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Abstract

A challenge of writing concurrent message-passing pro-
grams is ensuring the absence of partial deadlocks, which
can cause severe memory leaks in long-running systems.
The Go programming language is particularly susceptible to
this problem due to its support of message passing and ease
of lightweight concurrency creation.

We propose a novel dynamic technique to detect par-
tial deadlocks by soundly approximating liveness using the
garbage collector’s marking phase. The approach allows sys-
tems to not only detect, but also automatically redress partial
deadlocks and alleviate their impact on memory.

We implement the approach in the tool GoLF, as an exten-
sion to the garbage collector of the Go runtime system and
evaluate its effectiveness in a series of experiments. Prelimi-
nary results show that the approach is effective at detecting
94% and 50% of partial deadlocks in a series of microbench-
marks and the test suites of a large-scale industrial codebase,
respectively. Furthermore, we deployed GOLF on a real ser-
vice used by Uber, and over a period of 24 hours, effectively
detected 252 partial deadlocks caused by three programming
errors.

CCS Concepts: « Software and its engineering — Garbage
collection; Message passing; Deadlocks; « Theory of
computation — Concurrency.
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1 Introduction

Go is a modern programming language that features a pow-
erful concurrency model, where lightweight threads, called
goroutines, are scheduled and managed by the Go runtime.
Goroutines may communicate and synchronize by using ei-
ther shared memory, protecting shared access of resources
with locks, or through message passing [10], where channels
are supported as first-class concurrency objects. Alongside
scheduling, the Go runtime is also supplied with a garbage
collector (GC) to facilitate automatic memory management.

Goroutines may block, e.g., when attempting to acquire
a held lock or sending a message over a channel before a
receiving party is available. If all goroutines are blocked, the
Go runtime issues a fatal error signaling a global deadlock.
In contrast, partial deadlocks, also known as goroutine leaks,
occur when some but not all goroutines are permanently
blocked for all possible future executions. Global deadlocks
are quite rare, but partial deadlocks appear frequently in
many real-world Go programs due to unexpected execution
paths and thread schedules.

Partial deadlocks may not only result in expected actions
failing to happen but also cause memory leaks. Previous
work [22, 29, 32] has shown that, in long-running systems,
partial deadlocks covertly increase CPU utilization, or lead
to out-of-memory exceptions and system crashes. Figure 1
shows the number of blocked goroutines over a period of
time for a Go service running in production at Uber, which is
known for using thousands of micro-services [15, 33] written
in Go. In this case, most of the blocked goroutines are likely
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Figure 1. Number of blocked goroutines over time for a pro-
duction Go service suffering from partial deadlocks. Weekday
redeployments hide the leak, but the numbers spike during
weekends and holidays.

due to partial deadlocks, and the drops correspond to service
restarts after weekends and holidays.

The current implementation of the Go runtime does not,
unfortunately, provide any built-in mechanism to detect and
address partial deadlocks. Since the standard Go garbage
collector behavior is unaware of partial deadlocks, it is un-
able to reclaim the memory of deadlocked goroutines and
memory resources reachable via their stacks.

The state-of-the-art in dynamic partial deadlock detec-
tion includes GoLEAK [22] and LEAKPROF [22, 23]. GOLEAK
is designed for finding defects based on running test suites
and checking for lingering goroutines after each test run.
While effective, it is not applicable in production environ-
ments with long running services. LEAKPROF, on the other
hand, may be used for production services, but is suscep-
tible to both false positives and false negatives. Other ap-
proaches aim to detect partial deadlocks statically, but also
with mixed success for large-scale Go programs (see Sec-
tion 7). We need a mechanism that detects partial deadlocks
in production environments, which requires the analysis to
be lightweight. Moreover, we need automatic garbage col-
lection of the partial deadlocks and resources they hold to
avoid production-time issues such as out-of-memory, which
requires the analysis to be sound.

The key insight of our proposed solution is that mem-
ory reachability, as defined by the Go GC, soundly over-
approximates the liveness of concurrency operations. Infor-
mally, if a goroutine is blocked at a concurrency operation,
for example, on a channel send operation, but the involved
channel is not reachable in memory from a live goroutine,
the sender can never be unblocked, and hence is deadlocked.

The approach is implemented as the tool GoLF (Goroutine
Leak Fixer), an extension of the Go GC that allows it to
compute reachable liveness. Using GoLF, the extended Go
runtime reveals several elusive partial deadlocks, and actively
curbs their performance impact by forcefully shutting down
affected goroutines.

In this paper we make the following contributions:
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tection and recovery at runtime by piggybacking on
garbage collection, demonstrating that memory reacha-
bility soundly over-approximates concurrency operation
liveness.

2. We show that the technique can be implemented by min-
imally extending Go’s garbage collector, in the form of
the tool Gorr. This requires attention to a number of
technical details in the Go runtime.

3. We evaluate the approach in a series of experiments in-
volving three categories of programs: (1) 73 microbench-
marks with known defects from prior work [22, 32], con-
taining a total of 121 go instructions that create gorou-
tines which may deadlock, (2) a collection of 3111 Go
packages in Uber’s codebase, each with a corresponding
test suite, and (3) one real service that is a part of a large
micro-service system at Uber. The results show that GoLr
successfully detects 94% of the partial deadlocks in the
microbenchmarks. By running the 3 111 test suites using
GoLr, 180 of 357 known partial deadlocks are reported.
The experiments with the real service revealed 3 pro-
gramming errors that caused 252 partial deadlocks over
a period of 24 hours. Furthermore, the experiments show
that the implementation is robust and that the runtime
overhead is negligible, demonstrating that the approach
is usable in production environments.

2 Background

The Go runtime manages its own lightweight threads, termed
goroutines, which interact either by passing messages via
channels or by accessing shared memory. Goroutines may
block when performing operations on channels, locks, and
other concurrency constructs, or when performing system
calls, e.g., network communication, or IO. Collectively, we
refer to channels, locks, etc. as concurrency objects and their
operations as concurrency operations.

A blocked goroutine is put in a waiting state until the
conditions necessary for unblocking are met. A goroutine
blocked at a concurrency operation may only be unblocked
by another goroutine performing a (typically complemen-
tary) operation on the same concurrency object. In this paper,
we focus strictly on blocking caused by concurrency opera-
tions, instead of system calls. In what follows, we provide a
brief overview of the main concurrency features in Go.

Message Passing. Channels are bounded message queues
that can be accessed by multiple goroutines. Syntactically,
sending a message m over a channel ch is written as the
statement ch <- m, whereas receiving a message from ch
is denoted by the expression <-ch. Channels have the type
chan T, where T is the type of messages, and are allocated
by calling the make function with the desired channel type
and an optional integer representing the channel capacity.
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Listing 1. Example select statement.

1 select {

2 case x := <-chl: // receive from chil

3 case ch2 <- y: // send to ch2

4 default: // both chl and ch2 are blocked
5 %

Channels with an unspecified or zero capacity are un-
buffered. Goroutines block when sending or receiving mes-
sages over an unbuffered channel until they synchronize
with another goroutine performing the complementary op-
eration. Conversely, a channel with a positive capacity is
buffered. Sending messages over a buffered channel only
blocks when the buffer, the maximum length of which is
given by the capacity, is full. Receiving messages from a
buffered channel only blocks when the buffer is empty. Go
developers most commonly use unbuffered channels [7, 22].

Send and receive operations over unallocated channels, i.e.,
with a nil value, block forever. A channel may be closed via
the built-in function close. Receive operations on a closed
channel do not block, and return the zero value of the chan-
nel payload type once the channel buffer is empty. Send
operations on a closed channel cause the runtime to panic.

Channels may be iterated over in a range loop, where the
guard is a receive operation that must be executed before
the loop body for each iteration. Channel iteration blocks
at the guard until messages are available, and may only be
terminated by closing the channel, after emptying its buffer.

Go implements non-deterministic choice via select state-
ments. Each case of a select statement is a statement se-
quence guarded by a channel operation. Executing a select
statement blocks until at least one of its cases is unblocked,
at which point it non-deterministically chooses one of the en-
abled cases to execute. A select statement is non-blocking
when supplied with a default case, which is executed if all
other cases are blocked. When declared with zero cases, a
select statement blocks indefinitely.

Listing 1 shows an example select statement that simul-
taneously tries to receive from ch1 or send to ch2, with a
default case if neither is possible.

Sharing Memory. Goroutines may safely access shared
memory by using the synchronization features defined in the
standard sync package, i.e., mutexes (write or read-write),
condition variables, and wait groups. Goroutines block when
attempting to acquire a held mutex, by invoking its locking
methods (Lock for both standard mutex types, or RLock for
read-write mutexes).

Wait groups are non-negative counters that may be in-
cremented by invoking the Add method with an integer, or
decremented by invoking Done. A goroutine invoking the
Wait method blocks until the counter is zero.
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Listing 2. Example wait group and locks in Go.

6 func work(w *sync.WaitGroup, m *sync.Mutex) {
7 ... // doing some work

8 m.Lock ()

9 // accessing a shared resource

10 m.Unlock ()

11 w.Done ()

12 %}

13 func main() {

14 var w sync.WaitGroup
15 var m sync.Mutex

16 for i := 0; i < 100; i++ {
17 w.Add (1)

18 go work (&w, &m)

19 3

20 w.Wait ()

21 }

Blocking over condition variables is similarly achieved
by invoking the Wait method. When invoked, the Signal
method of a condition variable randomly unblocks a wait-
ing goroutine, if one exists, or otherwise has no effect. The
Broadcast method unblocks all waiting goroutines.

In Listing 2, the main function spawns 100 work gorou-
tines, using a wait group to determine when they are done
and a mutex to avoid race conditions.

Liveness and Deadlocks. A goroutine g that can even-
tually make progress is semantically live, denoted LIVE(g).!
All unblocked (runnable) goroutines are immediately iden-
tifiable as semantically live. Blocked goroutines are only
semantically live if there exists a possible future execution
path where they are unblocked. If no such future exists, the
goroutine is deadlocked.

The program encounters a global deadlock whenever all
goroutines are deadlocked, which is identified by the ordi-
nary Go runtime, and followed by prematurely terminating
execution. A partial deadlock occurs if some but not all gor-
outines are deadlocked.

3 Motivating Example

Using Go’s concurrency features correctly can be diffi-
cult, and subtle programming errors often result in partial
deadlocks [29]. Listing 3 contains a minimal program, de-
rived from a real-world example, that is susceptible to partial
deadlocks. Line 22 defines an interface, GoFuncManager. Val-
ues implementing the interface, such as goFuncManager ob-
jects (line 30), can be created by invoking NewFuncManager
(line 29). Each object embeds two channels at fields e and d

To avoid confusion, we reserve the term liveness specifically for seman-
tic liveness. Liveness in memory is referred to as memory reachability
(Section 4).
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Listing 3. If the condition on line 51 is met, the method
WaitForResults is never called (line 54). Channels e and d
are therefore never closed, leading the goroutines created by
NewFuncManager (lines 35-38) to deadlock.

22 type GoFuncManager interface {

23 WaitForResults() ([J]any, error)
24 }

25 type goFuncManager struct {

26 e chan error

27 d chan any

28 3}

29 func NewFuncManager () GoFuncManager {
30 gfm := &goFuncManager{

31 e: make(chan error),

32 d: make(chan any),

33 }

34 go func() {

35 for err := range gfm.e { ... }
36 11O

37 go func() {

38 for data := range gfm.d { ... }
39 11O

40

41 return gfm

42 3

43 func (gfm *goFuncManager) WaitForResults()
44 ([Jany, error) {

45 close(gfm.e)

46 close(gfm.d)

47

48 }

49 func ConcurrentTask() {
50 gfm := NewFuncManager ()
51 if ... {

52 return

53}

54 gfm.WaitForResults ()

55 }

(lines 31-32). The invocation of NewFuncManager also cre-
ates two goroutines, each iterating over one of the embedded
channels (lines 35-38). Every GoFuncManager object created
as such must eventually invoke the WaitForResults method
to close the channels, (line 44), and allow the iterating gor-
outines to terminate. This implicit contract is not satisfied
by function ConcurrentTask (line 49). On certain execu-
tion paths (line 51), method WaitForResults is never called,
causing the iterating goroutines to eventually deadlock.
Diagnosing this issue is especially challenging when the
faulty behavior is spread out across multiple libraries. The
underlying implementation of the GoFuncManager interface
is not exported, hiding it from library users, which may easily
overlook the caller-side contract of NewFuncManager.
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The regular Go mark-and-sweep garbage collector marks
all goroutines in the system, and any memory reachable
through their stacks, including the channels causing the par-
tial deadlock. However, a close examination of the faulty
code reveals that, once ConcurrentTask exits, the program
eventually reaches a state where the channels created by
NewFuncManager are only reachable in memory through the
stacks of deadlocked goroutines. This presents an opportu-
nity to detect the partial deadlock, by refining the garbage
collection process to only mark goroutines that may still be
live, allowing the runtime to observe the partial deadlocks.

Using the technique presented in the following sections,
the partial deadlock is detected and reported, allowing the de-
velopers to fix the issue, and the involved memory resources
are reclaimed thereby preventing the leak from draining the
system resources.

4 Approach

In this section, we present an approach to dynamically detect
partial deadlocks using a modified garbage collector. We first
establish the necessary terminology about memory manage-
ment in Go, then define a notion of reachable liveness, and
finally explain how reachable liveness can be computed by a
garbage collector.

Terminology. We define all memory used by a Go pro-
gram as the set M, where each element denotes an object
in memory. The memory of a Go program consists of gorou-
tines, and global or heap data. The set of all active goroutines
in a program at a given point in execution is denoted as G.
For simplicity, each goroutine represents a single memory
object, such that G € M.

If an object stores the address of another object, we say
that there is a reference from one to the other. References
are useful for modeling memory reachability, which provides
an over-approximation of the set of memory objects that
may be used in the remaining execution of the program.
The relation REF(a, b) denotes that a directly or transitively
has a reference to b. If REF(g, a), where g € G, then a is
transitively referenced by the stack of g.

The GC treats certain memory objects as roots, i.e., intrin-
sically reachable, and denoted by set R C M. Other objects
are reachable if they are transitively referenced by the roots.
Succintly, object a is reachable if a € R vV 3b € R. REF(b, a).
Garbage collectors compute memory reachability at runtime
and reclaim any unreachable memory.

In the ordinary Go GC, the root set includes all goroutines
and global data, independently of whether the goroutines
are currently blocked. To simplify definitions, we define a
“main goroutine,” gy € G, such that gy € R, and it references
all global data, i.e., Ya € D. REF(go, a), where D C M is
the set of all global objects. We may thus define the ordinary
root set used by the Go GC as simply R = G.
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4.1 A Definition of Reachable Liveness

Semantic liveness is not computable, but it can be over-
approximated using memory reachability in combination
with the status of each goroutine. The key observation is
that a goroutine is deadlocked if it is blocked on a set of con-
currency objects, all of which are unreachable in memory
via any goroutine which is not deadlocked. Based on this
observation, we next define a notion of reachable liveness,
denoted as LIVE*(g), that over-approximates LIVE(g).

We define goroutine states in terms of whether they are
blocked by performing a concurrency operation on at least
one concurrency object, as defined in Section 2. For each
goroutine g, the set B(g) € M contains the concurrency
objects of the operation that g is blocked on. If B(g) = 0, then
g is runnable (goroutines blocked at system calls are also
deemed runnable). Otherwise, B(g) contains the concurrency
objects of the blocking operation, e.g., one channel for send
and receive operations, or multiple channels, one for each
case, in a blocking select statement. For convenience, we
define B(g) = {€e} for goroutines blocked at operations over
nil channels, or select statements with no cases, where e
is unreachable in memory.

A goroutine g is reachably live if it is runnable, or if at least
one of its blocking concurrency objects is transitively refer-
enced by another live goroutine, expressed as the following
constraint:

LIVE*(g) = (B(g) 0) Y

(EI 0 € B(g),g' € G: REF(g’,0) A LIVE*(g’))

Reachable liveness across all goroutines in the system is

defined as the least solution satisfying the above constraints.
Any goroutine g for which LIVE*(g) does not hold is

deemed deadlocked.

4.2 Reachable Liveness via Garbage Collection

We now describe how to adapt tricolor mark-and-sweep
garbage collectors [6], such as the one implemented by Go,
to compute reachable liveness. A mark-and-sweep GC com-
putes the least fixed point of memory reachability at runtime,
by marking all roots and their transitive references as reach-
able.

The crux of the approach is to start with a minimal root
set of reachably live goroutines and use the garbage collector
to progressively mark memory and expand the root set with
additional reachably live goroutines until it reaches a fixed
point, directly corresponding to the definition of LIVE":

1. The GC first constructs the initial root set, R, by only
including goroutines in a runnable state:

Ry={g9€G | B(g) =0}

2. The GC then performs a mark iteration, by marking
all objects transitively referenced by the latest root
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Listing 4. The child goroutine deadlocks, but the global
visibility of ch prevents detection.

56 var ch = make(chan int) // Global channel.
57

58 func main() {

59 go func() { ch <- 1 }0O)

60

61 }

set (R for the i’th iteration) as reachable. Marking is
performed as in the ordinary GC.

3. Once marking concludes, the GC expands the root set,
by including goroutines blocked at operations over
reachable concurrency objects:

R, ;=R U{geG|30eB(g9).g9 €R;: REF(4',0)}

Iterative marking (step 2) and root set expansion (step 3)
repeat until a fixed point is reached, i.e., R,’( = R1,<+1 for some
k. The resulting root set R, contains all reachably live gor-
outines; thus, any g ¢ RI’C is guaranteed to be deadlocked.
We describe the implementation as it relates to the Go

runtime in more detail in Section 5.

4.3 Soundness and Completeness

The approach is sound, meaning that all semantically live gor-
outines are also reachably live, i.e., LIVE(9) = LIVE*(g)
for all g € G. Soundness is essential, as false positives may
lead to the deallocation of memory that is still in use and
thereby cause unexpected crashes.

If LIVE(g) holds, then there exists a future execution where
g is eventually runnable. The proof that LIVE*(g) holds pro-
ceeds by induction in the number of other goroutines in-
volved in making g runnable in that execution.

For the base case, if g is currently runnable, then B(g) = 0,
so LIVE*(g) trivially holds by definition.

For the inductive step, g is currently blocked but eventually
unblocked by some goroutine g’ that has access to some
o € B(g). Therefore, g’ must somehow eventually obtain
the reference to o, possibly via some other goroutines, so
REF(g’, 0) holds for some goroutine g’ (possibly g”’) that is
live, i.e., LIVE(g’). The number of goroutines involved in
making ¢’ runnable must be smaller than the number of
goroutines involved in making g runnable (since neither g
nor ¢’ can contribute to make ¢’ runnable). By the induction
hypothesis we then have LIVE"(¢’). By the definition of
LIVE*, we conclude that LIVE*(g).

The converse property, completeness, can be expressed
as LIVE*(9) = LIVE(g). This property does not hold;
some deadlocked goroutines may not be detected with this
approach, i.e., false negatives are possible. Listings 4 and 5
show examples of programming patterns found in real-world
code that lead to false negatives.
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Listing 5. The goroutine at line 72 is always live, exposing
the dispatcher.ch channel to the heap and preventing de-
tection of the partial deadlock at line 80.

62 type dispatcher struct {

63 ch chan struct{}

64 ticks int

65 }

66 func newDispatcher () *dispatcher {
67 d := &dispatcher{

68 ch: make (chan struct{}),

69 ticks: 0,

70}

71 go func() { // Heartbeat goroutine
72 for ; ; time.Sleep(time.Second) {
73 d.ticks++

74 }

75 10O

76 return d

77 }

78 func main() {

79 d := newDispatcher ()

80 go func() { d.ch <- struct{}{} }O

81 if ... { return }
82 <-d.ch
83 1}

A deadlock caused by a global channel (Listing 4) cannot
be detected, as the channel is always reachable in memory.
For example, the goroutine at line 59 is always considered
live, even if ch is no longer used.

A more pernicious type of false negative involves runaway
live goroutines (Listing 5). In the example, whenever a dis-
patcher is created, a heartbeat goroutine is created at line 72
and increments the ticks field of the dispatcher object
every second. One possible execution involves a goroutine
deadlocking at line 80 if the check at line 81 succeeds. How-
ever, the heartbeat goroutine is always reachably live, in turn
exposing the *dispatcher object and its ch field as reach-
able. It is, therefore, assumed that the heartbeat goroutine
may eventually unblock the sending goroutine.

5 Implementation

In this section, we present the implemention of the tech-
nique as the tool GorF, an extension to the regular Go GC
(version 1.22.5). Our implementation is carefully crafted so
that it incurs little overhead, in terms of both the memory
footprint and time overhead. While the technique is con-
ceptually simple, integrating GorF into the Go runtime is
a delicate process which poses a number of nuances and
challenges that must be accounted for. The resulting exten-
sion fits neatly into the existing Go runtime framework and
consists of only ~600 effective lines of code.
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Figure 2. Garbage collection cycle. The regular cycle com-
ponents and phases (white) are extended with additional
phases (hatched) to enable partial deadlock detection.

Go uses a concurrent tricolor non-generational mark-and-
sweep garbage collector [5, 6, 25, 34] where several phases
may run concurrently with user code. Figure 2 illustrates the
garbage collection cycle, with the regular phases in white,
and the extensions in hatched background. We first present
an overview of the regular GC behavior, and then describe
the modifications required by Gorr.

5.1 Regular Go Garbage Collection

The regular Go garbage collection process is organized in
cycles that involve the following phases:

1. Initialization: The GC performs the initial setup by un-
marking all objects and preparing the root set (global
data and all goroutines). The initiator of the cycle waits
for the completion of the previous cycle before trig-
gering this phase.

2. Marking: The runtime scheduler wakes up a number of
goroutines that have been designated as mark workers.
Every worker performs a number of marking jobs by
pulling them from a set of local and shared queues,
before going back to sleep. The last worker to go to
sleep transitions the GC to the next phase.

3. Marking done: The GC pauses execution and drains
all marking queues. If reachable unmarked objects are
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found, it transitions back to marking phase. Otherwise,
it transitions to the next phase.
4. Sweeping: All unmarked objects are reclaimed.

5.2 Modifications for Partial Deadlock Detection

Partial deadlock detection follows the approach presented
in Section 4.2. Initially, the runnable goroutines are set up
as roots. GorF then iteratively marks reachable objects and
extends the set of roots with reachably live goroutines. After
the fixed point has been reached, GorF reports all unmarked
goroutines as deadlocked. This process is performed between
GC marking and sweeping.

As the algorithm is iterative, the GorLr GC may restart the
marking phase more often than the ordinary GC. Neverthe-
less, GoLF performs exactly the same amount of marking
work as the ordinary Go GC, i.e., it performs the same num-
ber of pointer traversals in order to mark objects.

In Gorr, the number of mark iterations depends on the
blocking pattern of goroutines. In the worst case, we have
a daisy chain of n goroutines where the status of each one
depends on one another. Discovering some g; as reachable,
fori = 1...n — 1, causes the channel blocking g;;; to get
marked, and for g;;1 to be discovered in the next round. That
is, each g; is added to the root set sequentially, leading to
n mark iterations. Nevertheless, this scenario is extremely
unlikely and the overall marking work in aggregate remains
the same.

5.3 Overhead of GoLF

The two extra steps in GOLF incur some overhead. A running
program with N goroutines requires O(N? + NS) time to
discover live goroutines and O(N) time to detect deadlocks,
where S is the number of pairings between goroutines and
blocking concurrency objects. We shall explain the discovery
overhead in more detail, where each blocked goroutine g is
checked to see if any of the concurrency objects o that g is
blocked on have become reachable.

The Go runtime already maintains a linked list of channels
that g is blocked on (potentially more than one channel if g
is blocked at a select statement). Additionally, we extended
the goroutine data structure to keep track of the semaphore
or conditional variable that may block g. Any blocking con-
currency object o is stored in the heap,? and can be checked
for whether it is marked in constant time. If GoLF cannot
determine whether o is marked, it conservatively assumes
that o is not stored on the heap, and therefore reachable, e.g.,
as a global object. Since there may be a total of S pairs of
goroutines and blocking concurrency objects that need to
be checked per round, in the (unlikely) worst case where
the goroutines get unblocked sequentially, the overhead is
O(N?% + NS).

%If a concurrency object is declared as a stack variable, it will be promoted
to the heap by Go. [2]
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An astute reader may observe that a blocking channel al-
ways stores references to the goroutines blocked by it. Thus,
we could potentially reduce the overhead to O(N?) by sim-
ply checking whether the blocked goroutine was marked
transitively alongside the channel, avoding the S factor in the
NS term. Another approach would be adding blocked gorou-
tines to the root set on the fly, as concurrency objects they
are attached to are marked. This would reduce the overhead
even further, as the marking phase would be incrementally
extended with reachably live goroutines without the need
to check whether a restart is necessary. However, while pos-
sible, we have not yet implemented these optimizations, as
the GC does not immediately mark any related blocked gor-
outines, and it would overall require more invasive changes
to the GC.

5.4 Implementation Details

The broad changes described above are supported by several
smaller modifications, as described below.

Inspecting Goroutine States to Assess Liveness. Gorou-
tines are deemed reachably live based on their state. Natu-
rally, goroutines that are running or runnable are considered
reachable live. However, the Go runtime may put goroutines
created internally to sleep for a variety of reasons, e.g., sleep-
ing mark workers or I/O interactions with the operating sys-
tem. The regular Go runtime decorates waiting goroutines
with a descriptive wait reason. Since GOLF is only directed
at partial deadlocks caused by Go users, wait reasons are
useful for distinguishing between user and internal gorou-
tines. Only goroutines decorated with wait reasons denoting
operations over channels or primitives in the standard sync
package may deadlock. All other goroutines are assumed to
always be reachably live.

Address Obfuscation. To ensure that goroutines are not
prematurely marked before they are reachably live, GoLr
applies a simple bitmask to their addresses. The regular Go
runtime has two global data structures that store goroutine
objects: an array maintaining all the existing allocated gor-
outine objects, and a treap [4] of in-use semaphores, which
may have a back pointer to goroutines blocked on the given
semaphore. In the regular Go GC, such global objects do not
affect garbage collection, as all goroutines are part of the
root set, regardless. In GoLFr, however, blocked goroutine
objects (and their stacks) must only be marked after being
shown as reachably live. This is achieved by flipping the
highest-order bit of the pointers to goroutine objects stored
in global data structures, and instructing the marking phase
to ignore masked addresses. Once a goroutine is determined
to be reachably live, the corresponding pointer is unmasked
and scheduled for marking. Since primitives in the sync li-
brary use semaphores in their underlying implementation,
Gorr also applies the bitmask to semaphore addresses stored
in the global treap to hide them from the GC.
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Goroutine Reuse. The Go runtime represents each gor-
outine as an object of type xg, which captures its stack, sta-
tus, and other properties that allow the scheduler to safely
coordinate its internal processes and user goroutines. One
optimization of the runtime includes the reuse of *g objects.
When a goroutine is terminated, the runtime does not deallo-
cate its corresponding *g object, but instead partially cleans
it up and decomissions it by setting its state as dead. The
runtime minimizes allocations of *g objects by reusing those
in the dead state, only allocating new *g objects if more are
needed than currently available.

Goroutines may only be terminated in the regular run-
time when they reach an exit point. The regular cleanup
process makes several assumptions about the state of *g
properties, which do not necessarily hold when reclaiming
deadlocked goroutines. For example, a goroutine may have
had the fields of its corresponding *g object mutated by the
blocking select statement causing the deadlock, depend-
ing on the underlying implementation. To ensure parity be-
tween *g objects decomissioned due to deadlocks and those
decomissioned via regular termination, GOoLF comes with
a special cleanup procedure that resets additional fields to
neutral values.

Semaphores. The runtime performs additional bookkeep-
ing of goroutines blocked over semaphores by internally
storing the relation between the semaphore and the gorou-
tine in a global treap table indexed by (masked) semaphore
addresses. This must be supplemented with logic for remov-
ing deadlocked goroutine entries from the semaphore treap.
All xg objects are extended with (masked) references to the
addresses of the semaphore they are blocked on.

5.5 Preserving Go Semantics

It is important that the Go runtime with GoLF preserves
the semantics of ordinary Go modulo partial deadlocks. In
most cases, reporting and then reclaiming deadlocked gorou-
tines is semantically equivalent to the original program, and
even desirable, as the performance impact of partial dead-
locks is minimized. However, there are cases where reclaim-
ing deadlocked goroutines may lead to unexpected behavior,
which is where GoLF instead only reports the deadlocks. This
applies to programs that rely on finalizers, i.e., procedures
attached to heap objects that are executed once the object is
reclaimed by the GC. In the regular Go runtime, the effects
of finalizers attached to objects reachable via deadlocked
goroutines are never observed. However, naively reclaiming
deadlocked goroutines may unassumingly trigger finalizers,
leading to programmer-visible semantic differences.

Listing 6 exemplifies a finalizer (line 88) attached to the
address of local variable containing a list of integers (line 87).
The finalizer prints the average of all integers in the list
(line 94) once the goroutine is scheduled for the GC. How-
ever, the list of integers is received over channel ch (line 97),
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Listing 6. The goroutine at line 86 sets a finalizer at line 88
for slice vs. Reclaiming the goroutine if it deadlocks at line 97
would trigger the finalizer and lead to a runtime exception.

84 func PrintAverage() chan [Jint {

85 ch := make(chan [J]int)

86 go func() {

87 var vs [Jint

88 runtime.SetFinalizer (&vs,
89 func(vs *[]int) {

90 var vsum int

91 for _, v := range *vs {
92 vsum += v

93 }

94 fmt.Println("Avg.:", vsum / len(xvs))
95 »

96

97 vs := <-ch

98 10O

99

100 return ch

101 }

which is created (line 85) and returned (line 100) by the func-
tion PrintAverage. If callers of PrintAverage neglect to
use the channel it returns, the goroutine at line 86 may even-
tually deadlock. Without our extensions the finalizer will
not be invoked; with our extensions, however, reclaiming
the goroutine would invoke the finalizer, which in turn will
lead to a division-by-zero error.

To avoid such issues and preserve Go semantics, deadlock
detection and reclaiming is split between two GC cycles. In
the first pass, deadlocked goroutines are reported and placed
in a pending-to-reclaim state and scheduled for marking.
While marking resources reachable only from deadlocked
goroutines, the GC checks for the existence of finalizers. If
any are discovered, the deadlocked goroutine is placed in
a deadlocked state, which is treated by Gorr as live for any
future GC cycles. This ensures that deadlocked goroutines
with finalizers are consistently reachable in memory, while
also avoiding reporting the same deadlock more than once.

6 Evaluation

We evaluate GOLF in a series of experiments aimed at an-
swering the following research questions:

RQ1 To what extent can the technique unveil partial dead-
locks in:
(a) known microbenchmarks,
(b) test suites of a large scale industrial codebase, and
(c) areal service.
RQ2 What is the performance overhead of the technique?
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6.1 Experimental Setup

RQ1 (a) Microbenchmarks. For the first experiment,
Gorr is deployed on 73 microbenchmarks taken from prior
work [22, 32]. The microbenchmark suite contains 121 go in-
structions which may produce deadlocks, 8 and 113 for Saioc
et al. [22] and Yuan et al. [32], respectively. We refer to all
microbenchmarks as set B.

Every microbenchmark b € 8 is a code fragment that dis-
tills unique programming patterns prone to partial deadlocks.
However, benchmarks may not exhibit the defect in every
run due to non-deterministic execution introduced by the
runtime scheduler or timing issues, a phenomenon known
as flakiness [9]. Each microbenchmark is provided with a
flakiness score from 1 (for deterministic bugs) to 10 000.

In order to reproduce bugs for each b, we construct a stan-
dalone Go program that concurrently runs n instantiations
of b, where n is determined by the flakiness score. We con-
figure the program to terminate after five seconds. We run
each benchmark 100 times. We repeat the entire experiment
with different number of virtual cores, configurable in the
Go runtime via the GOMAXPROCS environment variable.

We performed the experiment for RQ1 (a) on a 2021 M1
CPU MacBook Pro, with 10 cores and 32 GB of RAM.

RQ1 (b) Large enterprise codebase test suites. We de-
ployed GoLr on Uber’s code repository of over 100 million
lines of code and selected a subset of 3111 Go packages, to-
talling 1.8 million lines of code. The packages were selected
if they contained Go concurrency features. We built and ran
the test suite of each package via continuous integration
pipelines on four machines in parallel each having a 24-core
Intel Cascade Lake CPU with 384 GB DRAM running Linux
6.1.53.

For comparison, we rely on the open-source GOLEAK [3,
22] tool, which inspects the runtime state of all goroutines
when the test suite terminates and reports any unterminated
goroutines. All goroutines involved in partial deadlocks are
unterminated at the end of the process, but not all unter-
minated goroutines are involved in partial deadlocks. For
example, GOLEAK not only flags goroutines blocked at IO op-
erations, but even runaway live goroutines; for fairness, we
exclude these categories from the comparison with GOLEAK.

We configure GoLF to only monitor deadlocks, without re-
claiming the goroutines, and compare the results of GOLEAK
and Gorr within the same test execution. We run each test
only once. By design, all partial deadlocks discovered by
Gorr are also reported by GoLEak. However, not all gorou-
tine leaks reported by GoLEAK are detected by GoLr.

In this context, we compare the number of total and dedu-
plicated partial deadlock reports produced by both tools. The
total number of reports counts all individual partial dead-
locks detected across all test suites. Individual reports are
then deduplicated by pairing the source location of the block-
ing operation and the source location of the go instruction
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that created the goroutine, aggregated across all packages.
We perform this deduplication because the same code loca-
tion (e.g., as part of a third-party library) may be involved
in multiple partial deadlocks when exercised from different
callers.

RQ1 (c) Real service. In this experiment, we deploy a real
service built with the GoLF runtime extension, and observe
its behavior over a 24-hour period during which it serves
real-time requests. Partial deadlocks, if found, are collected
via the existing logging infrastructure of Uber. In this setting,
there is no ground truth to compare against, but the number
of revealed partial deadlocks indicates the practical utility of
Gorr in real-world settings.

6.2 Results

Table 1 aggregates the results of running GoLF on the mi-
crobenchmark suite, as described in Section 6.1. Column
Benchmark line denotes the name of the microbenchmark,
and, after the colon (:), the line number of a go instruction
that creates the deadlocked goroutines. The number of vir-
tual cores usable by the Go runtime for a set of repeated runs
is given by the 1, 2, 4, and 10 columns. Each entry contains a
value from 0 to 100, indicating the number of runs in which
a partial deadlock was detected for the given go instruction.
Column Total shows for each go instruction with expected
partial deadlocks the percentage of runs during which a par-
tial deadlock was detected across all configurations. For all
benchmarks where Gorr had 100% success rate, we show a
single Remaining benchmarks row at the bottom. The last
row Aggregated (%) shows the detection rate percentage
across all microbenchmarks under each runtime configura-
tion. The cell at the intersection with the Total column sums
up the detection percentage across all microbenchmarks and
runtime configurations.

RQ1 (a) Microbenchmarks. The results show that, across
all runs and runtime configurations, GoLr detected 100% of
the partial deadlocks in the 6 microbenchmarks from Saioc
et al. [22], and 94% of the partial deadlocks in the 67 mi-
crobenchmarks from Yuan et al. [32], with an overall de-
tection rate of 94.75%. Notably, GOLF was able to detect a
known deadlock at each of the 121 potentially deadlocking
go instructions in the microbenchmarks in at least one run.

RQ1 (b) Large enterprise codebase test suites. GOLEAK
reported a total of 29 513 individual partial deadlocks in the
test suites of Uber’s codebase, deduplicated to 357 reports. Of
those, GoLr detected 17 872 (60%), which were deduplicated
to 180 (50% of 357) distinct reports.

For each of the 180 deduplicated reports produced by
Gorr, we also measure how many individual deadlocks were
detected, relative to GOLEAK, and present our findings in
Figure 3. On the x-axis, each GoLFr deduplicated report is
uniquely identified by a number from 1 to 180. The y-axis
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Table 1. RQ1 (a) GorrF results for microbenchmarks with
different levels of parallelism. Each entry is the number of
executions during which a partial deadlock was detected at
the given source location.

. Virtual cores
Benchmark line 1 3 2T 10 Total
cockroach/6181:58 98 94 99 99 97.50%
cockroach/6181:65 98 97 99 99 98.25%
cockroach/7504:170 100 99 | 100 | 100 99.75%
cockroach/7504:177 100 99 | 100 | 100 99.75%
etcd/7443:96 0 0 0 1 0.25%
etcd/7443:128 0 0 0 3 0.75%
etcd/7443:215 0 0 0 3 0.75%
etcd/7443:221 0 0 0 3 0.75%
etcd/7443:225 0 0 0 3 0.75%
grpc/1460:83 100 | 100 97 97 98.50%
grpc/1460:85 100 | 100 97 97 98.50%
grpc/3017:71 0 98 | 100 | 100 74.50%
grpc/3017:97 0 97 | 100 | 100 74.25%
grpc/3017:106 0 97 | 100 | 100 74.25%
hugo/3261:54 100 | 100 | 100 83 95.75%
hugo/3261:62 100 | 100 | 100 83 95.75%
kubernetes/1321:52 100 | 100 | 100 99 99.75%
kubernetes/1321:95 100 | 100 | 100 99 99.75%
kubernetes/10182:95 100 | 100 | 100 99 99.75%
kubernetes/11298:20 100 | 100 99 | 100 99.85%
kubernetes/11298:106 100 | 100 99 | 100 99.85%
kubernetes/25331:79 100 98 99 99 99.00%
kubernetes/62464:115 || 100 | 100 95 95 97.50%
kubernetes/62464:117 100 | 100 95 95 97.50%
moby/27282:65 99 45 91 96 82.75%
moby/27282:213 99 45 91 96 82.75%
moby/33781:39 100 | 100 96 92 97.00%

Remaining 60 benchmarks:

. . . . 100.00%

94 potentially deadlocking go instructions
Aggregated (%) [ 93] 94 95| 95 [ 94.75%

shows the ratio between the number of GoLr and GoLEAK
individual reports for the given deduplicated report, where
a ratio of 100% indicates that GoLF was able to detect all
partial deadlocks reported by GoLEak. By computing the
area under the curve, we infer that when faulty code exhibits
partial deadlocks via one or more tests, GoLF finds them in
82% of the cases where GOLEAK also finds them.

As expected, GOLEAK is more effective at detecting partial
deadlocks in test suites, owing to its design. GOLF is, nev-
ertheless, able to detect a significant portion of the partial
deadlocks in the test suites. Across the deduplicated reports,
Gorr finds all the individual partial deadlocks reported by
GOLEAK in 103 (55%) cases.

The efficacy of Govrr depends on the scheduling of GC
cycles relative to the occurrence of leaks, and the termination
of the test suite. While we strategically injected calls to the
GC within tests, the GC is nonetheless up to the runtime
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Figure 3. Ratio of individual partial deadlock reports be-
tween GoLF and GoLEAK for each deduplicated GoOLF report.

Listing 7. Simplified partial deadlock from the real service.

102 func (s *controller) SendEmail() chan struct{} {

103 done := make(chan struct{})

104 safego.Go(func() {

105 defer func() { done <- struct{}{} }O
106

107 i)

108 return done

109 3}

110

111 func (s *controller) HandleRequest() {
112 s.SendEmail () // Channel not used
113 }

scheduler. Furthermore, unlike GoLF, GOLEAK may only be
used in test suites, suggesting that the two techniques are
complementary, i.e., GOLF can be deployed in production to
detect partial deadlocks in real systems that GOLEAK might
have missed due to inadequate test coverage or flakiness.

RQ1 (c) Real service. For this experiment, we deployed
GorF on five instances running a real service used in Uber.
The deployment persisted over a period of 24 hours, during
which Gorr detected 252 individual partial deadlocks.

By inspecting the stack traces of deadlocked goroutines,
we narrowed the errors to three source locations in the orig-
inal code, all of which are represented by Listing 7. The
SendEmail method creates a channel, done, (line 103) and
a goroutine (created via the safego.Go wrapper function
at line 104) that performs an asynchronous task. By using
defer, the goroutine sets up a message to be sent over done
after it completes its task (line 105), at which point it will
block until a receiver for done is found. SendEmail returns
done (line 108), and leaves it to the caller to receive a message
from the channel. However, the HandleRequest method in-
vokes SendEmail without reading the message of done, caus-
ing the task goroutine to deadlock. The error was not discov-
ered during testing by GoLEAK due to insufficient coverage.

RQ2 Performance penalty. We measure the performance
penalty in experiments under similar conditions as in Sec-
tion 6.1.
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Figure 4. Slowdown of the GC marking phase for GoLr
compared to the baseline for microbenchmarks.

Microbenchmarks. We compare the average duration of
the GC marking phase between the baseline Go and GoLr
across 5 repeated runs for one virtual core. Specifically, we
measure the CPU time, such that the duration of the marking
phase is agnostic to interleavings at the level of the Go run-
time. We consider the average duration accetable, as 97% of
microbenchmark executions complete the same number of
GC cycles between the baseline and Gotrr. For completeness,
we include fixed versions for 32 of the microbenchmarks, for
a total of 105 programs. We omit other performance metrics,
as they do not exhibit any significant deviation.

We collect aggregate metrics over the slowdown or speed-
up of GoLF compared to the baseline, both for correct and
deadlocking microbenchmarks in Figure 4. Surprisingly, the
results show that GoLF may be faster than the baseline in
many cases, even for correct programs, where the median
slowdown for correct programs is 0.96X, and the minimum
slowdown is even 0.13X, from 876us to 112us. However, in
the worst case, GOLF also incurs a significant cost, with slow-
downs as high as 4.8%, from 113us to 538us. For deadlocking
programs, the median slowdown is 0.71%, with the minimum
slowdown as low as 0.04X%, from 3.3ms to 136ps. This is ex-
pected for programs with partial deadlocks, as the marking
phase of the GC is unburdened by the need to mark a signfi-
cant amount of memory. There is, nevertheless, the risk of a
slowdown, the worst being 5.87%, from 136us to 798s.

Regardless, in terms of absolute duration, we reinforce the
notion that, even with the occasionally steep slowdown, the
marking phase of Gorr still completes within only 10ms. For
correct examples, GOLF took at most 2ms to conclude the
marking phase, a 3.27X slowdown over the 619ps taken by
the baseline. For deadlocked examples, GOLF took at most
5.5ms to conclude the marking phase, a 1.06x slowdown
over the 5.2ms of the baseline.
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Enterprise codebase test suites. The test suites took ~ 12
hours on four machines in parallel on Uber’s large repository.
The running time is noisy, as machines are shared by other
jobs, which is why we do not perform an exhaustive compar-
ison of the overhead of GoLF against a baseline. We observed
no significant deviation from standard running times.

Services under controlled settings. We further evaluated
Gorr overhead by running a typical Uber service. The service
comprises 1.7 million lines of code, which includes packages
for handling remote procedure calls (RPCs), authentication,
metrics, logging, tracing, and rate limiting, among others.
The service has an endpoint and each request makes one
downstream RPC and uses a parallelism package to process a
directed acyclic graph of sub-tasks in parallel. Crucially, each
request spawns a goroutine, and the parent communicates
with the child goroutine over two channels. The parent and
the child goroutines each allocate a hash map of 100K entries.
The parent waits for the child using a select statement; and
returns if there is a message on either of the channels. How-
ever, the child goroutine may deadlock trying to send on both
channels one after another owing to a “double send” partial
deadlock pattern [22]. We control the leaking frequency for
our experimental purposes.

We ran experiments on a 48-core (2-socket, 24 cores each,
2-way SMT [30]) AMD EPYC at 2.4 GHz, with 396 GB of
DDR memory running Linux 6.1. We allocated eight cores
to the server, four to the client, and used 32 concurrent TPC
connections. The client sent requests for 30 seconds follow-
ing a 5-second warm-up period. The server was exercised
under the following scenarios: a child goroutine leaks in 0%
and 10% of requests. Table 2 presents throughput, latency,
memory, and GC metrics. The client does not leak, and only
runs using the baseline Go.

Without leaks, baseline and GoLr performed similarly
between the client and the server except for the GC pauses,
which worsened in Gorr. With a 10% leak, GoLF resulted in
a 9% higher throughput and reduced tail latency by ~ 1.5x
for the client. On the server side, memory usage was lowered
by ~ 49x.

The primary performance penalty for GoLF stems from
the duration of GC pause times (PauseTotalNs), particularly
the stop-the-world (STW) phase required to complete the
marking phase. On average, the GC pause time per GC cycle
(PauseTotalNs/NumGC) for Gorr is ~ 2.5X higher than the
baseline. Some overhead is expected, as deadlocked gorou-
tines are reported and forcefully shut down under stop-the-
world conditions. However, the penalty remains comparable
across different leak scenarios (0% to 10%), indicating that
memory leaks do not significantly impact the STW over-
head in practice. Notably, even in the 10% leaking scenario,
where the total GC pause is 1.96E + 08 nanoseconds, this
accounts for only 0.65% of the total 30-second execution
time, suggesting a mild impact overall. Furthermore, the Go
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Table 2. Performance impact of GOLF on a service under local controlled testing. Values in bold denote the variant with a
significantly better performance for each metric. Server GC metrics are collected using the standard Go runtime API for GC
metrics, MemStats [1]; the corresponding metric field is denoted in teletype font. For Throughput, if B/G < 1.0, then Gorr
performs better than the baseline; for latency and memory metrics, if B/G > 1.0, then GorF performs better than the baseline.

Metric Leaks in 0% requests Leaks in 10% requests
Base (B) | GorF (G) | B/G || Base (B) | GoLF (G) | B/G
Throughput (req./s) 66.45 66.56 1.00 59.15 64.92 0.91
P50 latency (ms) 307 310 0.99 324 320 1.01
P90 latency (ms) 414 423 0.98 669 445 1.50
Client P95 latency (ms) 452 461 0.98 759 482 1.58
P99 latency (ms) 542 529 1.02 929 575 1.62
P99.9 latency (ms) 627 587 1.07 978 643 1.52
P99.995 latency (ms) 645 593 1.09 982 651 1.51
Maximum latency (ms) 659 612 1.08 982 658 1.49
Stack spans (MB) (StackInuse) 1.87 1.90 0.98 2.88 2.06 1.40
Heap objects allocated (MB) (HeapAlloc) 7.61 7.27 1.05 1,328.94 27.35 48.59
Reachable heap objects (MB) (HeapInuse) 40.50 39.52 1.02 1,424.66 61.90 23.02
Server No. of objects (HeapObjects) 4.54E+04 | 4.52E+04 | 1.00 3.98E+07 | 6.48E+05 | 61.47
GC fractional CPU utilization (%) (GCCPUFraction) 24% 24% 1.04 30% 26% 1.13
GC pause time (ns) (PauseTotalNs) 1.09E+08 | 2.87E+08 | 0.38 || 3.26E+07 | 1.96E+08 | 0.17
No. of GC cycles (NumGC) 292.00 289.00 1.01 96.00 223.00 0.43
Pause time per cycle (ns) (PauseTotalNs/NumGC) 3.73E+05 | 9.92E+05 | 0.38 || 3.40E+05 | 8.78E+05 | 0.39

Table 3. Performance impact of GOLF on a real service.

Latency (ms) | CPU Usage (%)
P50 Baseline 51 + 136 1.46 = 0.55
GoLF 53.65 £+ 138 1.51 £ 0.62
P99 Baseline 414 + 467 3.16 £2.08
GoLF 464 + 512 3.12 £ 1.81

runtime constrains the fraction of CPU time allocated to
GC (GCCPUFraction), trading GC speed for increased mem-
ory usage [5]. As a result, at a 10% leak rate, the baseline
exhibits fewer GC cycles (NumGC) and lower total GC pause
time (PauseTotalNs). However, GOLF amortizes the GC’s
marking work, thereby reducing its required fractional uti-
lization.

Services under production settings. Finally, to deter-
mine the overhead in practice, we measured the response
latency and CPU utilization of the real service, with and with-
out GOLF over a period of 32 hours. The service emits latency
and utilization metrics every three minutes. We measure the
median (50th percentile) and the tail (99th percentile) in both
cases, averaged over all data points along with the standard
deviation, as shown in Table 3.

By analyzing the two performance metrics, which are
also heavily subjected to noise and diurnal traffic patterns,
it becomes apparent that GoLF does not impinge on the
performance of real-world systems in practice.

The empirical evaluation suggests that, while GorF in-
curs some overhead for correct programs, it is tolerable in
practice. Furthermore, we emphasize that, throughout these

experiments, the GC with the GoLFr extension performed
deadlock detection at every cycle. If, for example, deadlock
detection were only performed every 10th GC cycle, then
the overhead would be reduced even further, turning it prac-
tically negligible. This would come at no cost to the efficacy
of GoLr, as it would still be capable of detecting the same
number of partial deadlocks.

7 Related Work

Several approaches for tackling partial deadlocks have al-
ready been proposed, in the form of static, dynamic, and
hybrid analysis techniques.

Static techniques include modeling Go processes as reg-
ular expressions and synchronous communication as Br-
zozowski derivatives [18, 26]. Other approaches propose
reasoning about the liveness of programs with both syn-
chronous and asynchronous communication via encodings
to session types [13, 14, 19]. Go2Pins [12] translates Go
programs to the PINS interface used by LTL model check-
ers. Several static approaches rely on splitting programs
into fragments, i.e., sets of functions that comprise oper-
ations on concurrency objects, to improve precision and
scalability. GCatch [17] leverages SMT solvers to find partial
deadlocks in program fragments encoded as SMT formulas
that model the order of operations and channel semantics.
Goat [31] detects partial deadlocks in program fragments via
abstract interpretation. Gomela [8] translates Go fragments
to Promela to find partial deadlocks and safety violations
via model checking [11]. Among these approaches, GCatch,
Goat and Gomela have been shown to work on real-world
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Go programs. Unlike Gotrr, they may report false positives,
and they do not actively enable termination and garbage
collection of deadlocked goroutines.

Several dynamic analysis technique have also been pro-
posed. GOLEAK [22] examines the runtime state before a test
suite terminates execution and reports any lingering gor-
outines. LEAKPROF [22, 23] extracts the goroutine profiles
of running profiles and issues warnings for concurrent op-
erations with a high concentration of blocked goroutines.
GFuzz [16] uses fuzzing to reorder and prioritize select
statement case branches, such that tests may explore addi-
tional execution paths. It also proposes extensions to the Go
runtime that allow it to represent the ownership of channels
by goroutines as a graph, which can be explored to detect
partial deadlocks. In contrast to GoLF, these extensions work
independently of the GC, may report false positives, and
incur a nontrivial overhead. It may be interesting in future
work to combine the fuzzing approach of GFuzz with the
GC-based deadlock detection of Gorr.

GoAT [28] constructs concurrency usage models from the
syntax of Go programs, and injects handlers to emit traces
of concurrent events and preempt execution at key points to
explore more interleavings at runtime. The traces are ana-
lyzed offline for partial deadlocks. However, only deadlocks
that exist at program termination are detected, unlike with
Gorr, which can detect deadlocks in long-running produc-
tion systems.

The idea of piggybacking on the garbage collector has
also been explored for other purposes, including analysis of
method purity [20], dynamic software updating [27], and
dynamically checking heap properties [21].

To the best of our knowledge, none of the existing tech-
niques soundly approximate liveness by using memory reach-
ability, and, subsequently, directly leverage the garbage col-
lector to detect and reclaim partial deadlocks.

8 Conclusions and Future Work

We have demonstrated that the garbage collector in Go
can be leveraged to dynamically detect partial deadlocks
and reclaim the memory used by the involved goroutines,
thereby effectively addressing the problem with goroutine
leaks, while preserving program semantics. With the tool
Gorr, we have shown that the approach can be implemented
as a modest extension to the existing Go garbage collector,
and we believe it is sufficiently robust and efficient to be
used in production environments.

The effectiveness of the approach has been evaluated in a
series of experiments. GOLF was able to detect a significant
portion of partial deadlocks in microbenchmarks with known
partial deadlocks, large scale industrial codebase test suites,
and a real service used in production.

By construction, all reported partial deadlocks are true
positives. False negatives are possible due the conservative
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approximation of memory reachability computed by the
garbage collector. In future work, it may be interesting to in-
corporate static analysis techniques to provide liveness hints
to the garbage collector in order to boost the deadlock de-
tection capability. It would also be interesting to explore the
generalizability of the partial deadlock detection approach to
other programming languages and garbage collection mech-
anisms.
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A Artifact Appendix
A.1 Abstract

This artifact provides the implementation of GoLF, an ex-
tension to the Go garbage collector that allows it to dynami-
cally detect partial deadlocks in Go programs. It contains the
necessary scaffolding to generate a Docker container that
runs the modified Go runtime with the GoLF extension on
a selection of microbenchmarks containing known partial
deadlocks. It supports the reproduction of RQ1 (a) and RQ2,
but not RQ1 (b-c).

A.2 Description

A.2.1 How to access. Download from Zenodo. [24] The
expected size, when also including the virtual Docker image
and container, is ~15GB.

A.2.2 Hardware dependencies. Recommended specifi-
cations: 10 cores, 32 GB RAM, 20 GB disk space. x86-64
architectures are recommended; Apple Silicon may run the
Docker benchmark with colima (with a 15X slowdown).

A.2.3 Software dependencies. The recommended OS is
Linux. Docker must be installed, and the Docker daemon
must run in the background. Recommended Docker version
is 26.1.4.

For MacOS with Apple Silicon. The build script run. sh
automatically makes a best effort attempt at setting up the
container with colima if ~apple-silicon is the first passed
argument. colima may also be installed via brew, and started
manually:

colima start —-disk 20 —cpu 10 -arch amd64

A.2.4 Data sets. The data set (included with the artifact)
is a collection of microbenchmarks derived from real-life
programs that contain known partial deadlocks. They are
extracted from GoBench, and another collection of known
leaky patterns.

A.3 Basic test
Run the artifact with . /run.sh.

A4 Experimental workflow

The experiment creates a Docker container, where it installs
two versions of the Go runtime: a baseline (Go 1.22), and with
GoLF extensions, in the baseline and golf subdirectories,
respectively. It also provides a testing harness (in . /tester)
that applies the Go runtimes to microbenchmarks. The con-
tainer setup (Section A.3) runs the experiments, then starts
a session within the container.

A.4.1 Go runtimes. Each version of Go is compiled by
running:
bash ./{baseline,golf}/src/make.bash

The resulting binaries are found at bin/go in each Go
directory.
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The following files in . /golf/src have been updated:

e runtime/mgc. go: live goroutine discovery and dead-
lock detection.

e runtime/mgcmark. go: obfuscations of goroutine ad-
dresses and deadlocked goroutine shutdown.

e runtime/sema.go: supports sync deadlocks.

e runtime/runtime2.go: goroutine status extensions.

e sync/{runtime,waitgroup}.go: enable detection of
deadlocks caused by sync.WaitGroup.

A.4.2 Testing harness. The testing harness, in . /tester,
can be built manually with go build . (Go >1.21 recom-
mended). When successfully built, a binary is produced at
./tester/golf-tester.

Example programs are found in . /tester/tests. They
are further split between deadlocking and correct examples,
in the deadlock and correct subdirectories, respectively.
Each example is a standalone main. go file within its own
subdirectory.

The core microbenchmark suites (Section A.2.4) are found
in the subdirectories cgo-examples and goker. A subset
of the microbenchmarks also feature correct versions in
tests/correct.

The results of the testing harness include execution traces
in ./tester/results-<n> directories, where n is the exe-
cution run index. Fach directory mimics the subdirectory
structure of tests.

Trace files names indicate the runtime configuration, e.g.,
if the name contains GOMAXPROCS-4, then the execution was
configured with GOMAXPROCS=4 (4 logical cores). Partial dead-
locks are prefixed with partial deadlock!.

A.5 Evaluation and expected results

Section A.3 already sets up the container, and starts a session
in /usr/app/tester. Due to non-determinism and flakiness,
results vary between executions, or compared to the paper.

A.5.1 Microbenchmark coverage (RQ1 (a)). The mi-
crobenchmark coverage report is found at ./results. It
marks any unexpected deadlock reports with Unexpected
DL and runtime exceptions with [runtime failure]. Occa-
sionally, etcd/7443 fails due to send on closed channel.
This is an issue inherent to the microbenchmark, not caused
by Gorr.

Afterwards, . /results contains an aggregated report like
Table 1, answering RQ1 (a). For example:

Benchmark 1P 2P 4P 10P Total

goker/etcd/7443:129 @ 0 @ 0 0.00%

goker/etcd/7443:216 @ @ 0 @ 0.00%

goker/etcd/7443:222 @ 0 0 0 0.00%

goker/etcd/7443:226 @ 0 0 0 0.00%

goker/etcd/7443:96 0 0 0 @ 0.00%

Remaining 116 go instruction (72 benchmarks) 100.00%

Aggregated 95.86% 95.86% 95.86% 95.86% 95.86%


https://www.docker.com/
https://github.com/timmyyuan/gobench
https://github.com/VladSaioc/common-goroutine-leak-patterns
https://github.com/VladSaioc/common-goroutine-leak-patterns
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package main

// Add more libraries, if needed
import (

"fmt"

"runtime"

"time"

)

func init() {
fmt.Println("Starting run...")
3}

// Custom functions go here

func main() {
defer func() {
time.Sleep(...) // Wait a while
runtime.GC() // Force a GC cycle
30

// Main program goes here

}

Figure 5. Template for a Go microbenchmark.

It is expected for the table to include entries from goker,
but not cgo-examples. The entries must add up to 121 (num-
ber of rows plus the x in Remaining x go instructions).
The total detection rate value (Aggregated/Total) is ex-
pected to be above 90%, with a median value of ~94% across
repeated experiments.

A.5.2 GoLF overhead (RQ2). The microbenchmark per-
formance overhead is reported at . /results-perf.csv.It
contains the performance of each individual microbench-
mark execution (average marking phase duration and CPU
utilization), when using both the baseline and Gorr GCs.
Baseline execution metrics are denoted with OFF, while GoLF
execution metrics are denoted with ON. For example, Mark
clock ON (us) denotes the average wall clock duration of
the GoLF marking phase.

The microbenchmark performance overhead is also sup-
plied as a KIEX box plot for the Mark clock columns, in the
generated . /results. tex. To export it, follow these steps:

1. Exit the Docker container with exit
2. List the Docker container IDs with docker ps -a
3. Get the id of the latest container where the IMAGE value
is golf.
4. Copy the . tex file from the docker container to the
source system, using the container ID.
docker cp <ID>:/usr/app/tester/results.tex ./results.tex
5. Render ./results.tex as a PDF with the TeX com-
piler of your choice.
6. Remove the container when done with docker rm
<ID>
Gotrr is typically outperformed by the baseline GC for
examples without partial deadlocks, but without a signficant
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penalty. However, it may significantly outperform the base-
line GC for examples with partial deadlocks. Values vary, de-
pending on scheduling non-determinism, but at most within
1 millisecond.

A.6 Experiment customization

Write your program at . /tester/tests, in its own subdirec-
tory. Place deadlocking examples in deadlock, and deadlock-
free examples in correct. Each example should have its own

directory, with a main. go following template in Figure 5
To run Gorr manually, from the example directory, exe-
cute:
GODEBUG=gcdetectdeadlocks=1 <artifact>/golf/bin/go main.go
Any partial deadlock messages have the following format:

partial deadlock! goroutine ...
runtime.gopark(...)
.../golf/src/runtime/proc.go: 402
<runtime stack...>

Stack size ...

Annotate the example with deadlocks: e comments to
validate it with the testing harness. Replace e with an integer
constant, if the number of expected deadlocks is precisely
known. Otherwise, use x > 0 to signal at least one is ex-

pected. o ) )

The annotation is paired with a goroutine name at run-
time, identified syntactically. Correct annotation placement
depends on the signature of the goroutine function. For func-
tions without formal parameters, place the annotation inside
the function body:

// For anonymous functions

go func() {

| // For named functions
|

// deadlocks: x > @ |
|

func foo() {

// deadlocks: x > @

. 3
3O | go foo() // Deadlocks

For functions with formal parameters, or methods, place
the annotation above the go instruction:

// deadlocks: x > 0@ | // deadlocks: x > @

go func(x int){ ... }(10) | go obj.deadlockingMethod()
// deadlocks: x > @ |

go willDeadlock(x, y, z) |

The key input flags for the testing harness are:
e -golf <path>: Path to GoLF Go binary.
e -match <regex>: The harness only runs on examples
with paths that match <regex>.
e -repeats <n>: Repeat microbenchmark executions n
times.
-report <path>: Outputs coverage/perf report to path.
-baseline <path>: Baseline Go binary (only for per-
formance).
e -perf: Testing harness switches to performance mea-
surements.

Run with -match set to the path of your examples to run
them exclusively.

A.7 Notes

For more details of each step, consult README . md in the arti-
fact repository.


https://github.com/VladSaioc/asplos-artifact-2025/blob/main/README.md
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