
HTML Validation of Context-Free LanguagesAnders Møller⋆ and Mathias S
hwarz⋆Aarhus University, Denmark{amoeller,s
hwarz}�
s.au.dkAbstra
t. We present an algorithm that generalizes HTML validationof individual do
uments to work on
ontext-free sets of do
uments. To-gether with a program analysis that soundly approximates the outputof Java Servlets and JSP web appli
ations as
ontext-free languages, weobtain a method for stati
ally
he
king that su
h web appli
ations neverprodu
e invalid HTML at runtime. Experiments with our prototype im-plementation demonstrate that the approa
h is useful: On 6 open sour
eweb appli
ations
onsisting of a total of 104 pages, our tool �nds 64 er-rors in less than a se
ond per page, with 0 false positives. It produ
esdetailed error messages that help the programmer lo
ate the sour
es ofthe errors. After manually
orre
ting the errors reported by the tool, thesoundness of the analysis ensures that no more validity errors exist inthe appli
ations.1 Introdu
tionAn HTML do
ument is valid if it synta
ti
ally
onforms to a DTD for one of theversions of HTML. Sin
e the HTML spe
i�
ations only pres
ribe the meaningof valid do
uments, invalid HTML do
uments are often rendered di�erently,depending on whi
h browser is used [1℄. For this reason,
areful HTML do
umentauthors validate their do
uments, for example using the validation tool providedby W3C1. An in
reasing number of HTML do
uments are, however, produ
eddynami
ally by programs running on web servers. It is well known that errors
aught early in development are
heaper to �x. Our goal is to develop a programanalysis that
an
he
k stati
ally, that is, at the time programs are written, thatthey will never produ
e invalid HTML when running. We want this analysis tobe sound, in the sense that whenever it
laims that the given program has thisproperty that is in fa
t the
ase, pre
ise meaning that it does not overwhelm theuser with spurious warnings about potential invalidity problems, and e�
ientsu
h that it
an analyze non-trivial appli
ations with modest time and spa
eresour
es. Furthermore, all warning messages being produ
ed must be usefultoward guiding the programmer to the sour
e of the potential errors.The task
an be divided into two
hallenges: 1) Web appli
ations typi
allygenerate HTML either by printing page fragments as strings to an output stream
⋆ Supported by The Danish Resear
h Coun
il for Te
hnology and Produ
tion,grant no. 274-07-0488.1 http://validator.w3.org

(as in e.g. Java Servlets) or with template systems (as e.g. JSP, PHP, or ASP).In any
ase, the analysis front-end must extra
t a formal des
ription of the setof possible outputs of the appli
ation, for example in the form of a
ontext-free grammar. 2) The analysis ba
k-end must analyze this formal des
ription ofthe output to
he
k that all strings that it represents are valid HTML. Severalexisting te
hniques follow this pattern, although
onsidering XHTML instead ofHTML [6, 8℄. In pra
ti
e, however, many web appli
ations output HTML data,not XHTML data, and the existing te
hniques � with the ex
eption of the workby Nishiyama and Minamide [10℄, whi
h we dis
uss in Se
tion 2 � do not workfor HTML.The key di�eren
es between HTML and XHTML are that the former allows
ertain tags to be omitted, for example the start tags <html> and <tbody> andthe end tags </html> and </p>, and that it uses tag in
lusions and ex
lusions, forexample to forbid deep nesting of a elements. This extra �exibility of HTML ispre
isely what makes it popular,
ompared to its XML variant XHTML. On theother hand, this �exibility means that the pro
ess of
he
king well-formedness,i.e. that a do
ument de�nes a proper tree stru
ture,
annot be separated from thepro
ess of
he
king validity, i.e. that the tree stru
ture satis�es the requirementsof the DTD.In this paper, we present an algorithm that, given as input a
ontext-freegrammar G and an SGML DTD D (one of the DTDs that exist for the di�erentversions of HTML2),
he
ks whether every string in the language of G is valida

ording to D, written L(G) ⊆ L(D). The key idea in our approa
h is a gen-eralization of a
ore algorithm for SGML parsing [4,13℄ to work on
ontext-freesets of do
uments rather than individual do
uments.1.1 Outline of the PaperThe paper is organized as follows. We �rst give an overview of related approa
hesin Se
tion 2. In Se
tion 3 we then present a formal model of SGML/HTMLvalidation that
aptures the essen
e of the features that distinguish it fromXML/XHTML validation. Based on this model, in Se
tion 4 we present our gen-eralization for validating
ontext-free sets of do
uments. We have implementedthe algorithm together with an analysis front-end for Java Servlets and JSP,whi
h
onstitute a widely used platform for server-based web appli
ation de-velopment. We fo
us on the ba
k-end in this paper. In Se
tion 5, we report onexperiments on a range of open sour
e web appli
ations. Our results show thatthe algorithm is fast and able to pinpoint programming errors. After manually
orre
ting the errors based on the messages generated by the tool, the analysis isable to prove that the output will always be valid HTML when the appli
ationsare exe
uted.2 The HTML 5 language
urrently under development will likely evoke renewed in-terest in HTML. Although it te
hni
ally does not use SGML, its syntax
loselyresembles that of the earlier versions. 2

<%� page import="java.util.*, org.example" %><%� taglib prefix="
" uri="http://java.sun.
om/jstl/
ore" %><html><head><meta name="des
ription"
ontent="Joke Colle
tion"><title>Jokes</title><%! List<Joke> js = Jokes.get();%><body><table><tr><th>Question<th>Pun
h line</tr><% if (js.size() > 0) {request.setParameter("Jokes", js); %><
:forEa
h items="${Jokes}" var="joke"><tr><td><
:out value="${joke.question}"/><td><
:out value="${joke.pun
hline}"/></tr></
:forEa
h><% } else {out.print("<td>No more jokes</tr>");} %></table></body></html>Fig. 1. A JSP page that uses the JSTL tag library and embedded Java
ode. Theexample takes advantage of SGML features su
h as tag omission and in
lusions.1.2 ExampleFigure 1 shows an example of a JSP program that outputs a dynami
ally gen-erated table from a list of data using a
ombination of many of the JSP andSGML features that appear in typi
al appli
ations. The meta element is notpart of the
ontent model of head, but it is allowed by an SGML in
lusion rule.The body element
ontains a table where both the start and the end tag of thetbody element are omitted, and a parser needs to insert those to validate a gen-erated do
ument. Similarly, all td and th end tags are omitted. The
ontentsof the table are generated by a
ombination of tags from JSP Standard Tag Li-brary, embedded Java
ode that prints to the output stream, and ordinary JSPtemplate
ode.The stati
 analysis that we present is able to soundly
he
k that the outputfrom su
h
ode is always valid a

ording to e.g. the HTML 4.01 Transitionalspe
i�
ation.2 Related WorkPrevious work on reasoning about programs that dynami
ally generate semi-stru
tured data has fo
used on XML [9℄, not SGML, despite the fa
t that theSGML language HTML remains widely used. (Sin
e XML languages are essen-tially the sub
lass of SGML languages that do not use the tag omission andex
eption features, our algorithm also works for XML.) Most
losely relatedto our approa
h is the work by Minamide et al. [7, 8, 10℄ and Kirkegaard andMøller [6℄. 3

In [7℄
ontext-free grammars are derived from PHP programs. From su
h agrammar, sample do
uments are derived and pro
essed by an ordinary HTMLor XHTML validator. Unless the nesting depth of the elements in the generateddo
uments is bounded, this approa
h is unsound as it may miss errors. Later, analternative grammar analysis was suggested for soundly validating dynami
allygenerated XML data [8℄. That algorithm relies on the theory of balan
ed gram-mars over an alphabet of tag names, whi
h does not easily generalize to handlethe tag omission and in
lusion/ex
lusion features that exist in HTML. The ap-proa
h in [6℄ is
omparable to [8℄, however
onsidering the more �ne-grainedalphabet of individual Uni
ode
hara
ters instead of entire tag names and usingXML graphs for representing sets of XML do
uments.Yet another grammar analysis algorithm is presented by Nishiyama and Mi-namide [10℄. They de�ne a sub
lass of SGML DTDs that in
ludes HTML andshows a translation into regular hedge grammars, su
h that the validation prob-lem redu
es to
he
king in
lusion of a
ontext-free language in a regular language.That approa
h has some limitations, however: 1) it does not support start tagomission, although that feature of SGML is used in HTML (e.g. tbody andhead); 2) the ex
lusion feature is handled by a transformation of the DTD thatmay lead to an exponential blow-up prohibiting pra
ti
al use; and 3) the in
lu-sion feature is not supported. The alternative approa
h we suggest over
omesall these limitations.The abstra
t parsing algorithm by Doh et al. [3℄ and the grammar-basedanalysis by Thiemann [11℄ are also based on the idea of generalizing existingparsing algorithms. The approa
h in [3℄ relies on abstra
t interpretation with adomain of LR(k) parse sta
ks
onstru
ted from an LR(k) grammar for XHTML,and [11℄ is based on Earley's parsing algorithm. By instead using SGML parsingas a starting point, we avoid the abstra
tion and we handle the spe
ial featuresof HTML: Given a
ontext-free grammar des
ribing the output of a program,our algorithm for
he
king that all derivable strings are valid HTML is bothsound and
omplete.3 Parsing HTML Do
umentsAlthough HTML is based on the SGML standard [4℄ it uses only a small sub-set of the features of the full standard. SGML languages are formally des
ribedusing the DTD language (not to
onfuse with the DTD language for XML).Su
h a des
ription provides a formal des
ription for the parser on how a do
u-ment is parsed from its textual form into a tree stru
ture. Spe
i�
ally, in SGMLboth start and end tags may be omitted if 1) allowed by the DTD, and 2) theomission does not result in ambiguities in the parsing of the do
ument. TheDTD des
ription provides the
ontent models, that is, the allowed
hildren ofea
h element, as deterministi
 regular expressions over sequen
es of elements.Furthermore spe
ial ex
eptions,
alled in
lusions and ex
lusions, are possible forallowing additional element
hildren or disallowing nesting of
ertain elements.An in
lusion rule permits elements anywhere in the des
endant tree even if not4

allowed by the
ontent model expressions. Conversely, an ex
lusion rule prohibitselements, overriding the
ontent model expressions and in
lusions.Consider a small example DTD:<!ELEMENT inventory - - (item*) +(note)><!ELEMENT item - O (#PCDATA)><!ELEMENT note - O (#PCDATA)>In ea
h element de
laration, O means �optional� and - means �required�, for thestart tag and the end tag, respe
tively. This DTD de
lares an element inventorywhere the start and end tags are both required. (Following the usual SGML ter-minology, an element generally
onsists of a start tag and its mat
hing end tag,although
ertain tags may be omitted in the textual representation of the do
-uments.) The
ontent model of inventory allows a sequen
e of item elementsas
hildren in the do
ument tree. In addition, note is in
luded su
h that noteelements may be des
endants of inventory elements even though they are notallowed dire
tly in the
ontent models of the des
endants. The se
ond line de-
lares an element item that requires a start tag but allows omission of the endtag. The
ontent model of item allows only text (PCDATA) and no
hild ele-ments in the do
ument tree. Finally, the element note is also de
lared with endtag omission and PCDATA
ontent. An example of a valid do
ument for thisDTD is the following:<inventory><item>gadget<item>widget</inventory>The parser inserts the omitted end tags for item to obtain the following do
u-ment, whi
h is valid a

ording to the DTD
ontent models for inventory anditem:<inventory><item>gadget</item><item>widget</item></inventory>Be
ause of the in
lusion of note elements in the de
laration of inventory, thefollowing do
ument is also parsed as a valid instan
e:<inventory><item>gadget<note>new</note><item>widget</inventory>SGML is similar to XML but it has looser requirements on the syntax of theinput do
uments. For the features used by HTML, the only relevant di�eren
esare that XML does not support tag omissions nor
ontent model ex
eptions.We
onsider only DTDs that are a
y
li
:De�nition 1. An SGML DTD is a
y
li
 if it satis�es the following requirement:For elements that allow end tag omissions there must be a bound on the possibledepth of the dire
t nesting of those elements. That is, if we
reate a dire
tedgraph where the nodes
orrespond to the de
lared elements whose end tags maybe omitted and there is an edge from a node A to a node B if the
ontent modelof A
ontains B, then there must be no
y
les in this graph.This requirement also exists in Nishiyama and Minamide's approa
h [10℄, andit is ful�lled by all versions of the HTML DTD. Contrary to their approa
h wedo not impose any further restri
tions and our algorithm thus works for all theHTML DTDs without any limitations or rewritings.5

3.1 A Model of HTML ParsingAs our algorithm is a generalization of the traditional SGML parsing algorithmwe �rst present a formal des
ription of the essen
e of that algorithm. We baseour des
ription on the work by Warmer and van Egmond [13℄. The algorithmprovides the basis for explaining our main
ontribution in the next se
tion.We abstra
t away from SGML features su
h as text (i.e. PCDATA),
om-ments, and attributes. These features are straightforward to add subsequently.Furthermore, a lexing phase allows us to
onsider strings over the alphabet ofstart and end tags, written <a> and , respe
tively, for every element a de-
lared in the DTD. (This lexing phase is far from trivial; our implementation isbased on the te
hnique used in [6℄.) More formally, we
onsider strings over thealphabet Σ = {<a> | a ∈ E} ∪ { | a ∈ E} where E is the set of de
laredelement names in the DTD. We assume that root ∈ E is a pseudo-element rep-resenting the root node of the do
ument, with a
ontent model that a

epts asingle element of any kind (or, one spe
i�
, su
h as html for HTML). The setsof in
luded and ex
luded elements of an element a ∈ E are denoted Ia and Ea,respe
tively.For simpli
ity, we represent all
ontent models together as one �nite-stateautomaton [5℄ de�ned as follows:De�nition 2. A
ontent model automaton for a DTD D is a tuple (Q,E,
[qa]a∈E , F, δ) where Q is a set of states, its alphabet is E as de�ned above, [qa]a∈Eis a family of initial states (one for ea
h de
lared element), F ⊆ Q is a set ofa

ept states and δ : Q ×Σ →֒ Q is a partial transition fun
tion (with ⊥ repre-senting unde�ned).Following the requirement from the SGML standard that
ontent models must beunambiguous, this
ontent model automaton
an be assumed to be deterministi
by
onstru
tion. Also, we assume that all states in the automaton
an rea
h somea

ept state. Ea
h state in the automaton uniquely
orresponds to a position ina
ontent model expression in D.SGML do
uments are parsed in a single left-to-right s
an with a look-aheadof 1. The state of the parser is represented by a
ontext sta
k. The set of possible
ontexts is H = E × Q × P(E) × P(E). (P(E) denotes the powerset of E.)We refer to the
ontext cn = (a, q, ι, η) at the top of a sta
k c1 · · · cn ∈ H∗as the
urrent
ontext, and a, q, ι, and η are then the
urrent element, the
urrent state, the
urrent in
lusions, and the
urrent ex
lusions, respe
tively.An element b is permitted in the
urrent
ontext (a, q, ι, η) if δ(q, b) 6= ⊥. Werefer to a tag a just below another tag b in the
ontext sta
k as b's parent. Wesay that OmitStart(a, q) holds if the start tag of a elements may be omitteda

ording to D when the
urrent state is q, and, similarly, OmitEnd(a, q) holds ifthe end tag of a elements may be omitted in state q. (The pre
ise rules de�ningOmitStart and OmitEnd from D are quite
ompli
ated; we refer to [4,13℄ for thedetails.) The
urrent in
lusions and ex
lusions re�e
t the sets of in
luded andex
luded elements, respe
tively. These two sets
an in prin
iple be determined6

1. fun
tion ParseD(p ∈ H∗, x ∈ Σ∗) :2. if |x| = 0 then3. // rea
hed end of input4. return p5. else if |p| = 0 then6. // empty sta
k error7. return ©8. let p1 · · · pn−1 · (an, sn, ιn, ηn) = p9. let x1 · · ·xm = x10. if x1 = <a> ∧ a /∈ ηn for some a ∈ E then11. // reading a non-ex
luded start tag12. if δ(sn, a) 6= ⊥ then13. // the start tag is permitted by the
ontent model, push onto sta
k and pro
eed14. return ParseD

(

p1 · · · pn−1 · (an, δ(sn, a), ιn, ηn) · (a, qa, ιn ∪ Ia, ηn ∪Ea), x2 · · ·xm

)15. else if a ∈ ιn then16. // the start tag is permitted by in
lusion, push onto sta
k and pro
eed17. return ParseD

(

p1 · · · pn · (a, qa, ∅, ηn ∪Ea), x2 · · ·xm

)18. else if x1 = ∧ a = an ∧ sn ∈ F for some a ∈ E then19. // reading an end tag that is permitted, pop from sta
k and pro
eed20. return ParseD

(

p1 · · · pn−1, x2 · · · xm

)21. else if OmitEnd(an, sn) then22. // insert omitted end tag, then retry23. return ParseD(p, </an> · x)24. else if ∃a′ ∈ E : OmitStart(a′, sn) then25. // insert omitted start tag, then retry26. return ParseD(p, <a′> · x)27. else28. // parse error29. return Fig. 2. The ParseD fun
tion for
he
king validity of a given do
ument.from the element names appearing in the
ontext sta
k, but we maintain themin ea
h
ontext for reasons that will be
ome
lear in Se
tion 4.Informally, when en
ountering a start tag <a> that is permitted in the
urrent
ontext, its
ontent automaton state is modi�ed a

ordingly, and a new
ontextis pushed onto the sta
k. When an end tag is en
ountered, the
urrent
ontext is popped o� the sta
k if it mat
hes the element name a.An end tag may be omitted only if it is followed by either the end tag ofanother open element or a start tag that is not allowed at this pla
e. A start tagmay be omitted only if omission does not
ause an ambiguity during parsing.These
onditions, whi
h de�ne OmitEnd and OmitStart,
an be determinedfrom the
urrent state and either the next tag in the input or the
urrent elementon the sta
k, respe
tively, without
onsidering the rest of the parse sta
k andinput. Moreover, OmitStart has the property that no more than |E| omittedstart tags
an be inserted before the next tag from the input is
onsumed.Our formalization of SGML parsing is expressed as the fun
tion ParseD :
H∗ ×Σ∗ →

(

H∗ ∪ { ,©}
) shown in Figure 2. The result © arises if an end tagis en
ountered while the sta
k is empty, and represents other kinds of parseerrors. In this algorithm, OmitEnd and OmitStart allow us to abstra
t awayfrom the pre
ise rules for tag omission, to keep the presentation simple. Thealgorithm
aptures an essential property of SGML parsing: a substring x ∈ Σ∗7

of a do
ument is parsed relative to a parse sta
k p ∈ H∗ as de�ned above, and itoutputs a new parse sta
k or one of the error indi
ators© and . We distinguishbetween the two kinds of errors for reasons that be
ome
lear in Se
tion 4.With this, we
an de�ne validity of a do
ument relative to the DTD D:De�nition 3. A string x ∈ Σ∗ is a valid do
ument if
ParseD

(

(root, qroot, ∅, ∅), x
)

= (root, q, ∅, ∅)for some q ∈ F .The ParseD fun
tion has some interesting properties that we shall need inSe
tion 4:Observation 4 Noti
e that the ParseD fun
tion either returns dire
tly or viaa tail
all to itself. Let (p1, x1), (p2, x2), . . . be the sequen
e of parameters to
ParseD that appear if exe
uting ParseD(p1, x1) for some p1 ∈ H∗, x1 ∈ Σ∗.Now, be
ause the DTD is a
y
li
, for all i = 1, 2, . . . we have |xi+|E|| < |xi|,that is, after at most |E| re
ursive
alls, one more input symbol is
onsumed.Moreover, in ea
h step in the re
ursion sequen
e, the de
isions made dependonly on the
urrent
ontext and the next input symbol.4 Parsing Context-Free Sets of Do
umentsWe now show that the parsing algorithm des
ribed in the previous se
tion
anbe generalized to work for sets of do
uments, or more pre
isely,
ontext-freelanguages over the alphabet Σ. The resulting algorithm determines whether ornot all strings in a given language are valid a

ording to a given DTD. Thelanguages are represented as
ontext-free grammars that are
onstru
ted by theanalysis front-end from the programs being analyzed.The de�nitions of
ontext-free grammars and their languages are standard:De�nition 5. A
ontext-free grammar (CFG) is a tuple G = (N,Σ, P, S) where
N is the set of nonterminal symbols, Σ is the alphabet (of start and end tagsymbols, as in Se
tion 3.1), P is the set of produ
tions of the form A → r where
A ∈ N , r ∈ (Σ ∪ N)∗, and S is the start nonterminal. The language of G is
L(G) = {x ∈ Σ∗ | S ⇒∗ x} where ⇒∗ is the re�exive transitive
losure of thederivation relation ⇒ de�ned by u1Au2 ⇒ u1ru2 whenever u1, u2 ∈ (Σ ∪ N)∗and A → r ∈ P .De�nition 6. A CFG G is valid if x is valid for every x ∈ L(G).To simplify the presentation we will assume that G is in Chomsky normalform, so that all produ
tions are of the form A → s or A → A′A′′ where s ∈ Σand A,A′, A′′ ∈ N , and that there are no useless nonterminals. It is well-knownhow to transform an arbitrary CFG to this form [5℄. We
an disregard the emptystring sin
e that is never valid for any DTD, and the empty language is triviallyvalid. 8

The idea behind the generalization of the parse algorithm is to �nd out forevery o

urren
e of an alphabet symbol s in the given CFG whi
h
ontext sta
ksmay appear when en
ountering s during parsing of a string. The
ontext sta
ksmay of
ourse be unbounded in general. However, be
ause of Observation 4 weonly need to keep tra
k of a bounded size top (i.e. a post�x) of ea
h
ontext sta
k,and hen
e a bounded number of
ontext sta
ks, at every point in the grammar.4.1 Generating ConstraintsTo make the idea more
on
rete, we de�ne a family of
ontext fun
tions, one forea
h nonterminal A ∈ N . Ea
h is a partial fun
tion that takes as input a
ontextsta
k and returns a set of
ontext sta
ks:
CA : H∗ →֒ P(H∗)Informally, the domain of CA
onsists of the
ontext sta
ks that appear duringparsing when entering a substring derived from A, and the
o-domain similarly
onsists of the
ontext sta
ks that appear immediately after the substring hasbeen parsed. Formally, assume x ∈ L(G) su
h that S ⇒∗ u1Au2 ⇒∗ u1yu2 = x,that is, the nonterminal A is used in the derivation of x, and y is the substringderived from A. The domain dom(CA) then
ontains the
ontext sta
k p thatarises after parsing of u1, that is, p = ParseD

(

(root, qroot, ∅, ∅), u1

)

∈ dom(CA).Similarly, CA(p)
ontains the
ontext sta
k that arises after parsing of u1y, thatis, ParseD

(

(root, qroot, ∅, ∅), u1y
)

= ParseD(p, y) ∈ CA(p) if p /∈ { ,©}. Asexplained in detail below, we trun
ate the
ontext sta
ks and only store the topof the sta
ks in these sets. To obtain an e�
ient algorithm, we trun
ate as mu
has possible and exploit the fa
t that ParseD returns © if a too short
ontextsta
k is given.The
ontext fun
tions are de�ned from the DTD as a solution to the set of
onstraints de�ned by the following three rules:�1 Following De�nition 3, parsing starts with the initial
ontext sta
k at thestart nonterminal S and must end in a valid �nal sta
k:
CS(root, qroot, ∅, ∅) ⊆ {(root, q, ∅, ∅) | q ∈ F}�2 For every produ
tion of the form A → s in P where s ∈ Σ, the
ontextfun
tion for A respe
ts the ParseD fun
tion, whi
h must not return or ©:

∀p ∈ dom(CA) : p
′ /∈ { ,©} ∧ p′ ∈ CA(p) where p′ = ParseD(p, s)�3 For every produ
tion of the form A → A′A′′ in P , the entry
ontext sta
ks of

A are also entry
ontext sta
ks for A′, the exit
ontext sta
ks for A′ are alsoentry
ontext sta
ks for A′′, and the exit
ontext sta
ks for A′′ are also exit
ontext sta
ks for A. However, we allow the
ontext sta
ks to be trun
atedwhen propagated from one nonterminal to the next:
∀p ∈ dom(CA) : ∃p1, p2 : p = p1 · p2 ∧ p2 ∈ dom(CA′) ∧

∀p′2 ∈ CA′(p2) : ∃t1, t2 : p1 · p′2 = t1 · t2 ∧ t2 ∈ dom(CA′′) ∧
∀t′2 ∈ CA′′(t2) ⇒ t1 · t′2 ∈ CA(p)9

Note that rule �3 permits the
ontext sta
ks to be trun
ated; on the other hand,rule �2 ensures that the sta
ks are not trun
ated too mu
h sin
e that would leadto the error value ©.Theorem 7. There exists a solution to the
onstraints de�ned by the rules abovefor a grammar G if and only if G is valid.Proof. See the appendix.4.2 Solving ConstraintsIt is relatively simple to
onstru
t an algorithm that sear
hes for a solutionto the
olle
tion of
onstraints generated from a CFG by the rules de�ned inSe
tion 4.1. Figure 3 shows the pseudo-
ode for su
h an algorithm, ParseCFGD.We write w defsA for w ∈ P , A ∈ N if A appears on the left-hand side of
w, and w usesA if A appears on the right-hand side of w. The solution being
onstru
ted is represented by the family of
ontext fun
tions, denoted [CA]A∈N .The idea in the algorithm is to sear
h for a solution by trun
ating the
ontextsta
ks as mu
h as possible, iteratively trying longer
ontext sta
ks, until thespe
ial error value © no longer appears. The algorithm initializes [CA]A∈N online 6 and iteratively on lines 9�58 extends these fun
tions to build a solution.The worklist W (a queue, without dupli
ates)
onsists of produ
tions that needto be pro
essed be
ause the domains of the
ontext fun
tions of their left-hand-side nonterminals have
hanged. The fun
tion ∆ maintains for ea
h nonterminala set of
ontext sta
ks that are known to lead to ©.Ea
h produ
tion in the worklist of the form A → s is parsed a

ording to rule
§2 on lines 14� 26, relative to ea
h
ontext sta
k p in dom(CA). If this resultsin ©, the
orresponding
ontext sta
k is added to ∆(A), and all produ
tionsthat use A are added to the worklist to make sure that the information that the
ontext sta
k was too short is propagated ba
k to those produ
tions. If a parseerror o

urs (line 20), the algorithm terminates with a failure. If the parsingis su

essful (line 23), the resulting
ontext sta
k p′ is added to CA.For a produ
tion of two nonterminals, A → A′A′′, we pro
eed a

ording torule §3. For ea
h
ontext sta
k p in dom(CA) on line 29 we pi
k the smallestpossible post�x p2 of p that is not in ∆(A′) and propagate this to CA′ . If no su
hpost�x exists, we know that p is too short, so we update ∆(A) and W as before.Otherwise, we repeat the pro
ess (line 37) to propagate the resulting
ontextsta
k through A′′ and further to CA (line 46).Finally, on line 57 we
he
k that rule §1 is satis�ed.Theorem 8. The ParseCFGD algorithm always terminates, and it terminatessu

essfully if and only if a solution exists to the
onstraints from Se
tion 4.1for the given CFG.(We leave a proof of this theorem as future work.)Corollary 9. Combining Theorem 7 and Theorem 8, we see that ParseCFGDalways terminates, and it terminates su

essfully if and only if the given CFG isvalid. 10

1. fun
tion ParseCFGD(N,Σ,P, S) :2. de
lare W ⊆ P, [CA]A∈N : H∗ →֒ P(H∗), ∆ : N → P(H∗)3. // initialize worklist and
ontext fun
tions4. W := [w ∈ P | w defs S]5. for all A ∈ N , p ∈ H∗ do6. CA(p) :=

{

∅ if A = S ∧ p = (root, qroot,∅,∅)

⊥ otherwise7. ∆(A) := ∅8. // iterate until �xpoint9. while W 6= ∅ do10. remove the next produ
tion A → r from W11. for all p ∈ dom(CA) do12. if A → r is of the form A → s where s ∈ Σ then13. // rule §214. let p′ = ParseD(p, s)15. if p′ = © then16. // re
ord that entry
ontext sta
k p is too short for A17. ∆(A) := ∆(A) ∪ {p}18. CA(p) := ⊥19. for all w ∈ P where w usesA add w to W20. else if p′ = then21. // fail right away22. fail23. else if p′ /∈ CA(p) then24. // add new �nal
ontext sta
k p′ for A25. CA(p) := CA(p) ∪ {p′}26. for all w ∈ P where w usesA add w to W27. else if A → r is of the form A → A′A′′ where A′, A′′ ∈ N then28. // rule §329. let p2 be the smallest string su
h that p = p1 · p2 and p2 6∈ ∆(A′)30. if no su
h p2 exists then31. // re
ord that entry
ontext sta
k p is too short for A32. ∆(A) := ∆(A) ∪ {p}33. CA(p) := ⊥34. for all w ∈ P where w usesA add w to W35. else if p2 ∈ dom(CA′) then36. for all p′
2
∈ CA′ (p2) do37. let t2 be the smallest string su
h that p1 · p′

2
= t1 · t2 and t2 6∈ ∆(A′′)38. if no su
h t2 exists then39. // re
ord that entry
ontext sta
k p is too short for A40. ∆(A) := ∆(A) ∪ {p}41. CA(p) := ⊥42. for all w ∈ P where w usesA add w to W43. else if t2 ∈ dom(CA′′) then44. if {t1 · t′

2
| t′

2
∈ CA′′(t2)} 6⊆ CA(p) then45. // add new �nal
ontext sta
ks for A46. CA(p) := CA(p) ∪ {t1 · t′

2
| t′

2
∈ CA′′ (t2)}47. for all w ∈ P where w usesA add w to W48. else49. // add new entry
ontext sta
k t2 for A′′50. CA′′(t2) := ∅51. for all w ∈ P where w defsA′′ add w to W52. else53. // add new entry
ontext sta
k p2 for A′54. CA′ (p2) := ∅55. for all w ∈ P where w defsA′ add w to W56. // rule §157. if CS(root, qroot, ∅, ∅) 6⊆ {(root, q, ∅, ∅) | q ∈ F} then58. fail59. return [CA]A∈NFig. 3. The ParseCFGD algorithm for solving the parse
onstraints for a given CFG.11

4.3 ExampleAs an example of a normalized grammar,
onsider Gul = (N,Σ, P, S) where
N = {A1, A2, A3, A4, A5, A6}, Σ = {, , , }, S = A1, and P
onsists of the following produ
tions:

A1 → A5 A2 A2 → A6 A3

A3 → A4 →
A5 → A6 →
A6 → A4 A1The language generated byGul
onsists of do
uments that have a ul root element
ontaining a single li element that in turn
ontains zero or one ul element. Thegrammar
an thus generate deeply nested ul and li elements, and trun
ation of
ontext sta
ks is therefore
ru
ial for the ParseCFGD algorithm to terminate.Noti
e that all end tags are omitted in the do
uments.We wish to ensure that the strings generated from Gul are valid relative tothe following DTD, whi
h mimi
s a very small fra
tion of the HTML DTD forunordered lists:<!ELEMENT ul - - (li*)><!ELEMENT li - O (ul*)>For this
ombination of a CFG and a DTD, the ParseCFGD algorithm produ
esthe following solution to the
onstraints:

C

A1 (root, qroot, ∅, ∅) 7→ {(root, q, ∅, ∅)}
(li, qli, ∅, ∅) 7→ {(li, qli, ∅, ∅)}

A2 (ul, qul, ∅, ∅) 7→ {ǫ}
A3 (ul, qul, ∅, ∅) · (li, qli, ∅, ∅) 7→ {ǫ}
A4 (ul, qul, ∅, ∅) 7→ {(ul, qul, ∅, ∅) · (li, qli, ∅, ∅)}
A5 (li, qli, ∅, ∅) 7→ {(li, qli, ∅, ∅) · (ul, qul, ∅, ∅)}

(root, qroot, ∅, ∅) 7→ {(root, q, ∅, ∅) · (ul, qul, ∅, ∅)}
A6 (ul, qul, ∅, ∅) 7→ {(ul, qul, ∅, ∅) · (li, qli, ∅, ∅)}Although the
ontext sta
ks may grow arbitrarily when parsing individual do
-uments with ParseD, the trun
ation tri
k ensures that ParseCFGD terminatesand su

eeds in
apturing the relevant top-most parts of the
ontext sta
ks.5 Experimental ResultsWe have implemented the algorithm from Se
tion 4.2 in Java, together with ananalysis front-end for
onstru
ting CFGs that soundly approximate the outputof web appli
ations written with Java Servlets and JSP. The front-end followsthe stru
ture des
ribed in [6℄, extended with spe
ialized support for JSP, andbuilds on Soot [12℄ and the Java String Analyzer [2℄.The purpose of the prototype implementation is to obtain preliminary an-swers to the following resear
h questions:12

� What is the typi
al analysis time for a Servlet/JSP page, and how is theanalysis time a�e
ted by the absen
e or presen
e of validity errors?� What is the pre
ision of the analysis in terms of false positives?� Are the warnings produ
ed by the tool useful to lo
ate the sour
es of theerrors?We have run the analysis on six open sour
e programs found on the web. Theprograms range from simple one man proje
ts, su
h as the JSP Chat appli
ation(JSP Chat3), the o�
ial J2EE tutorial Servlet and JSP examples (J2EE Book-store 1 and 24) to the widely used blogging framework Pebble5, whi
h in
ludeddozens of pages and features. We have also in
luded the largest example from abook on JSTL (JSTL Book ex.6) and an appli
ation named JPivot7. The testshave been performed on a 2.4 GHz Core i5 laptop with 4GB RAM running OSX. As DTD, we use HTML 4.01 Transitional.Figure 4 summarizes the results. For ea
h program, it shows the number ofJSP pages, the time it takes to run the whole analysis on all pages (ex
ludingthe time used by Soot), the time spent in the CFG parser algorithm, the numberof warnings from the analyzer, and the number of false positives determined bymanual inspe
tion of the analyzed sour
e
ode.The tool
urrently has two limitations, whi
h we expe
t to remedy with amodest additional implementation e�ort. First, validation of attributes is
ur-rently not supported. Se
ond, the implementation
an tra
k a validity error tothe pla
e in the generated Java
ode where the invalid element is generated, butnot all the way ba
k to the JSP sour
e in the
ase of JSP pages.In some
ases when an unknown value is inserted into the output withoutes
aping spe
ial XML
hara
ters (for example, by using the out tag from JSTL),the front-end is unable to reason about the language of that value. This mayfor instan
e happen when the value is read from disk or input at runtime. Theanalysis will in su
h
ases issue an additional warning, whi
h is not in
ludedin the
ount in Figure 4, and treat the unknown value as a spe
ial alphabetsymbol and
ontinue analyzing the grammar. In pra
ti
e, there are typi
ally afew su
h symbols per page. While they may be indi
ations of
ross site s
riptingvulnerabilities, there may also be invariants in the program ensuring that thereis no problem at runtime.The typi
al analysis time for a single JSP page is around 200-600 ms. As
anbe seen from the table, only a small fra
tion of the time is spent on parsing theCFG. The worklist algorithm typi
ally requires between 1 and 100 iterations forea
h JSP page, whi
h means that ea
h nonterminal is visited between 1 and 10times.Validity errors were found in all the appli
ations. The following is an exampleof a warning generated by the tool on the JSP Chat appli
ation:3 http://www.web-te
h-india.
om/software/jsp_
hat.php4 http://download.ora
le.
om/javaee/5/tutorial/do
/bnaey.html5 http://pebble.sour
eforge.net/6 http://www.manning.
om/bayern/7 http://jpivot.sour
eforge.net/ 13

Program Pages Time CFG Parser time Warnings False positivesPebble3 61 24.0 s 369 ms 32 0J2EE Bookstore 14 5 6.7 s 93 ms 5 0J2EE Bookstore 24 7 9.0 s <1 ms 7 0JPivot5 3 2.8 s 8 ms 2 0JSP Chat6 14 6.8 s 100 ms 12 0JSTL Book ex.7 14 4.9 s 24 ms 6 0Fig. 4. Analysis times and results for various open sour
e web appli
ations written inJava Servlets and JSP.ERROR: Invalid string printed indk.bri
s.servletvalidator.jsp.generated.editInfo_jsp on line 94:Start tag INPUT not allowed in TBODYParse
ontext is [root HTML BODY DIV CENTER FORM TABLE TBODY℄This warning indi
ates that the programmer forgot both a tr start tag and a tdstart tag in whi
h the input element would be allowed,
ausing the input tagto appear dire
tly inside the tbody element. This may very well lead to browsersrendering the page di�erently.The reason that all JSP pages of the J2EE Bookstore appli
ations are invalidit that there is an unmat
hed </
enter> tag and a nonstandard <
omment> tagin a header used by all pages. After removing these two tags, only one page ofthis appli
ation is (
orre
tly) reje
ted by the analysis. While Pebble seems to beprogrammed with the goal of only outputting valid HTML, the general problemin this web appli
ation is that the table, ul, and tr elements require non-empty
ontents, whi
h is not always respe
ted by Pebble. Furthermore, several moreserious errors, su
h as forgotten td tags, exist in the appli
ation. The JSP Chatappli
ation is written in JSP but makes heavy use of embedded Java
ode. Thetool is able to analyze it pre
isely enough to �nd several errors that are mostlydue to unobvious (but feasible) �ow in the program.Based on the warnings generated by the tool, we managed to manually
orre
tall the errors within a few hours without any prior knowledge of the appli
a-tions. After running the analysis again, no more warnings were produ
ed. Thisse
ond round of analysis took essentially the same time as before the errors were
orre
ted. Sin
e the analysis is sound, we
an trust that the appli
ations afterthe
orre
tions
annot output invalid HTML.6 Con
lusionWe have presented an algorithm for validating
ontext-free sets of do
umentsrelative to an HTML DTD. The key idea � to generalize a parsing algorithmfor SGML to work on grammars instead of
on
rete do
uments � has lead toan approa
h that smoothly handles the intri
ate features of HTML, in parti
-ular tag omissions and ex
eptions. Preliminary experiments with our prototypeimplementation indi
ate that the approa
h is su�
iently e�
ient and pre
ise tofun
tion as a pra
ti
ally useful tool during development of web appli
ations. In14

future work, we plan to improve the tool to a

ommodate for attributes and totra
e error messages all the way ba
k to the JSP sour
e (whi
h is tri
ky be
auseof the JSP tag �le me
hanism) and to perform a more extensive evaluation.Referen
es1. Shan Chen, Dan Hong, and Vin
ent Y. Shen. An experimental study on validationproblems with existing HTML webpages. In Pro
. International Conferen
e onInternet Computing, ICOMP '05, June 2005.2. Aske Simon Christensen, Anders Møller, and Mi
hael I. S
hwartzba
h. Pre
iseanalysis of string expressions. In Pro
. 10th International Stati
 Analysis Sympo-sium, SAS '03, volume 2694 of LNCS, pages 1�18. Springer-Verlag, June 2003.3. Kyung-Goo Doh, Hyunha Kim, and David A. S
hmidt. Abstra
t parsing: Stati
analysis of dynami
ally generated string output using LR-parsing te
hnology. InPro
. 16th International Stati
 Analysis Symposium, SAS '09, volume 5673 ofLNCS. Springer-Verlag, August 2009.4. Charles F. Goldfarb. The SGML Handbook. Oxford University Press, 1991.5. John E. Hop
roft and Je�rey D. Ullman. Introdu
tion to Automata Theory, Lan-guages and Computation. Addison-Wesley, 1979.6. Christian Kirkegaard and Anders Møller. Stati
 analysis for Java Servlets and JSP.In Pro
. 13th International Stati
 Analysis Symposium, SAS '06, volume 4134 ofLNCS. Springer-Verlag, August 2006.7. Yasuhiko Minamide. Stati
 approximation of dynami
ally generated Web pages.In Pro
. 14th International Conferen
e on World Wide Web, WWW '05, pages432�441. ACM, May 2005.8. Yasuhiko Minamide and Akihiko Tozawa. XML validation for
ontext-free gram-mars. In Pro
. 4th Asian Symposium on Programming Languages and Systems,APLAS '06, November 2006.9. Anders Møller and Mi
hael I. S
hwartzba
h. The design spa
e of type
he
kersfor XML transformation languages. In Pro
. 10th International Conferen
e onDatabase Theory, ICDT '05, volume 3363 of LNCS, pages 17�36. Springer-Verlag,January 2005.10. Takuya Nishiyama and Yasuhiko Minamide. A translation from the HTML DTDinto a regular hedge grammar. In Pro
. 13th International Conferen
e on Imple-mentation and Appli
ation of Automata, CIAA '08, volume 5148 of LNCS, July2008.11. Peter Thiemann. Grammar-based analysis of string expressions. In Pro
. ACMSIGPLAN International Workshop on Types in Languages Design and Implemen-tation, TLDI '05, 2005.12. Raja Vallee-Rai, Laurie Hendren, Vijay Sundaresan, Patri
k Lam, Etienne Gagnon,and Phong Co. Soot � a Java optimization framework. In Pro
. IBM Centre forAdvan
ed Studies Conferen
e, CASCON '99. IBM, November 1999.13. Jos Warmer and Sylvia van Egmond. The implementation of the AmsterdamSGML parser. Ele
troni
 Publishing, 2(2):65�90, 1988.
15

A Proof of Theorem 7We begin with some lemmas and a proposition that help us give a simple proof ofthe theorem. The �rst lemma shows a
ompositionality property of the ParseDfun
tion:Lemma 10. Given p ∈ H∗ and x1, x2 ∈ Σ∗, let p′ = ParseD(p, x1). If p′ ∈
{ ,©} then ParseD(p, x1x2) = p′; otherwise ParseD(p, x1x2) = ParseD(p′, x2).Another property of ParseD is that providing a larger
ontext sta
k
annot leadto more parse errors:Lemma 11. Given p1, p2 ∈ H∗ and x ∈ Σ∗, let p′ = ParseD(p2, x). If p′ 6= ©then ParseD(p1 · p2, x) = p′.(We omit the proofs of these lemmas.)We hen
eforth abbreviate the initial
ontext sta
k by ⋄:

⋄ = (root, qroot, ∅, ∅)The following proposition
aptures the essential properties that were de-s
ribed intuitively in Se
tion 4.1 of solutions to the
ontext fun
tion
onstraints:Proposition 12. Assume x ∈ L(G) and [CA]A∈N satis�es the
onstraints fromSe
tion 4.1 for a given CFG G. Let A be a nonterminal used in a derivation of
x su
h that S ⇒∗ u1Au2 ⇒∗ u1yu2 = x for some u1, y, u2 ∈ Σ∗. Now, [CA]A∈Nhas the following properties:(a) Let p = ParseD(⋄, u1). If p /∈ { ,©} then there exist p1, p2 ∈ H∗ su
h that

p = p1 · p2 and p2 ∈ dom(CA). That is, dom(CA)
ontains a post�x p2 of the
ontext sta
k that arises after parsing u1, unless a parse error has o

urred.(b) Let p′ = ParseD(p2, y) for some p2 ∈ dom(CA). If p′ /∈ { ,©} then p′ ∈
CA(p2). That is, CA(p2)
ontains the
ontext sta
k that arises after parsing
y if starting in the
ontext sta
k p2 and no parse error o

urs.(In fa
t, as we show later, parse errors
annot o

ur when there exists a solutionto the
onstraints.)Proof. Consider a left-to-right depth-�rst traversal of a derivation tree of x wherewe visit ea
h node (
orresponding to a terminal or a nonterminal) both on theway down and the way up. We now show by indu
tion in k = 0, 1, 2, . . . that (1)all the nonterminal nodes that have been visited on the way down (and maybealso on the way up) after the �rst k steps of this traversal have property (a),and (2) all the nonterminal nodes that have been visited both on the way downand on the way up after the �rst k steps of this traversal have property (b).For the base
ase, k = 0, we only need to show that ⋄ ∈ dom(CA), howeverthis follows dire
tly from rule §1 (see Se
tion 4.1).For the indu
tion step, k > 0, if the node being visited is a terminal, ourgoal follows immediately from the indu
tion hypothesis. If the node is instead16

a nonterminal, we split into two
ases: either the k'th step is downward or it isupward. If it is downward, we are visiting a nonterminal node A′ with a rightsibling A′′ and a parent A, or a nonterminal node A′′ with a left sibling A′and a parent A,
orresponding to a produ
tion on the form A → A′A′′. Weneed to show that the new node being visited satis�es property (a). Now, u1 isthe string formed by the sequen
e of terminals visited so far. By the indu
tionhypothesis, dom(CA)
ontains a post�x of ParseD(⋄, u1), and by the �rst lineof rule §3, dom(CA′) thereby also
ontains a post�x of ParseD(⋄, u1), hen
eproperty (a) is satis�ed. The
ase for A′′ is similar, using the se
ond line ofrule §3. If the k'th step is instead upward, we need to show that the new nodebeing visited satis�es property (b). (Property (a) follows immediately from theindu
tion hypothesis.) Let A be the nonterminal of the node. Either the nodehas a single
hild,
orresponding to a produ
tion of the form A → s, or two
hildren,
orresponding to a produ
tion of the form A → A′A′′. In the former
ase, property (b) follows from rule §2; in the latter
ase, we use rule §3.The proof of Theorem 7 has two parts:1. We �rst show that the CFG G is valid (a

ording to De�nition 6) if thereexists some [CA]A∈N that satis�es the
onstraints from Se
tion 4.1.Let x ∈ L(G) and p′ = ParseD(⋄, x). From rule §1 we know that ⋄ ∈
dom(CS). By part (b) of Proposition 12, either p′ ∈ { ,©} or p′ ∈ CS(⋄). How-ever, p′ ∈ { ,©} is not possible. To see this, assume p′ ∈ { ,©} and let x =
s1s2 · · · sn where s1, s2, . . . , sn ∈ Σ. Then there exists a position i ∈ {1, . . . , n}su
h that p′′ = ParseD(⋄, s1s2 · · · si−1) /∈ { ,©} and ParseD(⋄, s1s2 · · · si) ∈
{ ,©}. Let A be the nonterminal that derives si in x. Part (a) of Proposi-tion 12 now tells us that dom(CA)
ontains a post�x p′′2 of p′′, and by rule §2,
ParseD(p′′2 , si) /∈ { ,©}. Lemma 11 then gives us that ParseD(p′′, si) /∈ { ,©}.By Lemma 10, ParseD(⋄, s1s2 · · · si) = ParseD(p′′, si) /∈ { ,©}, whi
h
ontra-di
ts ParseD(⋄, s1s2 · · · si) ∈ { ,©}. Thus, p′ /∈ { ,©}, so p′ ∈ CS(⋄). By rule
§1, CS(⋄) ⊆ {(root, q, ∅, ∅) | q ∈ F}, so p′ = (root, q, ∅, ∅) for some q ∈ F , whi
hmeans that x is valid a

ording to De�nition 3.2. Next, we show
onversely that validity of G implies that a (not ne
essarily�nite) solution exists to the
onstraints.Assume G is valid. Constru
t [CA]A∈N as follows, for ea
h A ∈ N :

dom(CA) =
⋃

S⇒∗u1Au2 where u1,u2∈Σ∗

ParseD(⋄, u1)

CA(p) =
⋃

A⇒∗y where y∈Σ∗

ParseD(p, y) for any p ∈ dom(CA)That is, we
onstru
t the
ontext fun
tions su
h that dom(CA)
ontains all
on-text sta
ks that may appear when entering A, without performing any trun-
ation, and similarly for their output. (Note that these appli
ations of ParseDnever return or© due to Lemma 10 sin
e G is assumed to be valid, so dom(CA)17

and CA(p) are well-de�ned.) With this
onstru
tion, we argue that [CA]A∈N is asolution to the
onstraints:� Rule §1 is satis�ed be
ause, by
onstru
tion, CS(⋄) = ⋃

S⇒∗y ParseD(⋄, y),and y ∈ Σ∗ is valid when S ⇒∗ y.� To see that rule §2 is satis�ed,
onsider a produ
tion of the form A → sin P where s ∈ Σ, and assume p ∈ dom(CA) and p′ = ParseD(p, s). By
onstru
tion of dom(CA), we have p = ParseD(⋄, u1) where S ⇒∗ u1Au2for some u1, u2 ∈ Σ∗. Now, p′ ∈ { ,©} would
ontradi
t the assumptionthat G is valid using Lemma 10 as above, so p′ /∈ { ,©}. By
onstru
tionof CA(p), we also get p′ ∈ CA(p).� Rule §3 is satis�ed for any produ
tion A → A′A′′ be
ause no trun
ationappears in our present
onstru
tion of dom(CA), so the following property issatis�ed, whi
h
learly implies the
ondition in rule §3:
∀p ∈ dom(CA) : p ∈ dom(CA′) ∧

∀p′ ∈ CA′(p) : p′ ∈ dom(CA′′) ∧
∀p′′ ∈ CA′′(p′) ⇒ p′′ ∈ CA(p)To see that this property is satis�ed,
onsider derivations of the form S ⇒∗

u1Au2 ⇒ u1A
′A′′u2 ⇒∗ u1y1A

′′u2 ⇒∗ u1y1y2u2 where u1, u2, y1, y2 ∈ Σ∗.The �rst line then dire
tly follows from the
onstru
tion of dom(CA). Forthe se
ond line, we have p ∈ ParseD(⋄, u1) and p′ ∈ ParseD(p, y1). ByLemma 10, p′ ∈ ParseD(⋄, u1y1) so p′ ∈ dom(CA′′). For the third line,we have p′′ ∈ ParseD(p′, y2), and p′′ ∈ ParseD(p, y1y2) then follows fromLemma 10.

18

