HTML Validation of Context-Free Languages

Anders Mgller* and Mathias Schwarz*

Aarhus University, Denmark
{amoeller,schwarz}@cs.au.dk

Abstract. We present an algorithm that generalizes HTML validation
of individual documents to work on context-free sets of documents. To-
gether with a program analysis that soundly approximates the output
of Java Servlets and JSP web applications as context-free languages, we
obtain a method for statically checking that such web applications never
produce invalid HTML at runtime. Experiments with our prototype im-
plementation demonstrate that the approach is useful: On 6 open source
web applications consisting of a total of 104 pages, our tool finds 64 er-
rors in less than a second per page, with 0 false positives. It produces
detailed error messages that help the programmer locate the sources of
the errors. After manually correcting the errors reported by the tool, the
soundness of the analysis ensures that no more validity errors exist in
the applications.

1 Introduction

An HTML document is walid if it syntactically conforms to a DTD for one of the
versions of HTML. Since the HTML specifications only prescribe the meaning
of valid documents, invalid HTML documents are often rendered differently,
depending on which browser is used [1]. For this reason, careful HTML document
authors validate their documents, for example using the validation tool provided
by W3C!. An increasing number of HTML documents are, however, produced
dynamically by programs running on web servers. It is well known that errors
caught early in development are cheaper to fix. Our goal is to develop a program
analysis that can check statically, that is, at the time programs are written, that
they will never produce invalid HTML when running. We want this analysis to
be sound, in the sense that whenever it claims that the given program has this
property that is in fact the case, precise meaning that it does not overwhelm the
user with spurious warnings about potential invalidity problems, and efficient
such that it can analyze non-trivial applications with modest time and space
resources. Furthermore, all warning messages being produced must be useful
toward guiding the programmer to the source of the potential errors.

The task can be divided into two challenges: 1) Web applications typically
generate HTML either by printing page fragments as strings to an output stream

* Supported by The Danish Research Council for Technology and Production,
grant no. 274-07-0488.
! http://validator.w3.org

(as in e.g. Java Servlets) or with template systems (as e.g. JSP, PHP, or ASP).
In any case, the analysis front-end must extract a formal description of the set
of possible outputs of the application, for example in the form of a context-
free grammar. 2) The analysis back-end must analyze this formal description of
the output to check that all strings that it represents are valid HTML. Several
existing techniques follow this pattern, although considering XHTML instead of
HTML [6,8]. In practice, however, many web applications output HTML data,
not XHTML data, and the existing techniques — with the exception of the work
by Nishiyama and Minamide [10], which we discuss in Section 2 — do not work
for HTML.

The key differences between HTML and XHTML are that the former allows
certain tags to be omitted, for example the start tags <html> and <tbody> and
the end tags </html> and </p>, and that it uses tag inclusions and exclusions, for
example to forbid deep nesting of a elements. This extra flexibility of HTML is
precisely what makes it popular, compared to its XML variant XHTML. On the
other hand, this flexibility means that the process of checking well-formedness,
i.e. that a document defines a proper tree structure, cannot be separated from the
process of checking validity, i.e. that the tree structure satisfies the requirements
of the DTD.

In this paper, we present an algorithm that, given as input a context-free
grammar G and an SGML DTD D (one of the DTDs that exist for the different
versions of HTML?), checks whether every string in the language of G is valid
according to D, written £(G) C £(D). The key idea in our approach is a gen-
eralization of a core algorithm for SGML parsing [4,13] to work on context-free
sets of documents rather than individual documents.

1.1 Outline of the Paper

The paper is organized as follows. We first give an overview of related approaches
in Section 2. In Section 3 we then present a formal model of SGML/HTML
validation that captures the essence of the features that distinguish it from
XML/XHTML validation. Based on this model, in Section 4 we present our gen-
eralization for validating context-free sets of documents. We have implemented
the algorithm together with an analysis front-end for Java Servlets and JSP,
which constitute a widely used platform for server-based web application de-
velopment. We focus on the back-end in this paper. In Section 5, we report on
experiments on a range of open source web applications. Our results show that
the algorithm is fast and able to pinpoint programming errors. After manually
correcting the errors based on the messages generated by the tool, the analysis is
able to prove that the output will always be valid HTML when the applications
are executed.

2 The HTML 5 language currently under development will likely evoke renewed in-
terest in HTML. Although it technically does not use SGML, its syntax closely
resembles that of the earlier versions.

<%Q@ page import="java.util.*, org.example" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>
<html><head><meta name="description" content="Joke Collection">
<title>Jokes</title>
<%4! List<Joke> js = Jokes.get() ;%>
<body><table>
<tr><th>Question<th>Punch line</tr>
<% if (js.size() > 0) {
request.setParameter("Jokes", js); %>
<c:forEach items="${Jokes}" var="joke">
<tr><td><c:out value="${joke.question}"/>
<td><c:out value="${joke.punchline}"/></tr>
</c:forEach>
<% } else {
out.print ("<td>No more jokes</tr>");
Y 4>
</table></body>
</html>

Fig.1. A JSP page that uses the JSTL tag library and embedded Java code. The
example takes advantage of SGML features such as tag omission and inclusions.

1.2 Example

Figure 1 shows an example of a JSP program that outputs a dynamically gen-
erated table from a list of data using a combination of many of the JSP and
SGML features that appear in typical applications. The meta element is not
part of the content model of head, but it is allowed by an SGML inclusion rule.
The body element contains a table where both the start and the end tag of the
tbody element are omitted, and a parser needs to insert those to validate a gen-
erated document. Similarly, all td and th end tags are omitted. The contents
of the table are generated by a combination of tags from JSP Standard Tag Li-
brary, embedded Java code that prints to the output stream, and ordinary JSP
template code.

The static analysis that we present is able to soundly check that the output
from such code is always valid according to e.g. the HTML 4.01 Transitional
specification.

2 Related Work

Previous work on reasoning about programs that dynamically generate semi-
structured data has focused on XML [9], not SGML, despite the fact that the
SGML language HTML remains widely used. (Since XML languages are essen-
tially the subclass of SGML languages that do not use the tag omission and
exception features, our algorithm also works for XML.) Most closely related
to our approach is the work by Minamide et al. [7,8,10] and Kirkegaard and
Mgller [6].

In [7] context-free grammars are derived from PHP programs. From such a
grammar, sample documents are derived and processed by an ordinary HTML
or XHTML validator. Unless the nesting depth of the elements in the generated
documents is bounded, this approach is unsound as it may miss errors. Later, an
alternative grammar analysis was suggested for soundly validating dynamically
generated XML data [8]. That algorithm relies on the theory of balanced gram-
mars over an alphabet of tag names, which does not easily generalize to handle
the tag omission and inclusion/exclusion features that exist in HTML. The ap-
proach in [6] is comparable to [8], however considering the more fine-grained
alphabet of individual Unicode characters instead of entire tag names and using
XML graphs for representing sets of XML documents.

Yet another grammar analysis algorithm is presented by Nishiyama and Mi-
namide [10]. They define a subclass of SGML DTDs that includes HTML and
shows a translation into regular hedge grammars, such that the validation prob-
lem reduces to checking inclusion of a context-free language in a regular language.
That approach has some limitations, however: 1) it does not support start tag
omission, although that feature of SGML is used in HTML (e.g. tbody and
head); 2) the exclusion feature is handled by a transformation of the DTD that
may lead to an exponential blow-up prohibiting practical use; and 3) the inclu-
sion feature is not supported. The alternative approach we suggest overcomes
all these limitations.

The abstract parsing algorithm by Doh et al. [3] and the grammar-based
analysis by Thiemann [11] are also based on the idea of generalizing existing
parsing algorithms. The approach in [3] relies on abstract interpretation with a
domain of LR (k) parse stacks constructed from an LR (k) grammar for XHTML,
and [11] is based on Earley’s parsing algorithm. By instead using SGML parsing
as a starting point, we avoid the abstraction and we handle the special features
of HTML: Given a context-free grammar describing the output of a program,
our algorithm for checking that all derivable strings are valid HTML is both
sound and complete.

3 Parsing HTML Documents

Although HTML is based on the SGML standard [4] it uses only a small sub-
set of the features of the full standard. SGML languages are formally described
using the DTD language (not to confuse with the DTD language for XML).
Such a description provides a formal description for the parser on how a docu-
ment is parsed from its textual form into a tree structure. Specifically, in SGML
both start and end tags may be omitted if 1) allowed by the DTD, and 2) the
omission does not result in ambiguities in the parsing of the document. The
DTD description provides the content models, that is, the allowed children of
each element, as deterministic regular expressions over sequences of elements.
Furthermore special exceptions, called inclusions and exclusions, are possible for
allowing additional element children or disallowing nesting of certain elements.
An inclusion rule permits elements anywhere in the descendant tree even if not

allowed by the content model expressions. Conversely, an exclusion rule prohibits
elements, overriding the content model expressions and inclusions.
Consider a small example DTD:

<!ELEMENT inventory - - (item*) +(note)>
<!ELEMENT item - O (#PCDATA)>
<!ELEMENT note - 0 (#PCDATA)>

In each element declaration, 0 means “optional” and - means “required”, for the
start tag and the end tag, respectively. This DTD declares an element inventory
where the start and end tags are both required. (Following the usual SGML ter-
minology, an element generally consists of a start tag and its matching end tag,
although certain tags may be omitted in the textual representation of the doc-
uments.) The content model of inventory allows a sequence of item elements
as children in the document tree. In addition, note is included such that note
elements may be descendants of inventory elements even though they are not
allowed directly in the content models of the descendants. The second line de-
clares an element item that requires a start tag but allows omission of the end
tag. The content model of item allows only text (PCDATA) and no child ele-
ments in the document tree. Finally, the element note is also declared with end
tag omission and PCDATA content. An example of a valid document for this
DTD is the following:

<inventory><item>gadget<item>widget</inventory>

The parser inserts the omitted end tags for item to obtain the following docu-
ment, which is valid according to the DTD content models for inventory and
item:

<inventory><item>gadget</item><item>widget</item></inventory>

Because of the inclusion of note elements in the declaration of inventory, the
following document, is also parsed as a valid instance:

<inventory><item>gadget<note>new</note><item>widget</inventory>

SGML is similar to XML but it has looser requirements on the syntax of the
input documents. For the features used by HTML, the only relevant differences
are that XML does not support tag omissions nor content model exceptions.

We consider only DTDs that are acyclic:

Definition 1. An SGML DTD is acyclic if it satisfies the following requirement:
For elements that allow end tag omissions there must be a bound on the possible
depth of the direct nesting of those elements. That is, if we create a directed
graph where the nodes correspond to the declared elements whose end tags may
be omitted and there is an edge from a node A to a node B if the content model
of A contains B, then there must be no cycles in this graph.

This requirement also exists in Nishiyama and Minamide’s approach [10], and
it is fulfilled by all versions of the HTML DTD. Contrary to their approach we
do not impose any further restrictions and our algorithm thus works for all the
HTML DTDs without any limitations or rewritings.

3.1 A Model of HTML Parsing

As our algorithm is a generalization of the traditional SGML parsing algorithm
we first present a formal description of the essence of that algorithm. We base
our description on the work by Warmer and van Egmond [13]. The algorithm
provides the basis for explaining our main contribution in the next section.

We abstract away from SGML features such as text (i.e. PCDATA), com-
ments, and attributes. These features are straightforward to add subsequently.
Furthermore, a lexing phase allows us to consider strings over the alphabet of
start and end tags, written <a> and , respectively, for every element a de-
clared in the DTD. (This lexing phase is far from trivial; our implementation is
based on the technique used in [6].) More formally, we consider strings over the
alphabet ¥ = {<a> | a € £} U{ | a € £} where is the set of declared
element names in the DTD. We assume that root € E is a pseudo-element rep-
resenting the root node of the document, with a content model that accepts a
single element of any kind (or, one specific, such as html for HTML). The sets
of included and excluded elements of an element a € £ are denoted I, and E,,
respectively.

For simplicity, we represent all content models together as one finite-state
automaton [5] defined as follows:

Definition 2. A content model automaton for a DTD D is a tuple (Q,E,
[Galacz, F,0) where Q is a set of states, its alphabet is E as defined above, [¢)acx
is a family of initial states (one for each declared element), F C Q is a set of
accept states and ¢ : Q X X < Q is a partial transition function (with L repre-
senting undefined).

Following the requirement from the SGML standard that content models must be
unambiguous, this content model automaton can be assumed to be deterministic
by construction. Also, we assume that all states in the automaton can reach some
accept state. Each state in the automaton uniquely corresponds to a position in
a content model expression in D.

SGML documents are parsed in a single left-to-right scan with a look-ahead
of 1. The state of the parser is represented by a context stack. The set of possible
contexts is H = £ x Q x P(E) x P(E). (P(E) denotes the powerset of E.)
We refer to the context ¢, = (a,q,t,n) at the top of a stack ¢;---¢,, € H*
as the current context, and a, ¢, ¢, and n are then the current element, the
current state, the current inclusions, and the current exclusions, respectively.
An element b is permitted in the current context (a,q,¢,n) if 6(¢q,b) # L. We
refer to a tag a just below another tag b in the context stack as b’s parent. We
say that OmITSTART (0, q) holds if the start tag of a elements may be omitted
according to D when the current state is ¢, and, similarly, OmiTEND(a, ¢) holds if
the end tag of a elements may be omitted in state g. (The precise rules defining
OmiTSTART and OMITEND from D are quite complicated; we refer to [4,13] for the
details.) The current inclusions and exclusions reflect the sets of included and
excluded elements, respectively. These two sets can in principle be determined

1.function Parsep(p € H*, z € ¥*) :
2. if |z| = 0 then

3. // reached end of input

4 return p

5. else if |p| =0 then

6. // empty stack error

7 return O

8. let p1 -+ pp_1-(an,Sn,tn,Mm) =P

9. let x1--xm =x
10. if 1 = <a> A a ¢ n, for some a € £ then
11. // reading a non-excluded start tag
12. if §(sn,a) # L then

13. // the start tag is permitted by the content model, push onto stack and proceed
14. return ParseD(pl o pn—1-(an,0(sn,a), tn,Mn) - (@, qa, tn Ula,mn U Eq), T2+ Tm
15. else if a € 1, then

16. // the start tag is permitted by inclusion, push onto stack and proceed

17. return Pm“seD(pl o pn (A, qay 0, U Eg), o2 - :vm)

18. else if x1 = ANa = an A sp, € F for some a € £ then

19. // reading an end tag that is permitted, pop from stack and proceed
20. return ParseD(p1 e Pn—1, T2 Tm

21. else if OMITEND(an,sn) then

22. // insert omitted end tag, then retry

23. return Parsep(p, </an> - x)

24. else if 3a’ € £: OmrrSTART(d/, 51) then

25. // insert omitted start tag, then retry

26. return Parsep(p, <a’>-x)

27. else
28. // parse error
29. return 4

Fig. 2. The Parsep function for checking validity of a given document.

from the element names appearing in the context stack, but we maintain them
in each context for reasons that will become clear in Section 4.

Informally, when encountering a start tag <a> that is permitted in the current
context, its content automaton state is modified accordingly, and a new context
is pushed onto the stack. When an end tag is encountered, the current
context, is popped off the stack if it matches the element name a.

An end tag may be omitted only if it is followed by either the end tag of
another open element or a start tag that is not allowed at this place. A start tag
may be omitted only if omission does not cause an ambiguity during parsing.
These conditions, which define OMITEND and OMITSTART, can be determined
from the current state and either the next tag in the input or the current element
on the stack, respectively, without considering the rest of the parse stack and
input. Moreover, OmITSTART has the property that no more than |E| omitted
start tags can be inserted before the next tag from the input is consumed.

Our formalization of SGML parsing is expressed as the function Parsep :
H* x X* — (H*U{4,O}) shown in Figure 2. The result O arises if an end tag
is encountered while the stack is empty, and 4 represents other kinds of parse
errors. In this algorithm, OMITEND and OmIiTSTART allow us to abstract away
from the precise rules for tag omission, to keep the presentation simple. The
algorithm captures an essential property of SGML parsing: a substring =z € X*

of a document is parsed relative to a parse stack p € H* as defined above, and it

outputs a new parse stack or one of the error indicators () and 4. We distinguish

between the two kinds of errors for reasons that become clear in Section 4.
With this, we can define validity of a document relative to the DTD D:

Definition 3. A string x € X* is a valid document if
Parsep ((rOOtv Groot; mv 0); 1') = (rOOta q, ®5 @)

for some q € F.

The Parsep function has some interesting properties that we shall need in
Section 4:

Observation 4 Notice that the Parsep function either returns directly or via

a tail call to itself. Let (p', '), (p?,22),... be the sequence of parameters to
Parsep that appear if executing Parsep(p,z') for some p' € H* 2! € X*.
Now, because the DTD is acyclic, for all i = 1,2,... we have |2*TI%l| < |27,

that is, after at most |E| recursive calls, one more input symbol is consumed.
Moreover, in each step in the recursion sequence, the decisions made depend
only on the current context and the next input symbol.

4 Parsing Context-Free Sets of Documents

We now show that the parsing algorithm described in the previous section can
be generalized to work for sets of documents, or more precisely, context-free
languages over the alphabet Y. The resulting algorithm determines whether or
not all strings in a given language are valid according to a given DTD. The
languages are represented as context-free grammars that are constructed by the
analysis front-end from the programs being analyzed.

The definitions of context-free grammars and their languages are standard:

Definition 5. A context-free grammar (CFG) is a tuple G = (N, X, P, S) where
N is the set of nonterminal symbols, X is the alphabet (of start and end tag
symbols, as in Section 3.1), P is the set of productions of the form A — r where
A e N,re (XUN)*, and S is the start nonterminal. The language of G is
L(G)={z e X*|S="a} where =* is the reflexive transitive closure of the
derivation relation = defined by u; Aus = uirus whenever ui,us € (XU N)*
and A — r € P.

Definition 6. A CFG G is valid if x is valid for every x € L(G).

To simplify the presentation we will assume that G is in Chomsky normal
form, so that all productions are of the form A — s or A — A’A” where s € X
and A, A’, A” € N, and that there are no useless nonterminals. It is well-known
how to transform an arbitrary CFG to this form [5]. We can disregard the empty
string since that is never valid for any DTD, and the empty language is trivially
valid.

The idea behind the generalization of the parse algorithm is to find out for
every occurrence of an alphabet symbol s in the given CFG which context stacks
may appear when encountering s during parsing of a string. The context stacks
may of course be unbounded in general. However, because of Observation 4 we
only need to keep track of a bounded size top (i.e. a postfiz) of each context stack,
and hence a bounded number of context stacks, at every point in the grammar.

4.1 Generating Constraints

To make the idea more concrete, we define a family of context functions, one for
each nonterminal A € N. Each is a partial function that takes as input a context
stack and returns a set of context stacks:

Ca:H — P(H")

Informally, the domain of C4 consists of the context stacks that appear during
parsing when entering a substring derived from A, and the co-domain similarly
consists of the context stacks that appear immediately after the substring has
been parsed. Formally, assume x € £(G) such that S =* uy Aus =* uyyus = z,
that is, the nonterminal A is used in the derivation of x, and y is the substring
derived from A. The domain dom(C4) then contains the context stack p that
arises after parsing of uy, that is, p = Parsep ((root, groot, 0,0), u1) € dom(Ca).
Similarly, Ca(p) contains the context stack that arises after parsing of w1y, that
is, Parsep ((root, groot, 0, 0),u1y) = Parsep(p,y) € Ca(p) if p ¢ {4,0O}. As
explained in detail below, we truncate the context stacks and only store the top
of the stacks in these sets. To obtain an efficient algorithm, we truncate as much
as possible and exploit the fact that Parsep returns () if a too short context
stack is given.

The context functions are defined from the DTD as a solution to the set of
constraints defined by the following three rules:

§1 Following Definition 3, parsing starts with the initial context stack at the
start nonterminal S and must end in a valid final stack:

CS(rOOtv Groot; @, 0) - {(root, q, (D; @) | AS F}

§2 For every production of the form A — s in P where s € X, the context
function for A respects the Parsep function, which must not return 4 or O:

Vp € dom(Ca):p' ¢ {4,O} N p' € Ca(p) where p' = Parsep(p, s)

§3 For every production of the form A — A’A” in P, the entry context stacks of
A are also entry context stacks for A’, the exit context stacks for A’ are also
entry context stacks for A”, and the exit context stacks for A” are also exit
context stacks for A. However, we allow the context stacks to be truncated
when propagated from one nonterminal to the next:

Vp € dom(Ca) : Ip1,p2 :p =p1-p2 A p2 € dom(Car) A
Vp’Q € CA/(pQ) : E'tl,tQ tP1 pl2 = tl . tQ A t2 € dOm(CA//) A
Vth € Can(ta) = t1 - th € Ca(p)

Note that rule §3 permits the context stacks to be truncated; on the other hand,
rule §2 ensures that the stacks are not truncated too much since that would lead
to the error value O).

Theorem 7. There exists a solution to the constraints defined by the rules above
for a grammar G if and only if G is valid.

Proof. See the appendiz.

4.2 Solving Constraints

It is relatively simple to construct an algorithm that searches for a solution
to the collection of constraints generated from a CFG by the rules defined in
Section 4.1. Figure 3 shows the pseudo-code for such an algorithm, ParseCFG p.
We write wDEFS A for w € P, A € N if A appears on the left-hand side of
w, and wUSES A if A appears on the right-hand side of w. The solution being
constructed is represented by the family of context functions, denoted [Ca]aen-

The idea in the algorithm is to search for a solution by truncating the context
stacks as much as possible, iteratively trying longer context stacks, until the
special error value O) no longer appears. The algorithm initializes [Ca]aen on
line 6 and iteratively on lines 9-58 extends these functions to build a solution.
The worklist W (a queue, without duplicates) consists of productions that need
to be processed because the domains of the context functions of their left-hand-
side nonterminals have changed. The function A maintains for each nonterminal
a set of context stacks that are known to lead to).

Each production in the worklist of the form A — s is parsed according to rule
§2 on lines 14— 26, relative to each context stack p in dom(Ca). If this results
in O, the corresponding context stack is added to A(A), and all productions
that use A are added to the worklist to make sure that the information that the
context stack was too short is propagated back to those productions. If a parse
error 4 occurs (line 20), the algorithm terminates with a failure. If the parsing
is successful (line 23), the resulting context stack p’ is added to Ca.

For a production of two nonterminals, A — A’A”, we proceed according to
rule §3. For each context stack p in dom(Ca) on line 29 we pick the smallest
possible postfix py of p that is not in A(A’) and propagate this to Car. If no such
postfix exists, we know that p is too short, so we update A(A) and W as before.
Otherwise, we repeat the process (line 37) to propagate the resulting context
stack through A” and further to C4 (line 46).

Finally, on line 57 we check that rule §1 is satisfied.

Theorem 8. The ParseCFGp algorithm always terminates, and it terminates
successfully if and only if a solution exists to the constraints from Section 4.1
for the given CF@.

(We leave a proof of this theorem as future work.)

Corollary 9. Combining Theorem 7 and Theorem 8, we see that ParseCFG p
always terminates, and it terminates successfully if and only if the given CFG is
valid.

10

T W N

[=2]

.function ParseCFGp(N,X,P,S) :
. declare W C P, [Calaen : H* — P(H*), A: N — P(H*)
. // initialize worklist and context functions
. W:=[wé€P|wbDEFs S]
. forall Ae N,pe H* do
L 0 fA=S A b= (root, Qroot,(B,@)
Calp) = L otherwise
A(A):=10

. // iterate until fixpoint
. while W # 0 do
remove the next production A — r from W
for all p € dom(Ca) do
if A — ris of the form A — s where s € ¥ then
// rule §2
let p’ = Parsep(p, s)
if p’ = O then
// record that entry context stack p is too short for A
A(A) == A(A) U {p}
Calp) =1
for all w € P where wuses A add w to W
else if p’ = 4 then
// fail right away
fail
else if p’ ¢ Ca(p) then
// add new final context stack p’ for A
Ca(p) == ca(p) U{p'}
for all w € P where wuses A add w to W
else if A — r is of the form A — A’A” where A’, A” € N then
// rule §3
let p2 be the smallest string such that p = p1 - p2 and pa ¢ A(A")
if no such ps exists then
// record that entry context stack p is too short for A
A(A) = A(A) U {p}
Calp) =1
for all w € P where wuses A add w to W
else if po € dom(Ca/) then
for all p, € Ca/(p2) do
let t2 be the smallest string such that py - p5 =t1 - t2 and t2 ¢ A(A”)
if no such to exists then
// record that entry context stack p is too short for A
A(A) == A(4) U{p}
Calp) =1
for all w € P where wuses A add w to W
else if to2 € dom(Carr) then
if {t1-th | th € Car(t2)} € Ca(p) then
// add new final context stacks for A
Calp) = Ca(p) U{t1 - th | th € Can(t2)}
for all w € P where wuses A add w to W
else
// add new entry context stack to for A”
Car (tg) =10
for all w € P where wprrs A” add w to W
else
// add new entry context stack pa for A’
Car(p2) =10
for all w € P where wpEFs A’ add w to W
// rule §1
if Cg(root, groot, 0, 0) Z {(root,q,0,0) | ¢ € F} then
fail
. return [Calaen

Fig. 3. The ParseCFG p algorithm for solving the parse constraints for a given CFG.
11

4.3 Example

As an example of a normalized grammar, consider G,; = (N, X, P, S) where
N = {Al,AQ,A3,A4,A5,A6}, X = {<11]_>, </111>’ <1i>, </1i>}, S = Al, and P
consists of the following productions:

Al—)A5 Ao A2_>A6 Ag
Az — Ay — <1i>
As — Ag — <1i>
A6 — A4 Al

The language generated by G,; consists of documents that have a ul root element
containing a single 1i element that in turn contains zero or one ul element. The
grammar can thus generate deeply nested ul and 1i elements, and truncation of
context stacks is therefore crucial for the ParseCFG p algorithm to terminate.
Notice that all </1i> end tags are omitted in the documents.

We wish to ensure that the strings generated from G,; are valid relative to
the following DTD, which mimics a very small fraction of the HTML DTD for
unordered lists:

<!ELEMENT ul - - (1lix)>
<!ELEMENT 1i - 0 (ulx)>

For this combination of a CFG and a DTD, the ParseCFG p algorithm produces
the following solution to the constraints:

C
Aq|(root, groot, 0, 0) — {(root, q,0,0)}
(14, i, 0,0) — {(14, @, 0, 0)
Az |(ul, qui,0,0) — {€}
As|(al, qui, 0,0) - (14, g3, 0,0) — {e}
A4l(ul, gu, 0,0) — {(ul, qui,0,0) - (11, q4,0,0)}
As Eli,qu,@,@) = (14, @i, 0,0) - (ul, qui, 0,0)}

I‘OOt, Groot) @a (Z)) — {(I‘OOt, q, @a (Z))) (111, Qul, (Z)a @)}
AG (1.11, qul, 0; @) — {(111, qul, 05 @)) (117 qli, @7 0)}

Although the context stacks may grow arbitrarily when parsing individual doc-
uments with Parsep, the truncation trick ensures that ParseCFG p terminates
and succeeds in capturing the relevant top-most parts of the context stacks.

5 Experimental Results

We have implemented the algorithm from Section 4.2 in Java, together with an
analysis front-end for constructing CFGs that soundly approximate the output
of web applications written with Java Servlets and JSP. The front-end follows
the structure described in [6], extended with specialized support for JSP, and
builds on Soot [12] and the Java String Analyzer [2].

The purpose of the prototype implementation is to obtain preliminary an-
swers to the following research questions:

12

— What is the typical analysis time for a Servlet/JSP page, and how is the
analysis time affected by the absence or presence of validity errors?

— What is the precision of the analysis in terms of false positives?

— Are the warnings produced by the tool useful to locate the sources of the
errors?

We have run the analysis on six open source programs found on the web. The
programs range from simple one man projects, such as the JSP Chat application
(JSP Chat?), the official J2EE tutorial Servlet and JSP examples (J2EE Book-
store 1 and 2%) to the widely used blogging framework Pebble®, which included
dozens of pages and features. We have also included the largest example from a
book on JSTL (JSTL Book ex.%) and an application named JPivot”. The tests
have been performed on a 2.4 GHz Core i5 laptop with 4GB RAM running OS
X. As DTD, we use HTML 4.01 Transitional.

Figure 4 summarizes the results. For each program, it shows the number of
JSP pages, the time it takes to run the whole analysis on all pages (excluding
the time used by Soot), the time spent in the CFG parser algorithm, the number
of warnings from the analyzer, and the number of false positives determined by
manual inspection of the analyzed source code.

The tool currently has two limitations, which we expect to remedy with a
modest additional implementation effort. First, validation of attributes is cur-
rently not supported. Second, the implementation can track a validity error to
the place in the generated Java code where the invalid element is generated, but
not all the way back to the JSP source in the case of JSP pages.

In some cases when an unknown value is inserted into the output without
escaping special XML characters (for example, by using the out tag from JSTL),
the front-end is unable to reason about the language of that value. This may
for instance happen when the value is read from disk or input at runtime. The
analysis will in such cases issue an additional warning, which is not included
in the count in Figure 4, and treat the unknown value as a special alphabet
symbol and continue analyzing the grammar. In practice, there are typically a
few such symbols per page. While they may be indications of cross site scripting
vulnerabilities, there may also be invariants in the program ensuring that there
is no problem at runtime.

The typical analysis time for a single JSP page is around 200-600 ms. As can
be seen from the table, only a small fraction of the time is spent on parsing the
CFG. The worklist algorithm typically requires between 1 and 100 iterations for
each JSP page, which means that each nonterminal is visited between 1 and 10
times.

Validity errors were found in all the applications. The following is an example
of a warning generated by the tool on the JSP Chat application:

3 http://www.web-tech-india.com/software/jsp chat.php

4 http://download.oracle.com/javaee/5/tutorial/doc/bnaey.html
5 http://pebble.sourceforge.net/

6 http://www.manning.com/bayern/

7 http://jpivot.sourceforge.net/

13

Program Pages| Time|CFG Parser time|Warnings|False positives
Pebble® 61[24.0 s 369 ms 32 0
J2EE Bookstore 1* 5| 6.7s 93 ms 5 0
J2EE Bookstore 2* 71 9.0s <1 ms 7 0
JPivot® 3| 2.8 s 8 ms 2 0
JSP Chat® 14| 6.8 s 100 ms 12 0
JSTL Book ex.” 14| 49 s 24 ms 6 0

Fig. 4. Analysis times and results for various open source web applications written in
Java Servlets and JSP.

ERROR: Invalid string printed in

dk.brics.servletvalidator. jsp.generated.editInfo_jsp on line 94:
Start tag INPUT not allowed in TBODY
Parse context is [root HTML BODY DIV CENTER FORM TABLE TBODY]

This warning indicates that the programmer forgot both a tr start tag and a td
start tag in which the input element would be allowed, causing the input tag
to appear directly inside the tbody element. This may very well lead to browsers
rendering the page differently.

The reason that all JSP pages of the J2EE Bookstore applications are invalid
it that there is an unmatched </center> tag and a nonstandard <comment> tag
in a header used by all pages. After removing these two tags, only one page of
this application is (correctly) rejected by the analysis. While Pebble seems to be
programmed with the goal of only outputting valid HTML, the general problem
in this web application is that the table, ul, and tr elements require non-empty
contents, which is not always respected by Pebble. Furthermore, several more
serious errors, such as forgotten td tags, exist in the application. The JSP Chat
application is written in JSP but makes heavy use of embedded Java code. The
tool is able to analyze it precisely enough to find several errors that are mostly
due to unobvious (but feasible) flow in the program.

Based on the warnings generated by the tool, we managed to manually correct
all the errors within a few hours without any prior knowledge of the applica-
tions. After running the analysis again, no more warnings were produced. This
second round of analysis took essentially the same time as before the errors were
corrected. Since the analysis is sound, we can trust that the applications after
the corrections cannot output invalid HTML.

6 Conclusion

We have presented an algorithm for validating context-free sets of documents
relative to an HTML DTD. The key idea — to generalize a parsing algorithm
for SGML to work on grammars instead of concrete documents — has lead to
an approach that smoothly handles the intricate features of HTML, in partic-
ular tag omissions and exceptions. Preliminary experiments with our prototype
implementation indicate that the approach is sufficiently efficient and precise to
function as a practically useful tool during development of web applications. In

14

future work, we plan to improve the tool to accommodate for attributes and to
trace error messages all the way back to the JSP source (which is tricky because
of the JSP tag file mechanism) and to perform a more extensive evaluation.

References

10.

11.

12.

13.

. Shan Chen, Dan Hong, and Vincent Y. Shen. An experimental study on validation

problems with existing HTML webpages. In Proc. International Conference on
Internet Computing, ICOMP 05, June 2005.

. Aske Simon Christensen, Anders Mgller, and Michael I. Schwartzbach. Precise

analysis of string expressions. In Proc. 10th International Static Analysis Sympo-
sium, SAS ’03, volume 2694 of LNCS, pages 1-18. Springer-Verlag, June 2003.
Kyung-Goo Doh, Hyunha Kim, and David A. Schmidt. Abstract parsing: Static
analysis of dynamically generated string output using LR-parsing technology. In
Proc. 16th International Static Analysis Symposium, SAS ’09, volume 5673 of
LNCS. Springer-Verlag, August 2009.

Charles F. Goldfarb. The SGML Handbook. Oxford University Press, 1991.

John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Lan-
guages and Computation. Addison-Wesley, 1979.

Christian Kirkegaard and Anders Mgller. Static analysis for Java Servlets and JSP.
In Proc. 18th International Static Analysis Symposium, SAS 06, volume 4134 of
LNCS. Springer-Verlag, August 2006.

Yasuhiko Minamide. Static approximation of dynamically generated Web pages.
In Proc. 14th International Conference on World Wide Web, WWW ’05, pages
432-441. ACM, May 2005.

Yasuhiko Minamide and Akihiko Tozawa. XML validation for context-free gram-
mars. In Proc. 4th Asian Symposium on Programming Languages and Systems,
APLAS 06, November 2006.

Anders Mgller and Michael I. Schwartzbach. The design space of type checkers
for XML transformation languages. In Proc. 10th International Conference on
Database Theory, ICDT ’05, volume 3363 of LNCS, pages 17-36. Springer-Verlag,
January 2005.

Takuya Nishiyama and Yasuhiko Minamide. A translation from the HTML DTD
into a regular hedge grammar. In Proc. 13th International Conference on Imple-
mentation and Application of Automata, CIAA 08, volume 5148 of LNCS, July
2008.

Peter Thiemann. Grammar-based analysis of string expressions. In Proc. ACM
SIGPLAN International Workshop on Types in Languages Design and Implemen-
tation, TLDI ’05, 2005.

Raja Vallee-Rai, Laurie Hendren, Vijay Sundaresan, Patrick Lam, Etienne Gagnon,
and Phong Co. Soot — a Java optimization framework. In Proc. IBM Centre for
Advanced Studies Conference, CASCON ’99. IBM, November 1999.

Jos Warmer and Sylvia van Egmond. The implementation of the Amsterdam
SGML parser. Electronic Publishing, 2(2):65-90, 1988.

15

A Proof of Theorem 7

We begin with some lemmas and a proposition that help us give a simple proof of
the theorem. The first lemma shows a compositionality property of the Parsep
function:

Lemma 10. Given p € H* and x1,x2 € X*, let p' = Parsep(p,x1). If p' €
{4,0O} then Parsep(p,x122) = p'; otherwise Parsep(p, x122) = Parsep(p’, x2).

Another property of Parsep is that providing a larger context stack cannot lead
to more parse errors:

Lemma 11. Given p1,ps € H* and x € X*, let p’ = Parsep(pa,x). If p' # O

/

then Parsep(py -p2,x) =p'.

(We omit the proofs of these lemmas.)

We henceforth abbreviate the initial context stack by o:
o= (rOOtv Groot; mv @)

The following proposition captures the essential properties that were de-
scribed intuitively in Section 4.1 of solutions to the context function constraints:

Proposition 12. Assume x € L(G) and [Calaen satisfies the constraints from
Section 4.1 for a given CFG G. Let A be a nonterminal used in a derivation of
x such that S =* ug Aus =* uryus = x for some ui,y,us € X*. Now, [Calaen
has the following properties:

(a) Let p = Parsep(o,u1). If p ¢ {4, O} then there exist p1,p2 € H* such that
p=p1-p2 and p2 € dom(Ca). That is, dom(Ca) contains a postfix pa of the
context stack that arises after parsing uy, unless a parse error has occurred.

(b) Let p' = Parsep(pz2,y) for some pa € dom(Ca). If p' ¢ {4,O} then p’ €
Ca(p2). That is, Ca(p2) contains the context stack that arises after parsing
y if starting in the context stack po and mo parse error occurs.

(In fact, as we show later, parse errors cannot occur when there exists a solution
to the constraints.)

Proof. Consider a left-to-right depth-first traversal of a derivation tree of x where
we visit each node (corresponding to a terminal or a nonterminal) both on the
way down and the way up. We now show by induction in k = 0,1,2,... that (1)
all the nonterminal nodes that have been visited on the way down (and maybe
also on the way up) after the first k steps of this traversal have property (a),
and (2) all the nonterminal nodes that have been visited both on the way down
and on the way up after the first & steps of this traversal have property (b).

For the base case, k = 0, we only need to show that ¢ € dom(Ca), however
this follows directly from rule §1 (see Section 4.1).

For the induction step, k& > 0, if the node being visited is a terminal, our
goal follows immediately from the induction hypothesis. If the node is instead

16

a nonterminal, we split into two cases: either the k’th step is downward or it is
upward. If it is downward, we are visiting a nonterminal node A’ with a right
sibling A” and a parent A, or a nonterminal node A” with a left sibling A’
and a parent A, corresponding to a production on the form A — A’A”. We
need to show that the new node being visited satisfies property (a). Now, u; is
the string formed by the sequence of terminals visited so far. By the induction
hypothesis, dom(Ca) contains a postfix of Parsep(o,u1), and by the first line
of rule §3, dom(Cas) thereby also contains a postfix of Parsep(e,uy), hence
property (a) is satisfied. The case for A” is similar, using the second line of
rule §3. If the k’th step is instead upward, we need to show that the new node
being visited satisfies property (b). (Property (a) follows immediately from the
induction hypothesis.) Let A be the nonterminal of the node. Either the node
has a single child, corresponding to a production of the form A — s, or two
children, corresponding to a production of the form A — A’A”. In the former
case, property (b) follows from rule §2; in the latter case, we use rule §3.

The proof of Theorem 7 has two parts:

1. We first show that the CFG G is valid (according to Definition 6) if there
exists some [Ca]aecn that satisfies the constraints from Section 4.1.

Let © € L(G) and p’ = Parsep(o,z). From rule §1 we know that ¢ €
dom(Cs). By part (b) of Proposition 12, either p’ € {4,O} or p’ € Cs(¢). How-
ever, p' € {4,(O} is not possible. To see this, assume p’ € {4,O} and let z =
$182 -+ S, where $1,82,...,8, € X. Then there exists a position i € {1,...,n}
such that p” = Parsep(o,s182---si—1) ¢ {4,O} and Parsep(o,s189+-8;) €
{4,0O}. Let A be the nonterminal that derives s; in z. Part (a) of Proposi-
tion 12 now tells us that dom(Ca) contains a postfix p§ of p”, and by rule §2,
Parsep(py,s;) ¢ {4,O}. Lemma 11 then gives us that Parsep(p”,s;) ¢ {4,O}.
By Lemma 10, Parsep(¢, s152---8;) = Parsep(p”,s;) ¢ {4,(}, which contra-
dicts Parsep(o,s182---8;) € {4,O}. Thus, p’ € {4,000}, so p’ € Cs(¢). By rule
§1, Cs(o) C {(root,q,0,0) | ¢ € F}, so p’ = (root, q, 0, D) for some ¢ € F, which
means that z is valid according to Definition 3.

2. Next, we show conversely that validity of G implies that a (not necessarily
finite) solution exists to the constraints.
Assume G is valid. Construct [Ca]aen as follows, for each A € N:

dom(Ca) = U Parsep (o, u1)

S=*u; Aus where ui,us€X*

Ca(p) = U Parsep(p,y) for any p € dom(Ca)
A=*y where yeX'*
That is, we construct the context functions such that dom(Ca) contains all con-
text stacks that may appear when entering A, without performing any trun-
cation, and similarly for their output. (Note that these applications of Parsep
never return 4 or O) due to Lemma 10 since G is assumed to be valid, so dom(Ca)

17

and Ca(p) are well-defined.) With this construction, we argue that [Ca]aecn is a
solution to the constraints:

— Rule §1 is satisfied because, by construction, Cs(¢) = g+, Parsep(o,y),
and y € X* is valid when S =" y.

— To see that rule §2 is satisfied, consider a production of the form A — s
in P where s € X, and assume p € dom(Ca) and p’ = Parsep(p,s). By
construction of dom(Ca), we have p = Parsep(o,u1) where S =* uj Ausg
for some uy,us € X*. Now, p’ € {4,(O} would contradict the assumption
that G is valid using Lemma 10 as above, so p’ ¢ {4,(}. By construction
of Ca(p), we also get p’ € Ca(p).

— Rule §3 is satisfied for any production A — A’A” because no truncation
appears in our present construction of dom(Ca), so the following property is
satisfied, which clearly implies the condition in rule §3:

Vp € dom(Ca) : p € dom(Car) N
Vp' € Car(p) : p' € dom(Car) A
vp" € Can(p') = p" € Calp)

To see that this property is satisfied, consider derivations of the form S =*
urAug = u1A’A"us =* uiy1 A"us =* ury1y2us where ui, us,y1,y2 € X*.
The first line then directly follows from the construction of dom(Ca). For
the second line, we have p € Parsep(e,u;) and p’ € Parsep(p,y1). By
Lemma 10, p’ € Parsep(o,u1y1) so p’ € dom(Ca~). For the third line,
we have p” € Parsep(p’,y2), and p” € Parsep(p,y1y2) then follows from
Lemma 10.

18

