom are
unlikely to be drawn, even if we restrict the constants to, e.g.,
all 32-bit integers. Similarly, based on a concretization choice,
top is most likely to be chosen as all concrete sets of size 2 or
more abstract to it, whereas bottom is unlikely to be chosen.
Hence, from a testing point of view, a distribution based on
algebraic choice is preferable to uniformly cover all cases in
lattice-relevant dispatches. Furthermore, this choice echoes our
decision from the simpler two-element lattice.

We express the resulting generator as a choice between
three simpler generators: a constant bottom generator built with
Arb.return, the builtin string generator lifted into the elem type,
and a constant top generator.

let arb_elem = Arb.(choose [return bot;

lift const string;

return top])

For set-based lattices, e.g., sets of allocation site
labels, we need to build up a set of arbitrarily
chosen elements. For this purpose, we use a fixed
point combinator for generating recursive values:
fix : (base:’a Arb.t) -> (’a Arb.t -> ’a Arb.t) -> ’a Arb.t.
As a base case, we provide LabelSet.empty, the constructor
of an empty set, suitably cast as a constant generator.
As the inductive case, we provide an arbitrary-set
transformer, by lifting LabelSet.add (OCaml’s builtin set
addition operation) into the generators, using arb_label

(a generator of arbitrary labels, represented as integers) and
lift2 : (’a -> ’b -> ’c) -> ’a Arb.t -> ’b Arb.t -> ’c Arb.t:

Arb.(fix ~base:(return LabelSet.empty)

(lift2 LabelSet.add arb_label ))

Effectively, this generator will generate an empty LabelSet, then
iterate an arbitrary number of times (the default maximum is
15), using LabelSet.add to add an arbitrary label from arb_label

in each iteration. Next, we lift these basic lattice generators to
generators for composite lattices.

B. Composite generators

We can easily form generators for product lattices by com-
posing the generators of the sub-lattices. For example, if A and
B are lattice modules extended with generators, we can form a
generator for the pair lattice of elements A.elem * B.elem:

let arb_elem = Arbitrary.pair A.arb_elem B.arb_elem

Concretely, we use this approach to form a generator for
statelattice (represented as two-element records) of the gen-
erators for storelattice and envlattice.

To build arbitrary elements of function lattices, such as
storelattice and analysislattice, we first formulate a helper
for building maps. The helper takes three arguments: mt for
building the empty map, add for adding arguments, and finally
an association list kvs of (key, value) pairs. It proceeds by
recursion over the input list and adds each list entry to a
constant map generator. Note how the nonempty case utilizes
(>>=) : ’a Arb.t -> (’a -> ’b Arb.t) -> ’b, the monadic bind
of generators to temporarily name the recursively built map:

let build_map mt add kvs =

let rec build ls = match ls with

| [] ->

Arb.return mt

| (k,v)::ls ->

Arb.(build ls >>= fun tbl ->

return (add k v tbl)) in

build kvs

Maps are built based on the input list’s element order. If
build_map is applied to the same association list twice, al-
beit with the elements permuted, the resulting map (and
hence OCaml’s underlying balanced tree) will likely result
in a differently structured tree, thereby avoiding the pitfall
of skewing the generator into generating only a particular
subset of map shapes [14]. We can now generate arbitrary
maps. For storelattice, e.g., we form a generator of arbitrary
(label, proplattice) association lists, and feed the outcome to
build_storemap (build_map parameterized to build StoreMaps):

let arb_entries =

Arb.(list ~len:(int 20) (pair arb_label pl_arb_elem))

let build_storemap =

build_map StoreMap.empty StoreMap.add

let arb_elem = Arb.(arb_entries >>= build_storemap)

To summarize, we have seen how to build (and combine)
generators for a simple two-element lattice, for a constant
propagation lattice, for a set-based lattice, for product lattices,
and for function lattices. Collectively, these lattices can be
combined to a non-trivial static type analysis such as TAJS [16].

C. Testing lattice properties

With element generators in place for all lattices, we are now
in position to check the lattice properties we set out to. For
example, we can formulate a generic join commutativity test
for any lattice L that satisfies the LATTICE_TOPLESS signature:

let join_comm = (* forall a,b. a \/ b = b \/ a *)

mk_test ~n:1000 ~pp:pp_pair

~name:("join commutative in " ^ L.name)

arb_pair (fun (a,b) -> L.(eq (join a b) (join b a)))

where arb_pair and pp_pair are defined as in Section II-A.
We can subsequently test all nine of our example lattices for
commutativity of their join operations.

Consider now a conditional property, such as transitivity of
the lattice ordering. Again this translates directly to a test:



(* forall a,b,c. a <= b /\ b <= c => a <= c *)

let leq_trans =

mk_test ~n:1000 ~pp:pp_triple

~name:("leq transitive in " ^ L.name)

arb_triple (fun (a,b,c) -> Prop.assume (L.leq a b);

Prop.assume (L.leq b c);

L.leq a c)

Here, arb_triple and pp_triple are generic helper functions for
generating and pretty-printing arbitrary triples, analogous to
arb_pair and pp_pair. This approach is insufficient for more
complex lattices, however, as the probability of generating
arbitrary triples that are ordered (and thus satisfying the pre-
condition) decreases with the number of lattice elements. For
example, if we run the above test on 1000 arbitrary generated
input triples of valuelattice elements we see a problem:

testing property leq transitive in value lattice...

[✓] passed 1000 tests (1000 preconditions failed)

Not a single generated triple satisfies the precondition.
Rather than cranking up the number of generated triples to

increase the chance of generating a few ordered ones we instead
equip lattices with a generator to help generate ordered tuples.
To this end, we further extend the lattice signature of Fig. 2 with
an operation for generating arbitrary elements less or equal to a
given argument:

val arb_elem_le : elem -> elem Arbitrary.t

The two-element absencelattice is straightforward to extend:

let arb_elem_le e =

if e = Top then arb_elem else Arb.return Bot

The extension to the flat stringlattice is not considerably more
complex:

let arb_elem_le e = match e with

| Bot -> Arb.return Bot

| Const s -> Arb.among [Bot; Const s]

| Top -> arb_elem

To build an arbitrary subset of a given set, which we need for
generating ordered tuples involving set-based lattices, we first
formulate a helper function build_set akin to build_map:

let rec build_set mt sglton union ls = match ls with

| [] -> Arb.return mt

| [l] -> Arb.return (sglton l)

| _ ->

Arb.(int (1 + List.length ls) >>= fun i ->

let ls,rs = split i ls in

lift2 union (build_set mt sglton union ls)

(build_set mt sglton union rs))

Similarly to build_map, build_set is parameterized with a builder
for the empty set, a builder for singletons, a set union operation,
and a list of elements. For input lists of length two or more,
build_set will split the input list at some arbitrary point, recurse
on both halves, and union their results. We thereby again avoid
the pitfall of generating skewed data structures.

Next, we formulate a helper function le_gen to aid with
subset selection. The function is parameterized with a list and a
builder. It will first permute its input list, split the resulting list
in two sublists, and finally pass one of these to the builder:

let le_gen es build =

let es_gen = permute es in

Arb.(es_gen >>= fun es ->

int (1 + List.length es) >>= fun i ->

let smaller_es ,_ = split i es in

build smaller_es)

Within valuelattice we use this approach repeatedly to gen-
erate subsets of its set-based lattices. For example, given an
argument e from valuelattice, we serialize its tags into a list
using TagSet.elements, and pass the result to le_gen for subset
selection and subsequent building of a set structure:

let build_tagset =

build_set TagSet.empty TagSet.singleton TagSet.union

let le_tag_gen =

le_gen (TagSet.elements e.tags) build_tagset

Assuming the outputs of permute and Arb.int are arbitrary, this
approach provides equal chance of each set size. Alternatively,
one could consider an approach with equal chance of each
subset, by flipping a coin to decide whether each element is
included in the subset.

As to the composite lattices, formulating arb_elem_le for
product lattices is a straightforward lifting that generates and
combines less-or-equal elements for each sub-lattice. For func-
tion lattices under pointwise ordering, we first serialize its
bindings into an association list. We then reuse the le_gen

function from above to choose a subset of bindings. This has the
effect of choosing fairly between each subset size of bindings.
(Alternatively we could have used a coin toss per binding, sim-
ilar to above.) We then iterate over the resulting association list
using le_entries below, which invokes its argument arb_elem_le
on each entry in order to obtain a result that may be pointwise
less than its argument. Finally we pass the resulting association
list to build_map.

let le_entries arb_elem_le kvs =

let rec build es = match es with

| [] ->

Arbitrary.return []

| (k,v)::es ->

Arbitrary .(build es >>= fun es’ ->

arb_elem_le v >>= fun v’ ->

return ((k,v’)::es’)) in

build kvs

With arb_elem_le in hand, we can now generate arbitrary
ordered pairs and triples for any lattice L to test, e.g., transitivity.
For example, we can define ord_pair as follows:

let ord_pair =

Arb.(L.arb_elem >>= fun e ->

pair (L.arb_elem_le e) (return e))

IV. TESTING LATTICE OPERATIONS

We now turn to operations on lattices. Besides the monotonic-
ity property mentioned in the introduction, what properties are
desirable of an analysis operator? Strictness, f (⊥) = ⊥, is an
obvious candidate. Depending on the lattices, this can mean “no
output values produced when given no input values” or “output
state is unreachable if input state is unreachable”. Since we are



(* forall s. bot = s ^ bot *)

let concat_strict_snd =

mk_test ~n:1000 ~pp:Str.to_string

~name:("concat strict in arg.2")

Str.arb_elem (fun s -> Str.(eq bot (concat s bot)))

(* forall s,s’,s’’. s’ <= s’’ => (s ^ s’) <= (s ^ s’’) *)

let concat_monotone_snd =

mk_test ~n:1000 ~pp:(PP.pair Str.to_string pp_pair)

~name:("concat monotone in arg.2")

(Arbitrary.pair Str.arb_elem ord_pair)

(fun (s,(s’,s’’)) -> Prop.assume (Str.leq s’ s’’);

Str.(leq (concat s s’) (concat s s’’)))

(* forall s,s’,s’’. s’ ~ s’’ => (s ^ s’) ~ (s ^ s’’) *)

let concat_invariant_snd =

mk_test ~n:1000 ~pp:(PP.pair Str.to_string pp_pair)

~name:("concat invariant in arg.2")

(Arbitrary.pair Str.arb_elem Str.equiv_pair)

(fun (s,(s’,s’’)) -> Prop.assume (Str.eq s’ s’’);

Str.(eq (concat s s’) (concat s s’’)))

Fig. 3: Examples of specific stringlattice operation tests.

only interested in sound analyses, operator strictness is not a
formal requirement: returning any over-approximation of ⊥ is
safe, yet an analysis should be as precise as possible.

As a third operator property, we include invariance,1

∀x,x′. x = x′ ⇒ f (x) = f (x′): operators should yield equal
results when applied to equal arguments. Mathematically speak-
ing, this should be obvious, yet it is less so in an implementa-
tion, where, e.g., identical strings may be located at different
places in memory, or data structures containing the same ele-
ments may be differently shaped depending on the insertion or-
der. In the broader context of quickchecking, Holdermans [14]
has further argued for supplementing “axiom driven tests” with
invariance tests to help catch an otherwise undiscovered class
of errors (this issue is discussed more in Section VI). In order
to test for invariance, we extend the lattice signature with a
generator of equivalent element pairs:

val equiv_pair : (elem * elem) Arbitrary.t

One must then again go through the lattices to extend them with
such a generator. For example, for stringlattice, our generator
uses OCaml’s builtin String.copy to create pairs of equivalent,
yet differently located strings. For set lattices, build_set is
already geared to create potentially differently shaped trees for
each invocation. For function lattices, extra care must be taken
to avoid that duplicate key entries in the initial association
list will result in a different function lattice element under a
different addition order. We do so by first building one map,
then serialize its bindings into an association list, which we
can subsequently permute and use to build a second, equivalent
map.

Returning to the topic of lattice operations, consider the tests
in Fig. 3, which express properties specific to the stringlattice

(Str) operation concat: strictness, monotonicity, and invariance.
By studying Fig. 3, one can observe a pattern in the code for
the three tests, to the point that it is needlessly repetitive. To
avoid writing such repetitive lines, we seek to distill a basis
of primitives (an EDSL) from which all such tests can be
expressed concisely.

1This property is also known as ‘congruence’.

mname ::= (module NAME)

baseprop ::= op_monotone

| op_strict

| op_invariant

rightprop ::= baseprop

| pw_right mname (rightprop)

leftprop ::= right prop

| pw_left mname (leftprop)

prop ::= finalize (leftprop mname mname)

(a) Combinator-based notation.

mname ::= (module NAME)

baseprop ::= mname -<-> mname

| mname -$-> mname

| mname -~-> mname

prop ::= (testsig [mname ---> ]∗

baseprop [---> mname]∗ ) for_op

(b) Infix notation.

Fig. 4: EBNF grammar of our EDSL.

The EDSL consists of three primitives for expressing
properties of unary operations: op_strict, op_monotone, and
op_invariant. In addition, we add generic operations, pw_left

and pw_right for adding arguments to the left, resp. right, of
the parameter in question. Finally, we add a generic operator
for building a test out of the pieces, effectively sealing off the
signature (we omit a few optional parameters to mk_test):

let finalize opsig (opname,op) =

opsig

(fun (pp,gen,prop,pname,leftargs) ->

mk_test ~n:1000 ~pp:pp (* ... *)

~name:(Printf.sprintf "’%s %s in argument %i’"

opname pname leftargs)

gen (prop op))

This definition hints to the implementation of our framework:
as the combinators traverse the signature description, they will
structurally build up a pretty-printer pp, a generator gen, the
property prop, the property name pname, and a left argument
counter leftargs. By passing the operator name opname as a
string, we can thus obtain nice error messages (as illustrated in
Section I). Because of the embedding into OCaml, the EDSL
will furthermore statically ensure that each module satisfies
the lattice signature and that the described signature and the
operator’s signature agree. In Fig. 4(a) we summarize the syntax
of the combinator-based EDSL. For example, we can build a
monotonicity test of Str.concat in its second argument, based
solely on a description of the signature (=:: is shorthand, infix
syntax for finalize):

# let sc = ("Str.concat",Str.concat) in

pw_left (module Str) op_monotone (module Str) (module Str) =:: sc;;

- : QCheck.test = <abstr>

Such a description may still not be quite satisfactory, as
the connection to the corresponding mathematical notation
Str −→ Str

⊑
−→ Str is unclear. To remedy this mismatch we provide

convenient infix syntax in the form of arrows with and without
annotation: -$-> for strictness, -<-> for monotonicity, -~-> for



invariance, and ---> for a plain function arrow. We can now
write Str.concat’s signature as follows, where testsig and
for_op act as delimiters of the signature:

# (testsig (module Str) ---> (module Str) -<-> (module Str)) for_op;;

- : string * (Str.elem -> Str.elem -> Str.elem) -> QCheck.test

= <fun>

Note how OCaml infers that the EDSL expression fur-
ther expects a string (describing the operator, e.g., by name)
and a Str.elem -> Str.elem -> Str.elem operator to yield a
QuickCheck test. We thereby statically prevent type errors in
our tests, e.g., an attempt to quickcheck a lattice operator over
an incorrect signature.

Technically, the type-safe embedding is achieved by left-
associativity of function application and of all infix operators
in OCaml beginning with the minus ‘-’ character. As a result,
OCaml itself will create an underlying AST in the form of
Fig. 5. By suitable function definitions for the testsig, for_op,
and the infix arrow operators, one can obtain a depth-first traver-
sal compatible with an AST such as Fig. 5’s. The challenge
is to combine the combinators in such a traversal: we do not
know the arguments to, e.g., op_monotone until we meet the
-<-> node (the rightmost Str in its left subtree and the right
child of the root). Furthermore, the role of additional arguments
changes above and below a -<-> node: below they should be
added as left arguments with the combinator pw_left, and above
they should be added as right arguments with the combinator
pw_right. We solve these issues by implementing the traversal
as a state machine. One register of the state machine keeps
track of the latest encountered module argument (initialized
with testsig’s argument). Two other state machine registers ac-
cumulate both a left- and a right argument-adding transformer
simultaneously. Upon meeting an ---> arrow, we register the
latest module argument and add the previous to both argument-
adding transformers. Upon meeting a ‘property arrow’, such as
the -<-> node, all previously visited arguments were to the left,
so we move the left transformer to the right transformer for any
remaining right arguments to be added. Upon completion, a full
argument-adding transformer is therefore available to for_op.

Statically typing something of this form may seem hard, as
the type of a signature varies with its shape. The situation is
similar to the static typing of C’s printf, which will vary with
its format string. Inspired by Danvy’s solution to the printf

problem [11], we utilize the polymorphism of result types
in continuation-passing style (CPS). In this context, for_op

will instantiate the polymorphic result type. The EDSL’s infix
syntax is summarized in Fig. 4(b). With =: as an additional infix

-<->

--->

testsig

Str

Str

Str

Fig. 5: OCaml’s underlying AST.

module type ARB_ARG =

sig

type elem

val arb_elem : elem Arbitrary.t

val to_string : elem -> string

end

Fig. 6: Relaxed argument signature.

synonym for for_op, we can thus write the equivalent tests of
Fig. 3 as compactly as follows:

let concat_tests =

let sc = ("Str.concat",Str.concat) in [

testsig (module Str) ---> (module Str) -$-> (module Str) =: sc;

testsig (module Str) ---> (module Str) -<-> (module Str) =: sc;

testsig (module Str) ---> (module Str) -~-> (module Str) =: sc;

(* ... and similar for the first argument ... *) ]

A. Checking predicates

A number of lattice operations naturally involve only lattice
arguments. However, many operations have a different signa-
ture. One such class is predicate functions with a Boolean result
type. For example, VL.may_be_proc : VL.elem -> bool takes a
valuelattice (VL) element and checks if the set-lattice that over-
approximates (allocation sites of) procedure values is nonempty.
In fact, this is still an operator on lattices, as the Booleans
form a lattice, whose elements are ordered by implication, and
VL.may_be_proc is monotone over this lattice. For this purpose,
we have implemented a short Boolean lattice module, tested
the lattice implementation (using quickchecking, of course),
and finally quickchecked VL.may_be_proc and a number of sim-
ilar queries using the Boolean lattice. For other queries, e.g.,
VL.is_bot, which checks whether a given valuelattice element
is bottom, we use the dual lattice that is ordered by reverse
implication.

We cannot expect the arguments of all operations to have
been designed as lattices. Some arguments and results never-
theless turn out to be so in retrospect. Rather than force devel-
opers to revise their analysis implementations, we also provide
OCaml functors to easily build, e.g., list and pair lattices for
such quickchecking.

B. Beyond pure lattice operations

Our EDSL of infix signature syntax between modules satis-
fying LATTICE_TOPLESS can handle a majority of the operations
in our Lua analysis implementation. However, the requirement
that arguments must satisfy the LATTICE_TOPLESS signature is
sometimes too restrictive: some operations simply accept an
allocation site label or a string (representing a variable name
or a property), yet can still be strict, monotone, and/or invariant
in the other arguments.

To handle such cases, we relax the parameter requirements
to the pw_left and pw_right combinators, to match the simpler
ARB_ARG signature in Fig. 6. Based on this relaxation we can
then write the last tests in the (still type-safe, but less readable)
combinator syntax. We have not found a type-safe approach to
allow these in the infix syntax at this point.



An avenue for a different, non-signature based class of tests
is that of soundness. To a limited degree this is feasible. For
example, we include the following string concatenation test
over the stringlattice in our test suite.

(* forall s,s’. abs(s ^ s’) = abs(s) ^ abs(s’) *)

let concat_sound =

mk_test ~n:1000 ~pp:pp_pair ~name:("Str.concat sound")

Arbitrary.(pair string string)

(fun (s,s’) -> Str.(eq (const (s ^ s’))

(concat (const s) (const s’))))

This, however, will quickly require a reference interpreter in
some form as well as the ability to generate arbitrary syntax
trees. We leave such an exploration for future work.

V. EXPERIMENTS AND DISCUSSION

Our hypothesis is that quickchecking a static analysis in-
creases confidence in its implementation. Indeed, we have
found errors in our initial Lua analysis using the lattice property
tests and using the lattice operation tests. For later extensions
of the analysis, quickchecking became a natural part of the
development cycle. As an example, we found an early copy-
paste error in the implementation of meet of absencelattice.
This error was caught early because meet failed the algebraic
tests. We have found several lattice operations that were not
strict but could be improved to be so. As such, quickchecking
helped make our analysis more precise. More importantly, we
found two (unrelated) operations that were not monotone even
though they were supposed to be. At closer inspection, the issue
turned out to be a lack of relational coordination across lattices:
operations would iterate over labels found in the valuelattice,
yet some labels would not exist as entries in the storelattice

and hence looking them up would fail, ultimately leading to
non-monotonicity. Even though such issues represent corner
cases and perhaps never occur in a proper analysis execution,
having the code act meaningfully is preferable.

We have generally found that quickchecking is a good reason
to (re)consider what properties a lattice operation should have.
For example, not all operators should necessarily be strict. One
such operation is PL.add: since the proplattice bottom element
means “empty table”, we expect an addition of an entry to the
empty table to return a nonempty table. In general, the obser-
vation of using quickchecking to revisit program specifications
agrees with that of the original QuickCheck authors [6].

To further test our hypothesis we devised an experiment
to measure coverage of the quickchecked analysis code. To
measure coverage we instrumented the source code using the
‘Bisect’ tool.2 It works as a preprocessor to OCaml code, by
statically annotating program points with labels and dynami-
cally tracking the visited program points. Table I reports the per-
centages of visited program points. We omit coverage of lattice
pretty-printing routines as these are irrelevant to the properties
being tested. Column 3 shows that quickchecking achieves rea-
sonable coverage (77–100%). storelattice stands a bit out,
mainly because of the intricate semantics of Lua’s ‘metatables’:
these require other tables (and functions) to be installed at

2http://bisect.x9c.fr/

Lattice module
Test suite

coverage (in %)
QuickCheck

coverage (in %)
Combined

coverage (in %)

absencelattice 72 100 100
numberlattice 88 100 100
stringlattice 72 100 100
valuelattice 78 98 100
envlattice 71 92 92
proplattice 66 97 98
storelattice 91 77 98
statelattice 51 93 99
analysislattice 81 95 100

TABLE I: Coverage of analysis code (excluding tool front-end). The second
column lists coverage of our original test suite. The third column lists coverage
of the QuickCheck-based tests.

special strings entries of a table, and the corresponding code
is thus not easily exercised by a naive generator. By itself, our
original test suite consisting of 155 hand-written programs ob-
tains slightly worse coverage (51–91%), as shown in column 2.
However, if we combine the two approaches, we achieve full
coverage in 5 out of 9 lattices and close to full coverage in
general (92–100%). Our interpretation of these numbers is that
quickchecking is useful to exercise the esoteric paths in lattice
code. The black-box nature of the approach for testing these
paths is obviously no silver bullet. Yet, when combined with a
standard test suite of programs, the two complement each other
well.

Our implementation of the testing framework consists of a
compact 378 line OCaml module, LCheck. This contains a
functor with 19 lattice property tests as well as the EDSL code
and a number of lattices (the Boolean lattice and its dual, a list
lattice, etc.). Since this module can be reused across many static
analyses it is separately available for download.3 Applying the
EDSL to the Lua type analysis takes an additional 1100 lines of
code. This code then checks 810 properties, distributed between
271 lattice properties and 539 properties of their associated
operations. If we include the reusable EDSL module code, this
makes for approximately two lines per checked property.4 We
have not attempted to quickcheck the analysis’s tree-walker
over arbitrary syntax trees at this point.

We would like to extend the infix syntax to handle multiple
properties in one test signature. Overall this should lower the
lines-of-code/property ratio. Technically, this would require
changing the underlying CPS building into one returning a
list answer type. We would also like to handle more signature
properties, e.g., for extensive functions. In addition, one could
consider to revise the current infix syntax using the camlp4
preprocessor, to avoid having to write module repeatedly and to
allow arrow syntax that coincides with OCaml’s builtin type
signature syntax. For now, we have chosen to keep within the
bounds of pure OCaml, to limit the number of dependencies.

We stress that although the current development has taken
place within OCaml, it could just as well have been formulated,
e.g., with Haskell’s type classes. The type-safe embedding of

3https://github.com/jmid/lcheck
4The coverage reports, the source code of the analysis, and the tests are

available at https://github.com/jmid/luata-quickcheck.



the EDSL utilizes the Hindley-Milner based type system of
OCaml, thereby statically preventing type errors in the tests,
e.g., after lattice or transfer function revisions. A less type-safe
embedding could be implemented, e.g., in Java. One popular
application of quickchecking is to test programs written in the
dynamically typed programming language Erlang. Indeed, noth-
ing of the present framework mandates a statically typed pro-
gramming language: the extension of lattice interfaces and an
EDSL of signatures could just as well be written in JavaScript,
Lua, or Scheme.

VI. RELATED WORK

Previous work on increasing confidence in static analyses,
range from basic testing to rigorous pen-and-paper proofs such
as Astrée’s [8]. Our approach can be beneficial to analyses from
both ends of the spectrum, to help ensure that an implementa-
tion captures the intended meaning — be it in a programmer’s
mind or in a rigorous pen-and-paper formalization. The grow-
ing interest in proof assistants, such as, Coq, led Pichardie et
al. [4], [22] to formalize abstract interpretation in constructive
logic. Combined with Coq’s ability to extract, e.g., OCaml code
from its constructive proofs, this minimizes the ‘trusted comput-
ing base’ to Coq itself. In a recent endeavor, Blazy et al. [2] in-
vestigated the formalization of a value analysis for C integrated
into the CompCert framework. To keep things manageable,
this approach relies on a common abstract domain interface
akin to a bare bones version of Fig. 2, and it formalizes (and
extracts) a fixed-point verifier in Coq rather than the fixed-point
computing value analysis itself. A rather different approach
was taken by Murawski and Yi [17], by developing a static
monotonicity analysis formulated as a type-and-effects system.
Their analysis conservatively accepts (or rejects) λ -definable
functions over finite lattices fed to a static analysis generator.
We believe that quickchecking as demonstrated in this paper
offers a lightweight alternative to the above approaches. It is
type safe, it is reusable, and it supplements basic testing well.

The OCaml implementation of the Lua type analysis benefits
from lack of side effects, e.g., assignments. This makes it easier
to check and gain confidence in the individual lattice operations
as their output is determined solely by the input parameters.
The static analysis community has previously benefited from
analysis implementations in functional languages: The Astrée
static analyzer [8] is implemented in OCaml, the CIL infras-
tructure for analysis and transformation of C program [18] is
implemented in OCaml, Frama-C [10], an industrial-strength
static analysis framework for the C programming language,
is implemented in OCaml, MathWorks’s (formerly, PolySpace
Technologies) PolySpace verifier [12] is written in Standard
ML, Simon’s value analysis of C [23] is implemented in
Haskell, and SLAM (subsequently, Static Driver Verifier) was
originally implemented in OCaml [1]. There are therefore
plenty of existing analysis implementations that might benefit
from our methodology. In addition, both Cousot et al. [8] and
Jensen et al. [16] report to have arrived at their lattice and
transfer function designs after multiple revisions: a potentially
fruitful scene for our suggested methodology.

In a follow-up paper to the original, Claessen and Hughes [7]
develop a QuickCheck framework for testing monadic code.
One of their key insights is to characterize observational equiv-
alence of such code (“in all contexts, one piece of imperative
code is indistinguishable from another”), in terms of a little
language of traces (for arbitrarily generated context traces,
perform an equality test) which one can easily test for. As our
analysis computes over approximate states, it has an imperative
flavor similar to the examples of Claessen and Hughes [7]. For
example, we would like to investigate methods for generating
relational lattice values (e.g., valuelattice elements whose sets
of labels all belong to the generated storelattice value). Fur-
thermore, the tree-walker of the Lua type analysis is written
monadically, and hence should be a likely target for their
techniques. Potentially this could utilize some of the techniques
of Pałka et al [21] for generating random abstract syntax trees.

In the context of testing abstract datatypes, Holdermans [14]
recalls how naively lifting axioms from an algebraic speci-
fication to quickcheck properties leaves programmers with a
false sense of security: a buggy implementation can still pass
a seemingly complete property-based test suite. In the pitfall
he investigates, the randomly generated tests are insufficient to
cover all concrete representations of an abstract data type. As a
remedy he extends the test suite with invariance tests. We have
chosen to follow Holdermans’s recommendation in our work.

In the broader programming language community, a number
of tools utilize randomized testing. In the field of compiler
testing, we briefly touched upon the work of Pałka et al [21]
used to test the Glasgow Haskell Compiler’s strictness anal-
yser. Another prominent representative is Csmith by Yang et
al. [24]: a tool that uses randomized differential testing to
generate random C programs free of C’s notorious undefined
behavior, yet capable of finding numerous errors in production
compilers. Cuoq et al. [9] use Csmith specifically for testing
static analyzers by modifying the Frama-C static analysis tool,
effectively making it an interpreter without abstraction that can
be tested against an ordinary C compiler. PLT Redex [13] is a
general tool for semantics engineering that can also quickcheck
properties on randomly generated input. In contrast to OCaml’s
statically typed programs and properties, PLT Redex’s internal
language is dynamically typed. In the presence of (almost) full
coverage, one can argue that static typing plays a less dominant
role. Static types however provide pedagogical guidelines for
composing composite lattice generators out of simpler ones.

Numerous techniques have been suggested for automated
testing in related settings. For example, Randoop [20] performs
feedback-directed random testing for object-oriented programs,
and Korat [3] generates test inputs based on formal specifi-
cations of pre- and post-conditions. Such techniques can in
principle also be applied to test static analyses, however, unlike
our approach, they do not exploit the underlying structured
domains and the algebraic properties common in static analysis.

The Lua type analysis is heavily inspired by TAJS [16], a
type analysis for JavaScript. In contrast to the present functional
OCaml implementation, TAJS is implemented in Java. Despite
extensive testing, the manually developed test suite for TAJS



does not achieve full coverage of, for example, its value lattice
domain, which plays a central role. This is partially due to
algorithmic interference: TAJS’s worklist algorithm decides
when states should be joined in the lattice, which makes it hard
to craft an input program that will force the abstract interpreter
down a certain lattice code path. Although unit tests have also
been made specifically for that part of the code, not enough
resources have been invested in making them sufficiently com-
prehensive. However, quickchecking is well suited to test such
paths extensively and with much less effort.

VII. CONCLUSION

We have presented a lightweight methodology for
quickchecking static analyses to check a range of properties,
and as a result raise confidence in their implementation. We
can do so in a non-intrusive and scalable manner: lattice
properties of both basic lattices and complex compositional
lattices share the same property tests and can quickly be
checked on thousands of generated inputs. To quickcheck
lattice operations we have developed a type-safe EDSL for
expressing common properties. With our EDSL, much of the
infrastructure becomes reusable across analyses, and testing a
lattice operation property involves little more than writing a
type signature.

Based on this positive experience, we encourage static anal-
ysis developers to quickcheck their next analysis tool for many
of the generic properties that may otherwise be cumbersome to
test. Our OCaml-based EDSL may serve as a useful foundation,
or as a source for inspiration if using other languages.
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APPENDIX

lvalue ::= id

| exp.id

| exp[exp]

exp ::= lit

| lvalue

| unop exp

| exp binop exp

| exp and exp

| exp or exp

| exp(exp∗)

| exp.id(exp∗)

| (exp)

block ::= stmt∗

lit ::= nil

| bool

| string

| number

| {exp∗; (id=exp)∗ }

| function(id∗) block end

stmt ::= break

| if exp then block else block end

| while exp do block end

| do block end

| lvalue+ = exp+

| local exp+ (= exp+)?

| exp(exp∗)

| exp. id(exp∗)

| return exp∗

A simplified BNF grammar of Lua. ?, ∗, and + denote optional
elements, empty and nonempty Kleene sequences, respectively.


