Semantic Patches for Adaptation of
JavaScript Programs to Evolving Libraries

Benjamin Barslev Nielsen
Aarhus University
barslev @cs.au.dk

Abstract—JavaScript libraries are often updated and some-
times breaking changes are introduced in the process, resulting
in the client developers having to adapt their code to the changes.
In addition to locating the affected parts of their code, the client
developers must apply suitable patches, which is a tedious, error-
prone, and entirely manual process.

To reduce the manual effort, we present JSFIX. Given a
collection of semantic patches, which are formalized descriptions
of the breaking changes, the tool detects the locations affected
by breaking changes and then transforms those parts of the code
to become compatible with the new library version. JSFIX relies
on an existing static analysis to approximate the set of affected
locations, and an interactive process where the user answers
questions about the client code to filter away false positives.

An evaluation involving 12 popular JavaScript libraries and
203 clients shows that our notion of semantic patches can
accurately express most of the breaking changes that occur in
practice, and that JSFIX can successfully adapt most of the
clients to the changes. In particular, 31 clients have accepted
pull requests made by JSFIX, indicating that the code quality
is good enough for practical usage. It takes JSFIX only a few
seconds to patch, on average, 3.8 source locations affected by
breaking changes in each client, with only 2.7 questions to the
user, which suggests that the approach can significantly reduce
the manual effort required when adapting JavaScript programs
to evolving libraries.

I. INTRODUCTION

The JavaScript-based npm ecosystem consists of more than
a million packages, most of them libraries used by many
JavaScript applications. Libraries constantly evolve, and client
developers want to use the latest versions to get new features
and bug fixes. However, not all library updates are backwards
compatible, so the client developers may be discouraged from
switching to newer versions of the libraries because of changes
that break the client code. Currently, to update a client to a new
major version of a library, the client developer needs to examine
the changelog to discover which parts of the client code are
affected by breaking changes and find out how to adapt the
code accordingly — a process which is entirely manual, error-
prone, and time-consuming. Existing tools, such as GitHub’s
Dependabotﬂ only warn about outdated dependencies and
provide no other assistance in this process.

A detection pattern language and an accompanying analysis,
TAPIR, have recently been proposed for finding locations in
client code affected by breaking changes [1l]. Inspired by the

Uhttps://dependabot.com/

Martin Toldam Torp
Aarhus University
torp@cs.au.dk

Anders Mgller
Aarhus University
amoeller@cs.au.dk

Coccinelle tool [2, (3], in this paper we build on top of TAPIR
and introduce a notion of code templates for expressing how
to also patch the affected locations. Paired with a detection
pattern, a code template forms a semantic patch. Provided with
a collection of semantic patches specifying where breaking
changes occur (the detection patterns) and how to adapt the
affected code (the code templates) for a library update, our
tool JSFIX can semi-automatically adapt clients to become
compatible with the new version of the library. A run of JSFIX
goes through three phases: an analysis phase (based on the
TAPIR analysis) for over-approximating the set of affected
locations, an interactive phase for filtering away false positives
from that set, and a transformation phase for adapting the client
code using the code templates. In the interactive phase, JSFIX
asks the user a set of yes/no questions about the behavior of
the client code, to remedy inherent limitations in the TAPIR
analysis; all those questions concern properties the client
developer would have to consider anyway if performing the
patching manually.

We envision that semantic patches can be written either by
the library developer or by someone familiar with the library
code, along with the customary changelogs. With JSFIX, all the
clients of the library then benefit from the mostly automatic
adaptation of their code (and the client developers do not need
to understand the notation for semantic patches).

To summarize, the contributions of this paper are:

« We propose a notion of code templates to formalize the
transformations required to adapt client code to typical
breaking changes. A TAPIR detection pattern together with a
code template form a semantic patch. We present the JSFIX
tool, which, based on a collection of semantic patches, semi-
automatically adapts client code to breaking changes in a
library update (Sections [[II] and [[V).

o We propose an interactive mechanism for filtering away
false positives from the detection pattern matches reported
by TAPIR (Section [V).

o We present the results of an evaluation based on 12 major
updates of popular npm packages and 203 clients, showing
that most breaking changes can easily be expressed as
semantic patches, and that JSFIX in most cases succeeds
in making the clients compatible with the new versions of
the libraries. Furthermore, the evaluation demonstrates the
practicality of JSFIX. It takes only a few seconds to patch,

https://dependabot.com/

{ Observable } from
{ Subject } from ’'rxjs/Subject’;
’rxjs/add/observable/timer’;
’rxjs/add/operator/takeUntil’;

{ defaultIfEmpty, take, takeUntil,
from ’rxjs/operators’;

- import
- import
- import
import
import

'rxjs/Observable’;

tap }

N o v W N e

import { timer, Subject } from ’'rxjs’;

const c$ = (new Subject()).take(l);

- Observable.timer (warnTimeout)

10 - .takeUntil (c$.defaultIfEmpty (true))

11 - .do(O) => {...})

12 - .subscribe();

13 + const c$ = (new Subject()).pipe(take(1));

14 + timer(warnTimeout).pipe(

15 + takeUntil (c$.pipe(defaultIfEmpty (true))),
+
+

O
|

16 tap(Q => {...})
17) .subscribe () ;

Fig. 1: Excerpts from redux-logic before (marked with red
background and ‘-’) and after (green and ‘+’) adapting to the
breaking changes in the library rxjs 6.0.0.

on average, 3.8 affected locations per client, with only 2.7
questions to the user, and 31 pull requests based on the
output from JSFIX have been accepted, which shows that
the quality of the patches is good enough for practical use
(Section [VI).

II. MOTIVATING EXAMPLE

The rxjs libraryE] with more than 17 million weekly
downloads, is a popular library for writing reactive JavaScript
applications. In April 2018, rxjs was updated to version 6.0.0,
a massive major update introducing many new features, bug
fixes, and performance improvements, but unfortunately also
many breaking changes. Our manual investigation of the
rxjs changelog shows that it contains at least 38 separate
breaking changes, many of which involve multiple functions
and modules. The developers of rxjs, who were probably
well aware that these breaking changes would discourage
many client developers from upgrading, decided to create both
an auxiliary compatibility package that introduces temporary
workarounds and a migration guide detailing how clients should
adapt to all the breaking changes in the new version of rxjs.

While the migration guide is quite helpful (and also not
something provided with most major updates of other libraries),
it may still take a significant amount of work for a client
developer to upgrade to rxjs 6.0.0. Consider, for example, the
redux-logic package that depends on rxjsE] In September 2018,
redux-logic was updated to depend on rxjs 6.0.0. This update
required 784 additions and 308 deletions to 21 files over 3
commitsE] by no means a small task.

Figure [I| shows two excerpts of the update of redux-logic to
rxjs 6.0.0 (modulo some newlines and insignificant differences
in variable naming). The first change is that observable is no
longer imported from "rxjs/Observable’ as in line [T} in fact

Zhttps://www.npmjs.com/package/rxjs
3https://github.com/jeffbski/redux-logic
4Counted using Git’s notion of additions and deletions.

it is not imported at all. This is because the timer function
(Observable.timer in line [0) in rxjs 6.0.0 should be accessed
directly from ’rxjs’ as can be seen by the import in line
Therefore line [14] is also updated to use timer directly. The
second change is that Subject should be imported from ’rxjs’
instead of "rxjs/Subject’, which is why the import in line E]
is replaced with the import of subject in line [7] The imports
in lines add properties to Observable and rxjs observables
(through Observable.prototype), but have been removed in the
new version. Instead of using those properties, the functions
should now be imported from either 'rxjs’ or 'rxjs/operators’
as can be seen in the imports on lines [5] and [7] Line [§] used
one of these properties, take, which in the new version should
be replaced with a call to .pipe, where the operator function
(take) is then provided as an argument, as shown in line [I3]
in the patched code. For the same reason, lines E]—@] have
been updated to use .pipe in lines Evidently, adapting
client code to breaking changes in a library can be difficult
and time-consuming, so tool support is desirable.

While the redux-logic example is one of the more extreme
cases, it clearly demonstrates that updating dependencies is no
minor undertaking. Considering that the average npm package
already in 2015 had an average of 5 direct dependencies and
that number has been growing over time [4], keeping everything
up-to-date becomes insurmountable.

Using JSFIX it would have been possible for the redux-
logic developer to adapt the client code almost automatically.
Given a collection of semantic patches that describe the
breaking changes in the library, JSFIX is designed to both
find the locations in the client code that are affected by the
breaking changes, and to adapt those parts of the client code
to the new version of the library. The analysis that finds the
affected locations is designed such that it leans towards over-
approximating, meaning that it may flag too many source code
locations as potentially requiring changes, but rarely too few.
When it cannot establish with complete certainty whether some
source location is affected by the breaking changes, it asks
the client developer for advice. In this specific case, the redux-
logic developer would only have to answer 14 simple yes/no
questions, which all concern only redux-logic (not rxjs).

For transforming the excerpts shown in Figure [I] JSFIX does
not ask any questions. However, suppose the analysis were too
imprecise to determine that c$ on line [I0]is an rxjs observable,
then JSFIX would have asked this question:

src/createLogicAction$.js, [I0y 14{10} 36:

Is the receiver an rxjs observable?
All the 14 questions are of this kind but with different source
code locations, and they all originate from such analysis
imprecision. With the help from the redux-logic developer,
the uncertainty can be resolved, and the patches produced by
JSFIX for the affected locations successfully adapt the redux-
logic source code to the new version of the rxjs library.

Comparing the JSFIX autogenerated transformations with the
patches made manually by the developer of redux-logic shows
that the transformations are identical (ignoring white-space and
the order of property names in imports).

https://www.npmjs.com/package/rxjs
https://github.com/jeffbski/redux-logic

III. OVERVIEW

The tool JSFIX is designed to adapt client code to breaking
changes in libraries. An execution of JSFIX is divided into
three phases: (1) an analysis phase, (2) an interactive phase,
and (3) a code transformation phase. As input it takes a client
that depends on an old version of a library, together with
a collection of semantic patches that describe the breaking
changes in the library. Each semantic patch contains a detection
pattern that describes where a breaking change occurs in the
library API and a code template that describes how to adapt the
client code. We explain the notion of semantic patches in more
detail in Section As output, JSFIX produces a transformed
version of the client that, under certain assumptions described
in Section |V| preserves the semantics of the old client code
but now uses the new version of the library.

The analysis phase uses the TAPIR [1] light-weight static
analysis to detect locations in client code that may be affected
by breaking changes in the library. We treat TAPIR as a black-
box component as it is only loosely coupled with the other
phases of JSFIX. The input to TAPIR consists of the client code
and the detection patterns coming from the semantic patches,
and as output it produces a set of locations in the client code
that match the detection patterns, meaning that they may be
affected by the breaking changes in the library.

Being fully automatic, TAPIR cannot always find the exact
set of affected locations, but the analysis is designed such that
it leans towards over-approximating, meaning that it sometimes
reports too many locations but rarely too few. Moreover,
it is capable of classifying each match being reported as
either a high or a low confidence match. In practice, all
false positives appear among the low confidence matches,
meaning that only those need to be manually validated. In
JSFIX, we take advantage of that confidence information. In
the second phase of JSFIX, it asks the user for help at each low
confidence match, such that the false positives from TAPIR can
be eliminated. The text for the questions to the user comes from
the semantic patches. The questions all take yes/no answers,
and they concern only the client code, not the library code. We
describe the interactive phase in more detail in Section |V|where
we also give additional representative examples of questions
presented to the user.

Next, JSFIX runs a transformation phase where the client
code is patched to adapt to the changes in the library. The
transformations are specified using a form of code templates
that specify how each affected location should be transformed
to become compatible with the new version of the library. The
transformation process is explained together with the notation
for semantic patches in the next section.

IV. A SEMANTIC PATCH LANGUAGE

To adapt client code to breaking changes in a library, the
parts of the client code that use the affected parts of the library
API must be transformed accordingly.

Example 1 Lines [I8HI9] in the following program use the
max function from the lodash library.

18 var _ =
19 -
20 +

require(’lodash’);
_.max(coll, iteratee, thisArg);

_.max(coll, iteratee.bind(thisArg));

The optional third argument on line @} thisArg, lets the client
specify a custom receiver of the second argument, iteratee.
In version 4.0.0 of lodash, the support for the third argument
was removed from 64 functions, including the max function.
To restore the old behavior, clients using max or one of the
other 63 functions would have to explicitly bind thisArg to
iteratee. For example, for the program above, line @] has to
be transformed by inserting a call to bind as shown on line

Example 2 Lines 2TH23]in the program below use the async
library’s queue data structure, which holds a queue of tasks
(asynchronous functions) to be processed.

21 var async =
22 var q =
23 -
24 +

require(’async’);
async.queue(...);

q.drain = () => console.log(’Done’);
q.drain(() => console.log(’Done’));

On line 23] a function is written to the drain property of the
queue. In version 2 of async, this function is called when all
tasks in the queue have been processed. However, in version 3
of async, drain is no longer a property the client should write,
but instead a function the client should call. The function to
be called once the queue has been processed is then passed
as an argument to drain. Hence, the call to drain must be
transformed as shown on line 24]

Example 3 Lines 25H26] below import the find and map
functions from the rxjs library.
25 -

26 -
27 +

import find from ’rxjs/operator/find’
import map from ’rxjs/operator/map’

import {find, map} from ’'rxjs/operators’

In version 6 of rxjs, these import paths ’rxjs/operator/find’
and "rxjs/operator/map’ are no longer available. Instead, clients
must import the functions from ’rxjs/operators’ as demon-
strated by the transformed import on line

To automate the transformation of the client code, we define
a suitable notion of semantic patches. A semantic patch, p ~ a,
models a breaking change and consists of a detection pattern p
that identifies the affected part of the library API (the affected
location), and a code template « that describes how client code
that uses that part of the API can be transformed to adapt to the
new version of the library. A semantic patch can also contain
question text for the interactive phase, which we describe in
Section [V] The detection patterns are identical to the patterns
used by the API access point detection tool TAPIR, so we omit
a detailed description of the pattern language in this paper.
Although we treat the accompanying algorithm that performs
the matching between the patterns and the client code as a
black box, as mentioned in Section we provide intuitive
explanations of the meaning of the concrete detection patterns
that appear in examples in the remainder of this paper.

To adapt a client that uses some library with breaking
changes, for example, to perform the transformations in
Examples we need a mechanism for specifying the

a € Expression = ...
| $ RefElement (: RefElement)*
| < ModuleElement™ >

| # i Replacer’

RefElement = prop Replacer’ | value | base
| callee | i | args Selector’
Replacer = [81 =54, ..., 58, = s 1]
Selector == [45, k1 | [J,]
ModuleElement == s | / | #1i Replacer’
Fig. 2: Grammar for code templates. The °...” in the first

production refers to the ordinary constructs of JavaScript
expressions. The notation X*, X ? and X' mean zero-or-more,
zero-or-one, and one-or-more occurrences of X, respectively.
The meta-variable s ranges over strings, ¢ ranges over positive
integers, and j and k range over integers.

required transformations. For this purpose, we introduce the
notion of a code template, which is an incomplete JavaScript
expression that has one or more missing pieces (or holes) that
must be instantiated with other JavaScript expressions for the
template to become a syntactically valid JavaScript expression.

We can view a code template as a form of meta-program that
takes one or more expressions as input and then interpolates
these expressions into the holes of the template to form a valid
JavaScript expression. The key idea behind the templating
mechanism is that the holes of the template are instantiated
with code from the vicinity of the location in the client code
that is matched by the detection pattern p. A detection pattern
can either match a call, a property read, a property write, or
a module import. In a transformation, parts of the subtree of
the matched AST node have to be replaced (as in Example [I)
or, in some cases, the kind of the matched AST node has to
change (as in Example [2] where a property write operation
is changed into a method call). In either case, the variable
names and literals used in the original client code typically
also have to appear in the transformed version of code for the
transformation to be correct. For example, it is essential that
the function written to the drain property on line [23] is the
same function passed to the drain function on line [24]

To facilitate these kinds of transformations, we introduce an
AST reference notation that is used to specify both the holes of
the templates and how expressions should be retrieved for these
holes. The idea is that one can use this notation to interpolate
expressions into the template, where these expressions are
retrieved relative to the AST node matched by p. For example,
if p matches a call node, then an AST reference can be used
to obtain, for example, the receiver or the arguments of that
call. While AST references technically reference AST nodes,
it is often more convenient to think of them as references to
expressions since all the allowed AST references always point
to nodes whose subtrees form expressions.

Figure [2] shows the grammar for code templates. A code
template is a JavaScript expression (Expression) that can
contain some special constructs explained in the following.

$base:callee

$callee ,

$base:ar9|s I|$_1| |3;_2|

lib.math(options).sum(xs, ys

$bafe : Hase $prop
Ilib.collectl.p =x wE oy
I

$args $base 'svalue
$base

Fig. 3: AST reference examples.

AST references An AST reference consists of a ‘$’ symbol

followed by a list of ‘:’-separated elements specifying which

node is referenced relative to the node matched by p. Six kinds

of AST reference elements (RefElement) are available:

o prop refers to the property name p in a property access e.p
of a method call, property read, or property write expression.

e value refers to the right-hand-side expression e; of a
property write expression ej.p = es.

o base refers to the receiver value e in a property access e.p
of a method call, property read, or property write expression.

e callee refers to the function value of a function, method,
or constructor call.

o ¢ refers the ¢’th argument of a call.

o args refers to all the arguments of a call.

Example 4 In Figure [3] we show examples of which nodes
various AST references refer to, relative to a call node (left)
and a property write node (right). Notice how ’:’ is used to
combine references: $base:base refers to the receiver of the
receiver, $base:callee refers to the function that is called to
compute the receiver of the sum method call, and $base:args
refers to the arguments passed to this function.

Not all the different kinds of AST references make sense for
every kind of detection pattern, for example, $value is only
meaningful if transforming a property write. If a user writes a
template that is invalid for a node matched by the detection
pattern, for example, if $value is used when transforming a
method call, or if $3 is used when transforming a call with
fewer than three arguments, then JSFIX is unable to perform
the transformation and instead reports an error.

The syntax $args[j, k] denotes a slice of the arguments,

from the j’th until (and including) the £’th argument. (The
notation $; can thus be seen as an abbreviation of $args[j,
71.) Negative numbers count from the right, for example —1
denotes the last argument. The variant $args[j,] refers to
every argument from j and onwards.
Example 5 Consider the call expression on the left of
Figure [3] We can obtain a reference to the individual arguments
of sum using the argument index reference, for example, $2
refers to ys. We can similarly select slices of the arguments.
For example, $args[1, 2] results in the slice xs, ys, and
$args[-2, -2] results in the slice xs. Being able to select
arguments counting from right to left is sometimes needed
for selecting the last argument in a variadic function as we
demonstrate in Example [ST] (Examples whose name begin
with ‘S’ can be found in the supplementary material [5]].)

Example 6 Continuing Example [T} the calls to max that have
to be transformed are exactly those calls where max is called

with three arguments and the second argument is a function.
Hence, the following semantic patch will automate the update
of the max callsf]

call <lodash>.max [3, 3] 2:function ~~ $callee($1, $2.bind($3))

The detection pattern matches the calls to the max function on
the Iodash module object, where max is called with exactly three
arguments and the second argument has type functionE] The
code template specifies that those calls must be transformed
such that the method call (where $callee refers to the function
value) has the same first argument ($1), but where the second
argument is the result of calling bind on the old second
argument ($2) passing the old third argument ($3) as an
argument to bind. Hence, the transformation that is applied is
exactly the one shown on line 20 in Example []

Example 7 Continuing Example 2] the following semantic
patch expresses the required transformation:

write <async>.queue().drain ~> $base.drain($value)

The detection pattern matches writes of the drain property on
objects returned by calls to the queue function on the async
module object. These writes are transformed such that drain
is instead invoked on the queue object (referenced by $base),
such that the value previously written to drain ($value) is
passed as an argument to drain.

The notation [s; = s,...,s, = s/,] allows us to express
identifier replacements, as shown in the following example.

Example 8§ Among the breaking changes in lodash 4, the
function any is renamed to some, and all is renamed to every.
We can capture both using a single, concise semantic patch
(where {any,all} matches either any or all):

read <lodash>.{any,all} ~> $base.$prop[any = some, all = every]

Module imports Many breaking changes in libraries in-
volve the structure of their modules. With the npm module
system, modules are files that are loaded using import (as
in Example 3) or using require (as in Example [I). We
provide the notation <ModuleElement™> for transforming and
adding module loading. As an example, the code template
<rxjs/operators>.find will generate code that ensures that
the 'rxjs/operators’ module is loaded and then access its find
property. Using this special notation instead of simply using
calls to require in code templates to load modules has several
advantages: (1) it will move all module loads to the outer-most
scope, which is the more idiomatic way to load modules in
JavaScript; (2) if loading a module from a package that the
client currently does not depend upon, JSFIX will add that
package as a dependency to the client’s package.json file; (3) it
will ensure that the same module is not loaded multiple times,
which could happen if using require in a code template and

5The detection pattern of the semantic patch can easily be extended to also
match many other functions affected by the thisArg breaking change; see
breaking change number 4 for lodash in the supplementary material [5].

OThe [J, k] call filter restricts the pattern to only match calls with between
j and k arguments, i.e. calls to max with exactly 3 arguments in this case.

that code template is used for multiple transformations in the
same file; and (4) it will use the same style of module loading
as the client already uses, i.e., require Or import.

The detection patterns supported by TAPIR for specifying
module names can contain wildcards (e.g. *) and sets of
filenames (e.g. {find,map}). To allow the code templates
to refer to the corresponding parts of the module names,
we provide the notation #i to refer to the i’th non-constant
component of the detection pattern. (This mechanism is inspired
by the use of capturing groups and backreferences in traditional
regular expression notation.)

Example 9 Continuing Example we can express the
required transformation with the following semantic patch:

import rxjs/operator/{find,map} ~> <rxjs/operators>.#1

The detection pattern matches imports from the modules
"'rxjs/operator/find’ and ’rxjs/operator/map’ (the wildcard
{find,map} matches both ’find’ and ’map’), and the code
template says that these imports must be transformed to reads of,
respectively, the find or map property from the 'rxjs/operators’
module. Notice we use the #1 syntax to refer to the string
matched by {find,map} in the detection pattern.

Example 10 In some cases, adapting code to a breaking
change is only possible if the client adds a new dependency.
For example, in version 3.0.0 of the uuid library, the parse and
unparse methods are removed, and clients must use the uuid-
parse package if they want to keep using the removed methods.
When using the <M> syntax, JSFIX will automatically add the
dependency that contains the module M, and therefore the
transformation can be expressed using this semantic patch:

call <uuid>.{parse,unparse} ~~ <uuid-parse>.$prop($args)

Semantic patches can also be useful for post-processing
transformed code to improve its readability and performance
as demonstrated by Example S2 [J5]].

V. INTERACTIVE PHASE

The TAPIR analysis that we use for the analysis phase is
designed to over-approximate the AST nodes, which means
that we can generally trust that no locations are missed (see
the discussion about correctness assumptions at the end of this
section), but some mechanism is needed for removing spurious
matches. JSFIX does not require the user to manually inspect all
the potential matches found in the analysis phase, to eliminate
the false positives before the transformation phase. Instead, it
generates a set of questions to the user about the client code,
and then performs the filtering based on the answers to these
questions. The questions only concern the library usage at the
potentially affected locations, and the user generally does not
need to be aware of the specifics of the breaking changes. In
practice, JSFIX asks 0.7 questions per code transformation on
average (see Section [VI).

There are two main sources of precision loss in the TAPIR
static analysis that cause JSFIX to ask questions to the user. The
first kind of precision loss (here named OBJ) occurs when the
static analysis is unsure if the object, on which the potentially

broken operation takes place, is the right type of object. To
make it possible for client developers to use JSFIX without
requiring them to understand the semantic patch language, we
let the authors of the semantic patches manually write the
questions in a client-understandable style.

Example 11 Consider the code

28 const f = (x, y) => x.map(y);

and the following semantic patch for rxjs version 6:

call <rxjs>?**.map ~~ $base.pipe(<rxjs/operators>.map($args))

The detection pattern matches reads of the map property on
any chain of operations on the rxjs module. The detection
pattern also contains a ‘?’, which means that, in particular,
the expression x.map(y) will match even when TAPIR is too
imprecise to detect whether the x object comes from rxjs. TAPIR
marks such matches as low confidence, which causes JSFIX to
ask the user for validation. If x happens to be, for instance,
an ordinary JavaScript array rather than an object from rxjs,
then applying the transformation would break the code. For
this example, JSFIX will ask the question “Is the receiver an
rxjs observable?” (together with the source code location of
the match), and only apply the patch if the answer is “yes”.

The second kind of precision loss (here named CALL) occurs

when TAPIR is unable to determine if constraints on arguments

(so-called call filters) are satisfied.
Example 12 Consider the following code:

29 var _
30 const

= require(’lodash’);
f = (x, y) => _.pick(x, y);

The pick function from lodash is called with two arguments, an
object and a property selector, and it returns an object with all
the properties that satisfy the selector. The selector can either
be a predicate function, or a list of strings such that all property
names that appear in that list are selected. For the former case,
clients should replace calls to pick with calls to pickBy when
upgrading to lodash version 4. This transformation is captured
by the following semantic patch:

call <lodash>.pick [2, 2] 2:function ~~ $base.pickBy($args)

For this example, JSFIX will automatically generate the question
“Is the argument y of type function in line [30]?”, and only
perform the transformation if the answer is “yes”. Notice how
answering the question does not require any knowledge about
the breaking change, but only some basic understanding of
the client source code. Therefore, the client developer who is
familiar with the code will likely find the question easier to
answer compared to manually trying to understand the breaking
change and performing the transformation. In particular, the
developer would have to consider anyway whether argument y
is of type function in line 30|

While the primary purpose of the interactive phase is to
filter away spurious AST nodes to avoid redundant or wrong
transformations, JSFIX also has support for two other categories
of questions used when: (1) the detection patterns are too
coarse-grained to determine if a breaking change can occur

(see Example S3 [5]), and (2) a breaking change has relatively
minor implications that some clients may prefer not to fix (see
Example 13). We refer to these two categories as EXTRA and
MINOR, respectively.

Example 13 The node-fetch library is a polyfill for the
browser HTTP API window. fetch. In the update of node-fetch
to version 2, the json method on response objects is modified
such that it throws an error instead of returning an empty object
when the HTTP response code is 204. A semantic patch for
this breaking change can be expressed as follows.

call <node-fetch>?**.json
~~ ($base.status === 204 ? {} : $base.json())

The transformed code calls json if the response is not equal to
204 and otherwise results in an empty object.

While this transformation is semantically correct, it is
unlikely to be the desired solution for the client developer.
A more idiomatic solution would be to catch the error, and
then handle it accordingly. For that reason, we allow semantic
patches to be marked as “low priority”. For such patches,
instead of always asking for each potential match, the user
now also gets the options to select “yes to all” or “no to all”.

Note that it is only the authors of the semantic patches who
need to understand the semantic patch language — the client
developers who run JSFIX only need to respond to the questions
in the interactive phase about the behavior of the client code.

In the end, the correctness of the applied transformations of
the client code relies on three assumptions: (1) The semantic
patches correctly model all the breaking changes in the library,
(2) the user answers correctly in the interactive phase, and (3)
TAPIR has no false negatives (i.e., it does not miss any matches)
when analyzing the client code. The evaluation presented in
the following section shows that these assumptions can be
satisfied in a realistic setting involving real-world libraries and
clients. Furthermore, even if the transformations may not be
100% correct and require manual review for some clients, the
automatically transformed client code can still serve as a good
starting point compared to the traditional fully manual practice.

VI. EVALUATION

We have implemented JSFIX in only 1200 lines of Type-
Script. Apart from the detection analysis and transformation
phase as presented in Section [[V] JSFIX also performs some
auxiliary tasks to improve the transformed code. For example,
imports that are unused after the transformations and multiple
imports of the same module are automatically removed. We
evaluate JSFIX by answering the following research questions:

RQ1 For how many of the breaking changes in major updates
of widely used npm packages can the patch be expressed as
a code template, and how complex are the code templates?

RQ2 For clients that are affected by breaking changes in
a library, do the applied transformations make them
compatible with the new version of the library? Are the
transformations of sufficient quality that client developers
are willing to accept them as pull requests?

RQ3 How many questions and which types of questions does
JSFIX typically ask the user in the interactive phase?

The part of JSFIX concerning detection patterns is evaluated

previously [1] and is therefore not considered in this evaluation.

Experiments To address RQI1, we first performed an
experiment where we attempted to write semantic patches for
as many as possible of the breaking changes appearing in major
updates of widely used npm packages. The full list of semantic
patches is shown in the supplementary material [S]. We were
able to write these in only a few days without expert knowledge
of any of the libraries. For RQ2 and RQ3, we performed a
second experiment to test if JSFIX can, based on the semantic
patches written in the first experiment, patch clients whose test
suites fail when switching to the new library versions. Also for
RQ2 and RQ3, we finally performed a third experiment, where
we created pull requests with the transformations generated
by JSFIX for a number of clients, to determine if the quality
of the transformations is acceptable to client developers. The
two latter experiments are a best-effort attempt to establish
some confidence that the transformations created by JSFIX
are correct; in the second experiment by showing that the
transformations are correct enough to fix the broken test suites
and not introduce new test failures, and in the third experiment
by showing that the reviewers of the pull requests trust the
transformations enough to accept them.

Benchmark selection Our experiments for answering the
research questions are based on 12 major updates of top npm
packages (selected from the TAPIR benchmark suite [1]), shown
in the first column of Table

To address RQ2 and RQ3, we selected the 89 clients from
the evaluation of TAPIR that are known to be affected by one
of the 12 major updatesﬁ Since the test suites of the clients
succeed prior to the update but fail afterwards, we know that
these clients are affected by some of the breaking changes.
Therefore, these clients require patches to become compatible
with the new major version of the library.

For the third experiment, we used only those 41 of the
89 clients where no version of the client existed that already
depended on the new major version of the library with breaking
changes. (Comparing the patches that have been applied to
the already updated clients with patches generated by JSFIX
remains an interesting opportunity for future work.) In addition,
we randomly selected 10 clients for each benchmark that, at
the time of the selection, depended upon the benchmark in
the major-range below the one of the benchmark, e.g., for the
lodash 4.0.0 benchmark, we selected 10 clients that depend
on some version of lodash below 4.0.0 but at least 3.0.0. We
also required that these clients were updated within 180 days,

7We omitted three of the TAPIR benchmarks because they contain only a
few breaking changes that are all unlikely to require any form of patching (for
example, changes to formatting of a help message in the commander library)
and are therefore not interesting for JSFIX.

81n the evaluation of TAPIR, 115 clients were considered, but some of them
are using the omitted libraries mentioned in footnote [/} and some of them
are written in languages that compile to JavaScript, which means that JSFIX
cannot patch the source code of those clients.

since maintainers of recently updated libraries are presumably
more likely to react to pull requests. For express, we could
only find such 4 clients, so in total we consider 155 clients of
the 12 libraries for the pull request experiment.

A. RQI (Expressiveness of transformations)

A total of 326 detection patterns were required for describing
the breaking changes in the 12 libraries. Most of these detection
patterns are identical to the patterns from the TAPIR paper [1]],
but in some cases we had to split a pattern if, for example,
different code templates were required depending on the
number of function arguments at a call pattern.

A summary of the results for each library update is shown
in Table [l where “BC” is the number of breaking changes
in the update, “Patterns” is the number of detection patterns
written, “Temp” is the number of code templates written, “U”
(Unexpressible) is the number of detection patterns for which
the required transformation cannot be expressed in our code
template language, “NGP” (No general patch) is the number
of detection patterns where, according to our knowledge of
the breaking change, no single fix exists that applies to every
location affected by that breaking change, “?” (Unknown) is
the number of breaking changes for which the changelog and
associated resources like GitHub issues were too incomplete
for us to understand the breaking changes well enough to write
a correct semantic patch. Representative examples of breaking
changes in categories “Unexpressible” and “No general patch”
are shown in Examples [I4] and [I3]

Example 14 As an example of a breaking change in the
“Unexpressible” category, the changelog of the web framework
express for version 4 contains this item: “app.router - is
removed.” While it is easy for JSFIX to detect where app.router
is used, upon closer inspection it turns out that the breaking
change has larger implications. The whole semantics around
routing has changed such that the order in which routes (HTTP
end-points) and middleware (plugins run as intermediate steps
in the request/response cycle) are registered on the express
application object needs to change. Consider the following
excerpt of an application that uses express version 3:

31 var app = require(’express’)();

32 app.use(app.router);

33 // middleware

34 app.use(function(req, res, next) { ... });

36 // routes
37 app.get(’/’ ...);
38 app.post(...);

In express version 3, the code app.use(app.router) makes
express handle the registered routes before the middleware
registered in later calls to app.use in the request/response
cycle. In version 4 of express, the call to app.use on line 32]
must be removed. However, due to the change in the ordering
semantics, the call to app.use on line [34] must move below the
calls to app.get and app.post on lines[37]and [38 Such a change
is not currently expressible in the transformation language, and
probably also out of scope for what an automated technique
can realistically be expected to handle. To perform this change,

TABLE I: Experimental results for RQI.

No code template
Library BC | Patterns | Temp | U | NGP ?
lodash 4.0.0 51 123 123 | 0 0 0
async 3.0.0 4 7 6 1 0 0
express 4.0.0 18 24 23 1 0 0
chalk 2.0.0 3 3 310 0 0
bluebird 3.0.0 8 12 71 2 3 0
uuid 3.0.0 1 1 1 0 0 0
rxjs 6.0.0 26 55 5310 2 0
core-js 3.0.0 26 41 351 0 5 1
node-fetch 2.0.0 9 9 7 0 2 0
winston 3.0.0 23 30 26 1 3 0
redux 4.0.0 2 2 1 0 1 0
mongoose 5.0.0 14 19 13 2 3 1
Total 186 326 298 | 7 19 2

a total ordering of how middleware and routes are registered

to the express app is required, which is not easily obtained.

Notice that JSFIX can still detect reads of app.router, so the
user is being notified about this breaking change, but the
transformation must be applied manually.

Example 15 An example of a breaking change in the “No

general patch” category appears in the node-fetch HTTP library.

In version 1 of node-fetch, clients could use the getAll(name)
method on header objects to get an array of all header values
for the name header. In version 2 of node-fetch this method
is removed, so clients must now resort to using the get(name)
method that instead returns a comma-separated string value of
the name header values. It might seem that this breaking change
is easily fixed by replacing getall with get and then splitting
the resulting string at all commas:

call <node-fetch>?**.getAll ~~ $base.get($args).split(’,’)

However, since commas may also appear inside each of the
header values, the resulting array may not be correct. Since
there are no other value separators in the string, this breaking
change does not have a general patch.

The number of breaking changes is smaller than the number
of detection patterns, because we count each bullet in the
changelogs as one breaking change (as in [[1]). Some bullets
may only concern a single method or property, while others
concern tens of methods or properties. Hence the number of
breaking changes should only be viewed as a weak indicator
of how extensive the impact of each major update is.

We were able to write code templates for 298 of the 326
detection patterns. The remaining 28 patterns fall into three
different categories: (1) For 7 patterns, the code template
language is not expressive enough to describe the required
transformation (see Example 14); (2) for 19 patterns, according
to our knowledge of the breaking change, no general patch
exists that will work for all clients (see Example 15); (3) for 2
patterns, the breaking change was not documented sufficiently
well for us to write a correct template.

For the 298 cases where we successfully managed to write
a code template, the biggest challenge was to understand how
to address the breaking changes. Not all changelogs specify
in detail how clients should migrate, so we sometimes had to
rely on, for example, observations of how existing clients have

upgraded. For example, the update of uuid to version 3 removes
the parse and unparse methods, but does not specify what
clients should use as alternatives. While searching for solutions,
we came across a package named uuid-parse, which contains
exactly the two methods removed from uuid in version 3.
Writing the required semantic patch that replaces the parse
and unparse method calls from uuid with calls to the methods
from uuid-parse was then a simple matter (see Example [I0).
This again demonstrates one of the strengths of our approach:
Instead of requiring every client developer to understand the
details of the breaking changes, once a semantic patch has
been written, it can be reused for many clients.

Example 16 Some of the breaking changes required
more sophisticated semantic patches. Consider the
whilst(test, iteratee, callback) function of the async

library, which implements an asynchronous while loop where
iteratee (the loop body) is called as long as test (the loop
condition) is succeeding, and callback is called on an error
or when the iteration ends. In version 2 of async, the test
function is expected to be synchronous, that is, it should
provide its return value through a normal return statement.
However, in version 3 of async, test is expected to be
asynchronous, and must therefore instead provide its return
value by calling a callback. The modifications required are
expressed by the following semantic patch:

call <async>.whilst ~~ (1)
$callee(function() { 2)
const cb = arguments[arguments.length - 1]; 3)
const args = Array.prototype.slice.call(arguments,®, (4)
arguments.length-1); 5)

try { (6)
cb(null, $1.apply(this, args)); (@)

} catch (e) { (8)
cb(e, null);)

} (10)
}, $2, $3) (11)

The code template wraps the test function in a new function
(lines PHTT), which extracts the new callback (line), calls the
old test function, and passes the result to the callback (line .
Using a wrapper function like this is unlikely to be the preferred
choice if a developer were to perform the update manually. In
that case, a simpler and more idiomatic solution would be to
modify the test function itself by adding the callback to its
argument list, and replacing all of its return statements with a
call to this callback. However, that solution will only work if
the definition of the test function is available and never throws
an error, which may not be the case if, for example, the test
function is imported from a library, which is why we resort to
using the more general wrapper function.

It is not always possible to express a transformation that
preserves the semantics (see Example 15). However, the
experiments show that such situations are rare, so this does
not pose a major threat to the applicability of the technique.

In conclusion, we have found that writing the templates is
relatively simple for most breaking changes, but that some
code templates have to be quite general and non-idiomatic to
preserve the semantics in every case. While writing a template

is sometimes more difficult than transforming the client code
manually, the fact that the template is reusable across all clients
of the library, makes the investment worthwhile.

B. RQ2 (Correctness and quality of transformations)

Client test suites experiment To test if JSFIX can repair
broken clients, we ran JSFIX on 89 clients whose test suite
succeeded before the update and failed when switching to the
new version of the library. We used JSFIX to patch the client
code, and then we checked if the test suite of the patched client
passed. This is of course not a guarantee that the patches are
correct. However, if none of the test suites fail due to missed
or wrong transformations, it is a strong indication that JSFIX
can successfully patch the client code. To increase confidence
further, we also consider feedback from client developers (see
the pull request experiment below).

The results of this experiment are shown in the first 11
columns of Table [IIt “C” is the number of clients, “Tr” is the
number of transformations done by JSFIX, “v"” (resp. “X”) is the
number of client test suites succeeding (resp. failing) after the
patching, “—CT” is the number of clients that are affected by
a breaking change for which it is impossible to write a correct
template in our semantic patch language, and “Time” is the
average time (in seconds) used for the detection and patching
phases per client, excluding time spent on parsing the client
code. The last four columns are described in Section

The patches produced by JSFIX are successful in making 82
of the 89 clients pass their test suites. Of the remaining 7 clients,
5 are affected by breaking changes for which it is not possible
to write a correct template. For example, the three express
clients in this category are affected by the breaking change
presented in Example 14. The remaining 2 clients do not fail
due to unhandled breaking changes, but they contain testing
code that is indirectly affected by changes to the library’s APIL
For example, the rxjs client whose test suite fails asserts that
some specific properties exist on rxjs.Observable.prototype,
however, these properties have been removed and JSFIX has
removed all usages of those properties, so the assertions can
safely be removed. Similarly, a test in a redux client fails due
to a bug fix in redux such that a message is no longer written
to console.error. As such a bug fix is not considered a
breaking change, it is not the responsibility of JSFIX to address
this problem.

For the 84 clients where all code templates were expressible,
JSFIX made a total of 451 changes to the client code. The num-
ber of changes differs substantially between the benchmarks,
ranging from 1 per client for node-fetch, redux, and mongoose
to 33 per client for rxjs. This discrepancy is expected since
the number of breaking changes varies considerably between
major updates as shown in Table [I, The likelihood of a client
using a broken API also fluctuates across the benchmarks. For
example, rxjs has many changes in commonly used APIs, and
therefore updating clients of rxjs is a cumbersome and time-
consuming task, which may explain why developers released
rxjs-compat and a migration guide along with the changelog.
However, the rxjs breaking changes are also easily expressible

as semantic patches, which means that JSFIX could patch all
of the breaking changes in the 6 clients.

The detection and patching took on average 1.53s per client
(excluding parsing time), so JSFIX is clearly efficient enough to
be practically useful. Most of the time is spent by the analysis
(TAPIR), whereas the patching took on average only 0.11s.

We thereby conclude that JSFIX is almost always successful
in producing code transformations that cause client test suites
to succeed, and that it does so using relatively little time.

Pull request experiment We also investigated the quality
of the transformations by creating pull requests of the updates
produced by JSFIX to see if the transformations created by
JSFIX are acceptable to the client developers. We conducted
this experiment by first forking the client, then running JSFIX
on the forked client, and eventually, manually performing some
styling fixes to satisfy the linter of the client if necessary. The
styling fixes had to be done manually since the code style
convention varies from client to client. We then created a pull
request based on these changes.

We first created pull requests for 41 clients from the previous
experiment that had not already updated the benchmark libraries.
So far, 4 of these pull requests have been accepted and 2 have
been rejected. The rejections were not due to specific issues
within the pull requests, but because the client developer was
not willing to risk breaking the application by updating the
dependency. Many of those 41 clients are no longer maintained,
which probably explains why the maintainers reacted to only 6
of the pull requests. We therefore extended the experiment by
adding an additional 114 clients (10 for each library, except
for express as mentioned earlier) that had been updated within
6 months of the experiment. The results for these pull requests
are shown in the last 9 columns of Table [[I} For each library,
we show the number of pull requests (“PR”), the number of
accepted pull requests (“Acc”), the number of closed (i.e.,
rejected) pull requests (“Rej”), the number of transformations
(“Tr”), and the average time (in seconds) used for detection
and patching per client, excluding parsing time (“Time”). The
remaining columns are described in Section

Of the 114 pull requests created, 43 involved one or more
transformations. For the remaining 71 pull requests, JSFIX did
not find any source locations in the client code affected by
breaking changes. For these clients, the pull request messages
state that the code was not affected by any breaking changes,
and the only file change was updating the version of the
relevant dependency in the package.json file. So far, 27 of
the pull requests have been accepted (in addition to the 4
mentioned above). For 16 of these 27 pull requests, JSFIX
did not find any pattern matches in the client code. Only
4 have been rejected, and only 1 of these was affected by
breaking changes. The maintainer of the async client who
rejected a pull request did end up updating the code manually
(at the same source locations as transformed by JSFIX), but
using more idiomatic transformations. The transformations
made by JSFIX were similar to the transformation shown
in Example so, as explained in that example, a more

TABLE II: Experimental results for RQ2 and RQ3.

Client test suite experiment Pull request experiment
Library C Tr v X —CT Time OBJ CALL EXTRA MINOR PR Acc Rej Tr Time OBJ CALL EXTRA MINOR
lodash 13 70 | 13| 0 0 1.76 6 2 3 4 10 1 0 25 2.01 5 10 7 3
async 8 10 810 0| 229 2 0 0 0 10 2 1 2 0.63 0 0 0 0
express 10 18 710 3 1.19 11 0 0 2 4 1 0 17 5.89 13 0 0 2
chalk 10 54 | 10 | O 0| 021 0 0 0 0 10 3 0 0 0.78 0 0 0 0
bluebird 9 18 910 0| 028 3 0 18 3 10 3 1 2 1.21 0 0 24 1
uuid 1 2 110 0 0.14 0 0 0 0 10 3 0 0 0.95 0 0 0 0
IXjs 6 | 200 5|1 0| 220 | 40 0 0 0 10 3 0 | 112 1.18 | 106 0 0 0
core-js 8 28 810 0| 625 2 0 0 0 10 4 0 | 140 | 17.46 5 0 0 0
node-fetch 8 7 710 1 0.46 7 1 6 17 10 3 1 3 0.24 11 0 20 14
winston 8 36 710 1 0.80 16 14 7 7 10 2 0 19 1.12 34 50 10 4
redux 4 4 3 1 0 0.33 0 0 0 3 10 2 0 0 3.59 0 0 0 6
mongoose 4 4 410 0 0.29 5 0 5 1 10 0 1 5 1.81 16 6 18 3
Total 89 | 451 | 82 | 2 5 153 | 92 17 39 37 | 114 27 4 | 325 292 | 190 66 79 33

idiomatic transformation was possible. For the other rejected
pull requests, the client developers did not report any issues
with the pull request. For the 11 accepted pull requests that
required modifications, manual styling fixes were only applied
to two of them. Example S4 describes some of the accepted
pull requests [3].

In total, JSFIX made 325 transformations across the 114
clients. Most of the transformations were applied to clients of
core-js and rxjs. Since the experiments indicate that 43 out
of 114 clients required transformations as part of the updates,
we can conclude that breaking changes impact a significant
proportion of clients, motivating the need for tools like JSFIX.

Overall, the average time is less than 3 seconds. Again,
almost all the time is spent by the analysis phase, whereas
patching takes on average only 0.06s.

In summary, based on the client test suites experiment, we
conclude that transformations produced by JSFIX are generally
trustworthy. Based on the pull request experiment, we can
furthermore conclude that the transformations are generally of
a high enough quality that developers are willing to use them
in their code.

C. RQ3 (Questions asked by JSFIX)

The interactive phase of JSFIX is evaluated by looking at
the questions asked during the two experiments described in
Section The number of questions in each of the four
categories OBJ, CALL, EXTRA, and MINOR from Section [V]
is shown in the last four columns of the “Client test suite
experiment” and “Pull request experiment” sections of
Table [[Il All the questions have been answered by the authors
of JSFIX. The questions in the first three categories are not
subjective, as they all concern well-defined properties of the
possible program behaviorsﬂ For the MINOR category, the
answers are sometimes more subjective, which means that our
answers may diverge from what the client maintainer would
have chosen. However, since the questions in that category
concern breaking changes that have only minor implications,

9Since JavaScript is dynamically typed, it is possible that the correct answer
to a question like “Is the receiver an rxjs observable?” is “sometimes”, however,
we have not observed any occurrences of this situation in our experiments.

10

this divergence is unlikely to affect the client behavior in a
significant way. Our answers to these questions were based on
a thorough investigation of the affected client code to determine
the importance of the breaking change for each client.

For the 198 clients in Table [that JSFIX transformed
successfully, JSFIX asked a total of 553 questions (2.8 per
client). Of these questions, 365 questions (1.8 per client) are
related to imprecision in the analysis, with 282 questions (1.4
per client) being related to imprecise matching of objects and 83
questions (0.4 per client) being related to imprecise reasoning
of call filters.

A total of 118 questions (0.6 per client) concern the detection
patterns being too coarse-grained to accurately describe the
API usage that triggers the breaking change.

For the last category, breaking changes with minor impli-
cations, there are 70 questions (0.4 per client), where the
majority are asked when transforming node-fetch clients (see
Example 13). For most of these questions, it was relatively
simple to determine if the transformation should be applied by
considering the client code surrounding the affected location.
Unlike the other question types, a client developer needs to
understand the implications of a breaking change to accurately
answer these questions, but since fewer than 1 question of this
type is asked per client, we do not consider them a concern
for the practicality of JSFIX. It is also worth noticing that
without JSFIX, the client developer would instead be forced to
understand the implications of every breaking change on the
client code.

Only 2.8 questions are asked per client and 0.7 questions per
transformation on average. In our experience, it is easy and fast
to answer the questions, even without expert knowledge of the
benchmarks. To conclude, JSFIX only needs to ask a modest
number of questions during the interactive phase, which makes
it useful and time-saving when adapting client code to breaking
changes in libraries.

D. Threats to Validity

One potential concern about the validity of the experimental
results is whether we, as designers of JSFIX, are at an advantage
when it comes to answering the questions in the interactive

phase. As explained in Section [V] the questions only concern
the client code, not the internals of JSFIX or the library code.
We therefore believe that the intended user of JSFIX, which is
the client developer who is familiar with the client code, will
find these questions easier to answer than we did.

Another threat to validity of our conclusion about the expres-
siveness is that the semantic patches used in the experiments
were written by the creators of JSFIX. Semantic patches written
for one library can benefit numerous clients, however, it is of
course important that other people can use the semantic patch
language. We therefore plan to conduct user studies with library
developers and other potential authors of semantic patches.

VII. RELATED WORK

The idea of automatically transforming clients to become
compatible with new library versions has been considered
in previous work. The term collateral evolution, describing
exactly the process of patching client code based on some
formalization of the required transformation, was coined by
the authors of Coccinelle [2, 3], which is designed to adapt
Linux drivers to breaking changes in the kernel. It has also
been adapted to Java [[6]. While Coccinelle and JSFIX share
many traits, the large differences between C (or Java) and
JavaScript make the internals of the tools quite different. Most
importantly, Coccinelle relies on the fact that C and Java are
statically typed, which makes it easier to connect calls with
the relevant function and method definitions than in JavaScript.
The same applies to the gofix tool for Gom

Others have also looked at ways to automatically compute
differences between library versions, and based on these
differences either suggest changes for adapting clients to
breaking changes in the APIs or directly transform the client
code as with JSFIx [7, 18, 19, (10, [11, [12]. Most of these
approaches are for Java, where each member of a class has
a fully qualified name, which makes it tractable to compute
differences on a type-level between two versions of a Java
API, and thereby automatically identify many breaking changes.
The only approach for a dynamically typed language is the
PyCompat tool for Python [[12]. While it is fully automatic, it is
limited to a set of 11 different kinds of breaking changes, which
all concern removals, moves, and additions of fields, parameters,
and classes. In particular, these approaches generally do not
handle behavioral changes (sometimes called semantic changes)
where the behavior of a function changes without affecting its
signature. The same limitation does not apply to JSFIX, which,
as the evaluation shows, is able to patch almost all breaking
changes appearing in library updates. The public interface
of a JavaScript library can change dynamically and has no
access modifiers, which makes it difficult to statically compute
changes in the interface, and therefore the existing work for
other languages will not directly work for JavaScript.

The idea of using a templating mechanism for specifying
program transformations has been explored in other settings.
With the Spoon framework [[13]], Java program transformations

10https://golang.org/cmd/fix/

11

can be specified in Java code that directly manipulates the
AST, or as class templates, which are classes with holes that
must be instantiated with program elements to form valid
Java classes. The class templates of Spoon resemble the code
templates of semantic patches. Because Java is statically typed,
the holes in the class templates also have a type, and Spoon
can check that the program elements used in the substitution
adhere to types of the holes. The lack of static type checking
in JavaScript makes that difficult in our setting, however, it
may be interesting in future work to look at opportunities
for validating semantic patches, for example by attempting
to check that any transformation resulting from a match of a
semantic patch is syntactically valid JavaScript code.

JSFIX can be viewed as a specialized program repair tool,
although it is designed to prevent rather than fix bugs. Unlike,
for example, template based program repair techniques [14],
the patches produced by JSFIX are almost always successful,
as demonstrated by the experimental evaluation, and it does
not require test suites.

The concept of breaking changes has been explored exten-
sively in previous work. Several papers have shown that break-
ing changes are common in both patch and minor updates that
are supposed to be backward compatible [[15} 16, [17, 18} [19]. A
few tools have also been designed for automatically detecting
breaking changes in library updates [15} 20, 21]. The JSFIX
approach is designed on the premise that the semantic pattern
designer is already aware of where and how breaking changes
appear. However, by combining our approach with existing
tools, such as NoRegrets [21], it might be possible to derive
the detection pattern part of the semantic patches automatically,
which may reduce the overhead of writing semantic patches.

VIII. CONCLUSION

We have presented an approach to automate much of the
work involved in adapting JavaScript programs to evolving
libraries. It is based on a notion of semantic patches that
combines the pattern matching technique from TAPIR [1] with
a specialized notation for code templates, thereby making it
possible to express how to find and patch locations in the client
code that are affected by breaking changes in the libraries.

An extensive experimental evaluation on real-world libraries
and clients using our implementation JSFIX demonstrates that
the code template language is sufficiently expressive to precisely
capture most breaking changes, and that most semantic patches
are relatively simple. As an alternative to the current practice,
the manual effort required by the client developers is reduced
to answering a few questions about the program behavior.
On average, only 2.7 questions are asked while patching 3.8
locations per client. The tool is fast and produces useful patches
for the broken clients. In particular, 31 pull requests (many
involving substantial changes to the client code) produced
directly from the output of JSFIX have already been accepted
by client developers.

Acknowledgments This work was supported by the European
Research Council (ERC) under the European Union’s Horizon 2020
research and innovation program (grant agreement No 647544).

https://golang.org/cmd/fix/

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

REFERENCES

A. Mgller, B. B. Nielsen, and M. T. Torp, “Detecting
locations in JavaScript programs affected by breaking
library changes,” Proc. ACM Program. Lang., vol. 4, no.
OOPSLA, pp. 187:1-187:25, 2020.

Y. Padioleau, R. R. Hansen, J. L. Lawall, and G. Muller,
“Semantic patches for documenting and automating collat-
eral evolutions in Linux device drivers,” in Proceedings
of the 3rd Workshop on Programming Languages and
Operating Systems: Linguistic Support for Modern Op-
erating Systems, PLOS 2006, San Jose, California, USA,
October 22, 2006. ACM, 2006, p. 10.

Y. Padioleau, J. L. Lawall, and G. Muller, “SmPL:
A domain-specific language for specifying collateral
evolutions in linux device drivers,” Electron. Notes Theor.
Comput. Sci., vol. 166, pp. 47-62, 2007.

E. Wittern, P. Suter, and S. Rajagopalan, “A look at
the dynamics of the JavaScript package ecosystem,” in
Proceedings of the 13th International Conference on
Mining Software Repositories, MSR 2016, Austin, TX,
USA, May 14-22, 2016. ACM, 2016, pp. 351-361.

B. B. Nielsen, M. T. Torp, and A. Mgller, “Semantic
patches for adaptation of JavaScript programs to evolving
libraries (supplementary material),” 2021, Aarhus
University. [Online]. Available: https://brics.dk/jsfix/

H. J. Kang, F. Thung, J. Lawall, G. Muller, L. Jiang, and
D. Lo, “Semantic patches for Java program transformation
(experience report),” in 33rd European Conference on
Object-Oriented Programming, ECOOP 2019, July 15-19,
2019, London, United Kingdom., ser. LIPIcs, vol. 134.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2019,
pp. 22:1-22:27.

B. Dagenais and M. P. Robillard, “Recommending adap-
tive changes for framework evolution,” ACM Trans. Softw.
Eng. Methodol., vol. 20, no. 4, pp. 19:1-19:35, 2011.
H. A. Nguyen, T. T. Nguyen, G. W. Jr., A. T. Nguyen,
M. Kim, and T. N. Nguyen, “A graph-based approach to
API usage adaptation,” in Proceedings of the 25th Annual
ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, OOPSLA
2010, October 17-21, 2010, Reno/Tahoe, Nevada, USA.
ACM, 2010, pp. 302-321.

L. Li, T. F. Bissyandé, H. Wang, and J. Klein, “CiD:
automating the detection of API-related compatibility
issues in Android apps,” in Proceedings of the 27th ACM
SIGSOFT lInternational Symposium on Software Testing
and Analysis, ISSTA 2018, Amsterdam, The Netherlands,
July 16-21, 2018. ACM, 2018, pp. 153-163.

M. Fazzini, Q. Xin, and A. Orso, “Automated API-usage
update for Android apps,” in Proceedings of the 28th
ACM SIGSOFT International Symposium on Software
Testing and Analysis, ISSTA 2019, Beijing, China, July

12

[13]

[14]

15-19, 2019. ACM, 2019, pp. 204-215.
M. Lamothe, W. Shang, and T. Chen, “A4: automatically

assisting android API migrations using code examples,”
CoRR, vol. abs/1812.04894, 2018.

Z. Zhang, H. Zhu, M. Wen, Y. Tao, Y. Liu, and Y. Xiong,
“How do Python framework APIs evolve? an exploratory
study,” in 27th IEEE International Conference on Software
Analysis, Evolution and Reengineering, SANER London,
Ontario, February 18-21, 2020. 1EEE, 2020.

R. Pawlak, M. Monperrus, N. Petitprez, C. Noguera,
and L. Seinturier, “SPOON: a library for implementing
analyses and transformations of Java source code,” Softw.,
Pract. Exper., vol. 46, no. 9, pp. 1155-1179, 2016.

K. Liu, A. Koyuncu, D. Kim, and T. F. Bissyandé, “Tbar:
revisiting template-based automated program repair,” in
Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA 2019,
Beijing, China, July 15-19, 2019. ACM, 2019, pp. 31-42.
G. Mezzetti, A. Mgller, and M. T. Torp, “Type regression
testing to detect breaking changes in Node.js libraries,” in
32nd European Conference on Object-Oriented Program-
ming, ECOOP 2018, July 16-21, 2018, Amsterdam, The
Netherlands, ser. LIPIcs, vol. 109, 2018, pp. 7:1-7:24.
E. Derr, S. Bugiel, S. Fahl, Y. Acar, and M. Backes, “Keep
me updated: An empirical study of third-party library
updatability on Android,” in Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications
Security, CCS 2017, Dallas, TX, USA, October 30 -
November 03, 2017. ACM, 2017, pp. 2187-2200.

S. Raemaekers, A. van Deursen, and J. Visser, “Semantic
versioning and impact of breaking changes in the Maven
repository,” J. Syst. Softw., vol. 129, pp. 140-158, 2017.
A. Brito, L. Xavier, A. C. Hora, and M. T. Valente,
“Why and how Java developers break APIs,” in 25th
International Conference on Software Analysis, Evolution
and Reengineering, SANER 2018, Campobasso, Italy,
March 20-23, 2018. 1EEE Computer Society, 2018,
pp- 255-265.

K. Jezek, J. Dietrich, and P. Brada, “How Java APIs
break - an empirical study,” Inf. Softw. Technol., vol. 65,
pp- 129-146, 2015.

A. Brito, L. Xavier, A. C. Hora, and M. T. Valente,
“APIDiff: Detecting API breaking changes,” in 25th
International Conference on Software Analysis, Evolution
and Reengineering, SANER 2018, Campobasso, Italy,
March 20-23, 2018. 1EEE Computer Society, 2018,
pp- S07-511.

A. Mgller and M. T. Torp, ‘“Model-based testing of
breaking changes in Node.js libraries,” in Proceedings of
the ACM Joint Meeting on European Software Engineer-
ing Conference and Symposium on the Foundations of
Software Engineering, ESEC/SIGSOFT FSE 2019, Tallinn,
Estonia, August 26-30, 2019. ACM, 2019, pp. 409—419.

https://brics.dk/jsfix/

	Introduction
	Motivating Example
	Overview
	A Semantic Patch Language
	Interactive Phase
	Evaluation
	RQ1 (Expressiveness of transformations)
	RQ2 (Correctness and quality of transformations)
	RQ3 (Questions asked by jsfix)
	Threats to Validity

	Related Work
	Conclusion

