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A challenge of writing concurrent message passing programs is ensuring the absence of partial deadlocks,
which can cause severe memory leaks in long running systems. Several static analysis techniques have been
proposed for automatically detecting partial deadlocks in Go programs. For a large enterprise code base, we
found these tools too imprecise to reason about process communication that is parametric, i.e., where the
number of channel communication operations or the channel capacities are determined at runtime.

We present a novel approach to automatically verify the absence of partial deadlocks in Go program
fragments with such parametric process communication. The key idea is to translate Go fragments to a core
language that is sufficiently expressive to represent real-world parametric communication patterns and can be
encoded into Dafny programs annotated with postconditions enforcing partial deadlock freedom. In situations
where a fragment is partial deadlock free only when the concurrency parameters satisfy certain conditions, a
suitable precondition can often be inferred.

Experimental results on a real-world code base containing 583 program fragments that are beyond the
reach of existing techniques have shown that the approach can verify the absence of partial deadlocks in 145
cases. For an additional 228 cases, a nontrivial precondition is inferred that the surrounding code must satisfy
to ensure partial deadlock freedom.
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1 Introduction

Message passing concurrency in the style of Hoare’s CSP [13] has experienced a resurgence
through the Go programming language [37], especially for systems development. Go prominently
treats concurrency as a first-class citizen, with its forefront feature being the forking of threads,
colloquially known as goroutines, simply by prefixing function calls with the go keyword. Goroutines
may communicate via shared memory or channel-based message passing, where the latter paradigm
is favored by the language designers [36]. As with locks in shared memory concurrency, channel
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communication operations may block (e.g., attempting to read from an empty channel). Because
of the complex program structure that often exists in multi-threaded code, programming errors
sometimes lead to a process being permanently stuck on a channel operation, which is referred
to as a partial deadlock, also known as a goroutine leak or blocking error. Partial deadlocks not
only cause possibly important actions to be missed; they also often result in severe memory leaks
because the involved goroutines are never garbage collected by the Go runtime system [30, 31].

In many cases, communication is localized to a small set of related functions (a program fragment),
and depends on a set of values (concurrency parameters) that dictate the number of communication
operations or limit the sizes of channel message queues. The code surrounding the fragment may
enforce certain properties on the concurrency parameters which rule out partial deadlocks. The
state-of-the-art tools for detecting partial deadlocks in Go are fundamentally unable to reason
about parametric fragments i.e., they cannot distinguish erroneous fragments from correct ones,
and the extensions needed to overcome these shortcomings are not obvious. GCatch [22] ignores
channels with capacities that are not fixed statically and only analyzes loops up to two iterations.
Goat [38] has limited support for loops and conservatively over-approximates channel capacities
without relating them to other program variables. Gomela [8] tests a finite number of execution
paths by instantiating concurrency parameter. We cover related work in more detail in Section 8.
We propose a sound approach to automatically verify the absence of partial deadlocks in Go

program fragments that involve parametric process communication. We have designed a core
language, VirGo, that is sufficiently expressive to model many parametric fragments, and built
the tool Ginger that encodes VirGo programs into Dafny [19] and suggests preconditions over
concurrency parameters guaranteeing partial deadlock freedom. Encoded fragments are subse-
quently verified in Dafny relative to the suggested preconditions. The verification procedure is
often able to confirm that the suggested precondition is the weakest precondition that ensures
partial deadlock freedom in the original program fragment. The precondition is often trivial (i.e.,
‘true’), meaning that the fragment is unconditionally free of partial deadlocks. Whenever the
precondition is nontrivial, it can be used for fragment documentation or as requirements that the
code surrounding the fragment must satisfy to avoid errors.
The approach is intended to complement existing techniques (which cover many advanced Go

features) when fragments rely on parametric communication. Although we focus on Go in this
paper, the core of the proposed approach is applicable to other programming languages that support
message-passing programming. It is specifically relevant to languages that offer buffered channels
with bounded capacity (e.g., Rust and Kotlin).

To summarize, we make the following contributions:

(1) We describe the VirGo language for modeling a family of Go program fragments that
implement parametric communication, which other analysis tools cannot reason about.

(2) We show how to automatically verify partial deadlock freedom in VirGo programs by trans-
lating them into Dafny. In addition, we present a mechanism for suggesting preconditions,
which can be incorporated into the verification procedure to reason about program frag-
ments that are only conditionally correct. We aim for a sound approach: when a VirGo
program is deemed free of partial deadlock (possibly conditionally, as expressed by the
inferred precondition), then so is the original Go code.

(3) The approach has been implemented in a tool named Ginger, which automatically verifies
Go code and suggests preconditions. We evaluate Ginger on a large industrial code base at
Uber Technologies, Inc. containing 583 program fragments with parametric channel-based
process communication, all of which are beyond the reach of existing Go analysis tools. The
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1 func GetResult(x int) {

2 c := make(chan T)

3 // Send x messages

4 for i := 0; i < x; i++ {

5 go func() {

6 // Supply result to c

7 c <- work()

8 }

9 }

10 // Retrieve one result

11 ... <-c

12 }

func GetResult(x int) {

c := make(chan T, x)

for i := 0; i < x; i++ {

go func() {

c <- work()

}

}

... <-c

}

func GetResult(x int) {

if x <= 0 {

return // or panic/log

}

c := make(chan T, x)

for i := 0; i < x; i++ {

go func() {

c <- work()

}

}

... <-c

}

Fig. 1. Go fragments with parametric communication. Left: Original buggy fragment. Middle: Fragment after

fix; channel capacity guarantees all senders unblock. Right: Partial deadlock-free fragment (for all inputs).

experimental results show that the technique can verify the absence of partial deadlocks in
373 fragments, 228 thereof with a nontrivial precondition.

2 Motivating Example

Go is an imperative, concurrent programming language with support for channel-based commu-
nication. A channel is a bounded message queue with a capacity specified when the channel is
created. A goroutine blocks if attempting to send to a full channel or receive from an empty channel
until another goroutine has performed the dual operation. Channels support either synchronous
(default) or asynchronous communication (when the capacity is strictly positive). The standard
library sync provides other concurrency primitives, the most prominent being Mutex (standard
locks) and WaitGroup (barriers managed by a counter). Go also has select statements, allowing a
goroutine to wait on multiple channel operations and non-deterministically choose one once it
becomes enabled, and channel close, which unblocks all receive operations.
Alongside concurrency primitives, Go supports standard imperative features, including condi-

tional statements and loops. It is common to combine these features and channel-based concurrency
to implement powerful patterns like the fork-join model [7]. The Go runtime signals global dead-
locks by halting the entire system, but partial deadlocks remain invisible. Furthermore, global
deadlocks are rare in practice, as real-world systems often involve several independent sets of
related goroutines (service instances implemented in our benchmark predominantly feature over
2, 000 concurrent goroutines), where only some may deadlock. Partial deadlocks, on the other
hand, are common in practice, and generally more difficult to diagnose, with an impact that is not
immediately observable. In fact, they are often undiagnosed for long periods of time, surreptitiously
impacting overall memory efficiency and wasting server resources, and, in the worst cases, leading
to out-of-memory exceptions and system failures [30, 31].
In typical real-world Go programs, it is possible to identify fragments, each consisting of a

set of related functions that create and use a number of goroutines and channels to collectively
achieve a specific purpose. Several existing Go analysis tools, including GCatch [22], Goat [38]
and Gomela [8] decompose large programs by identifying such fragments and analyzing them one
by one. This work builds on this idea to propose a novel approach to reason specifically about
fragments where concurrency parameters [8] are statically unknown.

Figure 1 (left) shows a simplified real-life fragment encountered at Uber that implements paramet-
ric communication in the form of a single Go function, GetResult, that is intended to start a number
of worker processes and await the first result. In this fragment, the integer x is a concurrency
parameter that dictates the number of executed send operations. Following the instantiation of
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𝑎 ::= skip | 𝑐! | 𝑐? | 𝑎; 𝑎 | 𝑤.Add(𝑒) , where 𝑐 ∈ C, 𝑤 ∈ W

𝑉 ::= 𝑎 | 𝑐 = chan [𝑒] | 𝑉 ; 𝑉 | go { 𝑉 } | return | 𝑤 = WaitGroup | 𝑤.Wait()

| for 𝑒 .. 𝑒 { 𝑎 } | if 𝑒 { 𝑉 } else { 𝑉 }

𝑒 ::= 𝑥 | 𝑣 | !𝑒 | 𝑒 ⊕ 𝑒 where ⊕ ∈ {+, −, ∗, <, ==, ∧} and 𝑥 ∈ X

𝑣 ::= true | false | 𝑛, where 𝑛 ∈ Z

Fig. 2. Syntax of VirGo. For the sake of presentation, the formal treatment of the shadowed constructs is

omitted from Section 4 but discussed in Section 5.

channel c (line 2), x goroutines are spawned in a loop (line 5), each performing one send operation
(line 7). Conversely, the parent executes one receive operation on c (line 11). Since the channel is
unbuffered (the channel is created with the default capacity zero), only one send operation will
unblock by synchronizing with the parent (line 11). As a result, partial deadlocks may form at
any sender beyond the first (if x > 1), or at the receiver if no sender is created (if x ≤ 0). The
scope of c is restricted to GetResult, so in the case of a partial deadlock, blocked processes would
hold a reference to c indefinitely, preventing garbage collection of both the channel and blocked
goroutines. Our approach can automatically identify that precondition x = 1 is the weakest precon-
dition that satisfies partial deadlock freedom. Such a strict constraint over x immediately reveals a
likely unintended behavior. Identifying this early would have avoided the deployment of buggy
code that caused memory leaks in affected services for a year until eventually discovered via other
means [30].
Upon its discovery, the bug was patched by a programmer as shown in Figure 1 (middle), by

supplying c with capacity x, such that all senders may unblock. Our technique automatically
determines that the weakest precondition is x > 0, which significantly relaxes the constraints. A
partial deadlock remains whenever x = 0, and a channel capacity error is triggered whenever x < 0.
A design decision can be made as to whether callers of GetResult must satisfy this constraint at
runtime, or if GetResult must internally ensure that no valuations of x violate correctness, as in
Figure 1 (right). Regardless, developer awareness of this implicit constraint is beneficial.

As demonstrated by this example, the correct implementation of parametric communication relies
on identifying the proper constraints over concurrency parameters to be satisfied to avoid partial
deadlocks. In our approach, these constraints are presented as a precondition over concurrency
parameters. When the precondition is ‘true’, partial deadlock freedom holds unconditionally; in
other situations the programmer can use the precondition for documentation or runtime checks.
Section 3 introduces the VirGo core language for expressing parametric communication. For

clarity, we present the technical contributions in two parts. In the first part, Section 4 presents
the key ideas of the technique by explaining how to construct preconditions and encode VirGo
programs in Dafny while focusing on buffered channel operations and for-loops. In the second part,
Section 5 gives the technical details for the rest of the features supported by VirGo. We describe
how Go program fragments can be translated to VirGo in Section 6, and evaluate the approach in
Section 7.

3 A Core Language for Parametric Communication

We introduce VirGo (Verifiable IntermediateRepresentation forGo), a core language modeled on a
subset of Go to express fragments implementing parametric communication. Its syntax is shown in
Figure 2. A VirGo program is defined over a set of channels (C), waitgroups (W), and concurrency
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parameters (X). A program consists of statements (𝑉 ), which may be a sequence of atomics (𝑎),
channel declarations (𝑐 = chan [𝑒], where 𝑒 denotes the capacity), process termination (return),
forking a new process (go { 𝑉 }), conditional statements (if), bounded loops (for), or waiting
on a waitgroup (𝑤.Wait()). Sequences of atomics are broken down to noops (skip), send (𝑐!) or
receive (𝑐?) channel operations (as discussed below, channel payloads are ignored), or offsetting
the counter of a waitgroup (𝑤.Add(𝑒)) with the value of 𝑒 . The number of iterations of a loop
for 𝑒1 .. 𝑒2 {...} is bounded such that the number of iterations is 𝑒2 − 𝑒1 or 0, whichever is larger.
Loop bodies can only contain sequences of atomics. Expressions (𝑒) may be concurrency parameters
(𝑥 ∈ X), Boolean or integer constants (𝑣), negation (!𝑒), and common binary arithmetic and Boolean
operations and comparisons.

By design, the expressiveness of VirGo is limited so that verification remains tractable, while sup-
porting many real-world programming patterns in Go. Modeling a Go fragment in VirGo involves
capturing communication operations and control-flow. Note that all variables in a VirGo program
as they appear in expressions, e.g., capacities or loop bounds, are concurrency parameters. VirGo is
designed to over-approximate the behavior of Go programs and thus support a sound end-to-end
verification. Notably, features of a Go programs that cannot be modelled directly by VirGo may be
replaced by fresh concurrency parameters (e.g., data received from a channel that is later used in
the condition of an if-then-else). For brevity, we omit a formal definition of the VirGo semantics as
it closely mirrors the concurrent semantics of Go (see, e.g., [17] for a similar formalization).

We summarize the key design choices below:
(1) Immutable concurrency parameters: the values of concurrency parameters may not change at

runtime. This is enforced syntactically as only variables in X are allowed in expressions and
VirGo does not support variable assignment.

(2) Fixed loop bounds: only finite iteration is supported and loop bounds cannot change during
the execution of the program (a consequence of item 1).

(3) Restricted looping behavior: the bodies of loops may only contain communication actions.
Branching and process spawning are syntactically disallowed. This notably rules out VirGo
programs that spawn an arbitrary number of processes (we explain how to partially lift this
restriction in Section 6).

(4) Abstract channel payloads: the payloads of messages sent over channels are not modeled, in
line with many static checkers for Go [8, 11, 17, 18, 22, 27].

(5) Focus on channels and waitgroups as primitives: VirGo only supports channels and wait-
groups, as they are most affected by parameterized communication. We describe how our
implementation deals with mutexes in Section 6.

Note that items 2 and 3 above imply that under a fair process scheduler, each process of a VirGo
program eventually successfully terminates or becomes permanently blocked on a communication
action. The approach does not have general support for close operations and select statements.
While the former may be supported at the cost of some engineering work, the latter poses a
particular problem when they occur in loops as we cannot reasonably predict what branch of the
select will fire at each iteration. In fact, non-deterministic select statements in loops generally lead
to potential deadlocks when used with parameterized channel capacity, and non-parameterized
versions are supported by complementary approaches [8, 38]. We describe in Section 6 how more
features of the language (e.g., function calls and limited forms of select) are supported.

Technical overview. The crux of the approach is to use VirGo as an intermediate representation
between a Go program fragment and a Hoare triple describing the conditions under which the
fragment is free of partial deadlock. Given a VirGo program𝑉 , we generate a triple {𝑃}enc(𝑉 ){𝑄},
where 𝑃 is a precondition synthesized according to different strategies, enc(𝑉 ) is a Dafny program
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{ x = 1 }

c = chan [0];

go {

for 0 .. x { c! }

};

c?

{ 1 ≤ x }

c = chan [x];

go {

for 0 .. x { c! }

};

c?

{ true }
if x <= 0 { return } else { skip };

c = chan [x];

go {

for 0 .. x { c! }

};

c?

Fig. 3. VirGo translations of the program fragments from Figure 1, annotated with synthesized preconditions

(first line).

(incl. invariants) that models the execution of the constituent sequential processes of 𝑉 interleaved
according to an abstract scheduler, and 𝑄 is a postcondition describing the termination of all
processes. When Dafny determines that {𝑃}enc(𝑉 ){𝑄} is valid, this implies that 𝑉 , and its Go
counterpart, are free of partial deadlock whenever the precondition 𝑃 is satisfied.
A Go fragment is identified wrt. the scope of its concurrency primitives (i.e., channels and

waitgroups). The translation from Go to VirGo is largely straightforward but includes program
transformations that help widen the applicability of the approach. Consider Figure 3 which gives
the translation of each Go fragment from Figure 1. Channel creation and send/receive operations
are translated as expected (note that we abstract away from the values carried by c). In order to
obtain a VirGo program, we transform the for-go pattern of the Go program into a go-for pattern.
This is a sound transformation since we do not model message payloads and the goroutines execute
only one send action. We give more details on the translation from Go to VirGo in Section 6.
The procedure from 𝑉 to enc(𝑉 ) is natural but quite involved as it transforms an imperative

program into an automata-like representation. More details are given in Section 4.2. For Dafny to
automatically verify {𝑃}enc(𝑉 ){𝑄}, we must annotate enc(𝑉 ) with loop invariants. We describe the
invariant generation procedure in Section 4.3, which also details how we generate a postcondition
𝑄 that models the termination of all processes (and therefore the absence of partial deadlocks).

The ideal precondition 𝑃 is the weakest constraint over the concurrency parameters that guaran-
tees termination of all processes, i.e., it is both sufficient (ensuring termination) and necessary (a
non-gracefully-terminating execution is guaranteed to exist when the precondition is not satisfied).
While a generalized process for finding such a precondition is still undiscovered, a good starting
point is to optimistically check that fragments are correct for all inputs, i.e., that {true}enc(𝑉 ){𝑄}
holds. However, this may fail. For example, the first program in Figure 3 has partial deadlocks when
x > 1, so we devise an additional strategy for suggesting preconditions. This strategy is based on
the idea that all processes in a VirGo program terminate if the following two criteria are satisfied:
C1 The number of receive operations must not exceed the number of send operations (all receives

unblock).
C2 The number of send operations must not exceed the sum of the capacity of the channel and

the number of receive operations (all sends unblock).
In our experience, these criteria are often sufficient to generate a precondition that allows verification
of partial deadlock freedom. For the examples in Figure 3, they are applied as follows:

(a) In the left-hand-side program C1 and C2 require that we have 1 ≤ x and x ≤ 1 respectively.
(b) For the middle program, we have 1 ≤ x by C1, and x ≤ x + 1 by C2. Thus 1 ≤ x overall.
(c) The reasoning is similar for the right-hand-side program, but no channel operation is reach-

able if x ≤ 0, hence we have x ≤ 0 ∨ 1 ≤ x, a tautology.
Additionally, we propose a variant that also checks whether the suggested precondition 𝑃 is the
weakest. We present these strategies to discover preconditions in more detail in Section 4.4.
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T ∋ 𝑇 ::= nat | int | bool | nat → nat

𝑀 ::= method 𝑓 (𝑦: 𝑇) returns (𝑦: 𝑇) requires 𝐸 ensures 𝐸 { 𝑆 }

S ∋ 𝑆 ::= {} | 𝑆; 𝑆 | var 𝑦 := 𝐸 | 𝑦 := 𝐸 | return | if 𝐸 { 𝑆 } [else { 𝑆 }]
| match 𝐸 { case 𝑛 ⇒ 𝑆 } | while 𝐸 invariant 𝐸 { 𝑆 }

E ∋ 𝐸 ::= 𝑒 | 𝐸 =⇒ 𝐸 | 𝐸 ⇐⇒ 𝐸 | forall 𝑦 :: 𝐸 | if 𝐸 then 𝐸 else 𝐸 | 𝑥(𝐸)

Fig. 4. CoreDafny syntax.

4 Encoding and Verifying VirGo Programs

To automate the verification while allowing the intermediate representation to be human readable,
our Hoare triples take the form of Dafny programs. The encoding consists of three main steps.
Step 1:we decompose aVirGo program into several sequential processes, each encoded as a counter-
automaton-like model [25]. All possible concurrent interleavings of these processes are modeled
using an abstract scheduler and a while-loop. Step 2: we synthesize a postcondition describing the
termination of all processes, and an invariant that represents the while-loop. Step 3: we construct a
precondition, following three possible strategies, and ask Dafny to check whether the Hoare-triple
holds.
The encoding to Dafny aims at modeling precisely the original VirGo program. Hence when

Dafny validates a generated Hoare triple, the partial-deadlock freedom result holds for the source
VirGo program; this in turns enables the sound verification of the original Go program.

To simplify the presentation of the approach, we require in this section that all channels are
asynchronous (buffer capacity >0), and the shadowed syntactical categories of Figure 2 (i.e., condi-
tional operations and waitgroups) are omitted for now. The formalization of the translation for the
whole VirGo is given in Section 5.

4.1 Preliminaries: CoreDafny

Dafny is an imperative programming language that supports the formal specification of programs
using pre/postcondition, assertions, and loop invariants. Dafny’s ecosystem automatically (when
loops are annotated with suitable invariants) checks that a program satisfies its postcondition
whenever the precondition holds.

We distill the salient features of Dafny into CoreDafny (Figure 4), a subset of features employed
in the encoding. A CoreDafny program consists of a single method declaration𝑀 . The method
signature specifies its typed parameters and named typed return variables, where types include
naturals, integers, Booleans, and functions over naturals. The signature includes preconditions
(requires 𝐸) and postconditions (ensures 𝐸). Preconditions are propositions constraining the values
of input parameters. Postconditions are propositions over the return variables that must be satisfied
once the execution of the method terminates.
CoreDafny statements include the empty statement ({}), variable declarations (var 𝑦 : = 𝐸),

assignments (𝑦 : = 𝐸), conditional statements with optional else branches, and pattern matching
over integers.CoreDafny also supports while-loops with arbitrary guards, which may be annotated
with invariants. CoreDafny expressions include the usual logical operator, unary function calls,
universal quantifiers (forall) and conditionals. Here we assume that VirGo expressions are a
subset of CoreDafny expressions so that they do not require translation.

Figure 5 shows the structure of the CoreDafny program the encoding generates. We give more
details in the remaining part of this section. The program is given in the form a template that
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1 method Fragment(Sch : nat → nat , ∀𝑥𝑖 ∈ X : 𝑥𝑖 : 𝑇𝑖 ) returns (∀𝜋 ∈ Π. P(𝜋 ) : int)
2 // Specification

3 requires forall n : : Sch(n) < |Π|
4 requires 𝑃

5 ensures 𝑄

6 { // Initialisation

7 var step : = 0;

8 P(𝜋0 ) : = 0;

9 ∀𝜋 ∈ Π \ {𝜋0 } : P(𝜋 ) : = -1;

10 ∀𝑐 ∈ 𝑑𝑜𝑚 (𝜅 ) : var 𝑐 : = 0;

11 ∀(_, _, _, 𝑖, 𝑒, _, _) ∈ L : var 𝑖 : = 𝑒;

12
13 // Execution via interleaving

14 while enabled (𝑉 )
15 invariant inv (𝑉 ) {

16 match Sch(step) {

17 ∀𝜋 ∈ Π : case 𝜋 ⇒ match P(𝜋 ) {

18 ∀𝑛 ∈ dom(Ξ[𝜋 ] ) : case 𝑛 ⇒ Ξ[𝜋 ] [𝑛]
19 }

20 }

21 step : = step + 1;

22 }

23 }

Fig. 5. Structure of the CoreDafny encoding for a VirGo program represented as a mapping Ξ via the

translation explained in Section 4.2.

combines CoreDafny syntax (in black or purple type-writer font) with meta-syntax (highlighted
in yellow). A VirGo program is translated to a CoreDafny method whose input consists of an
abstract scheduler Sch and the concurrency parameters X, and its output consists of the final
program counters (represented by P(𝜋) for each process identifier 𝜋 ∈ Π, where 𝜋0 denotes the
main process).

The scheduler Sch is an uninterpreted function that decides which process should be scheduled
next. The precondition 𝑃 (line 4) is generated by the different strategies presented in Section 4.4.
The postcondition 𝑄 (line 5) is generated automatically and corresponds to the termination of all
processes (Section 4.3). It essentially requires that each program counter, P(𝜋), has reached its
termination point, T(𝜋), assuming process 𝜋 has started.

The body of themethod consists of two parts: (1) some variable initialization (lines 7–11) whichwe
will describe further below, and (2) a while-loop. The while-loop models all possible interleavings of
the VirGo program and executes as long as at least one process can perform an action (enabled (𝑉 )
holds). The loop is annotated with an invariant inv(𝑉 ) (line 15), described in Section 4.3. The body
consists of nested match-constructs and is generated via a mapping Ξ : Π ↦→ 𝑁 ↦→ S that maps
each process identifier to a map from program points 𝑁 to CoreDafny statements S. We detail
how Ξ is built in Section 4.2. The outer match-construct selects which process is executed next as
determined by Sch. For each 𝜋 ∈ Π there is a case whose body contains an inner match-construct
which chooses the instruction to be executed next. This is determined by the value of 𝜋 ’s program
counter (i.e., variable P(𝜋)). There is a case for each program point 𝑛 in the encoding of process 𝜋 .

4.2 Step 1: Program Point Decomposition

The first step to transform a VirGo program into CoreDafny is to decompose it into a set of
sequential components, each of which becomes a counter-automaton where counters keep track
of the states of processes and concurrency primitives (e.g., the number of messages in a channel).

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 344. Publication date: October 2024.



Automated Verification of Parametric Channel-Based Process Communication 344:9

Conventions and notations

N ⊃ Π ∋ 𝜋 process identifiers
Z ⊃ 𝑁 ∋ 𝑛 program points
E ∋ P(𝜋) prog. counter variable

I ∋ 𝑖 loop variables

Φ ∋ 𝜙 : 𝑁 ↦→ S process encoding
Ξ : Π ↦→ Φ process encoding environment
𝜅 : C ↦→ E channel capacity environment

⊎ disjoint union of maps
Ξ[𝜋 Z⇒ 𝜙] short for Ξ[𝜋 ↦→ Ξ(𝜋) ⊎ 𝜙]

Translation of atomic operations 𝜅 ⊢ ⟨𝜙 : 𝑎⟩𝑛 𝜋
==⇒ ⟨𝜙⟩𝑛

send
𝑆 = if 𝑐 < 𝜅 (𝑐) {𝑐 := 𝑐+1; P(𝜋) := 𝑛+1}

𝜅 ⊢ ⟨𝜙 : 𝑐!⟩𝑛 𝜋
==⇒ ⟨𝜙 [𝑛 ↦→ 𝑆]⟩𝑛+1

receive
𝑆 = if 𝑐 > 0 {𝑐 := 𝑐−1; P(𝜋) := 𝑛+1}

𝜅 ⊢ ⟨𝜙 : 𝑐?⟩𝑛 𝜋
==⇒ ⟨𝜙 [𝑛 ↦→ 𝑆]⟩𝑛+1

skip

𝜅 ⊢ ⟨𝜙 : skip⟩𝑛 𝜋
==⇒ ⟨𝜙⟩𝑛

a-seq
𝜅 ⊢ ⟨𝜙 : 𝑎1⟩𝑛

𝜋
==⇒ ⟨𝜙1⟩𝑛1 𝜅 ⊢ ⟨𝜙1 : 𝑎2⟩𝑛1

𝜋
==⇒ ⟨𝜙2⟩𝑛2

𝜅 ⊢ ⟨𝜙 : 𝑎1;𝑎2⟩𝑛
𝜋
==⇒ ⟨𝜙2⟩𝑛2

Translation of structured control flow ⟨𝜅,Ξ : 𝑉 ⟩𝑛 𝜋
==⇒ ⟨𝜅,Ξ⟩𝑛

atomic
𝜅 ⊢ ⟨[] : 𝑎⟩𝑛 𝜋

==⇒ ⟨𝜙⟩𝑛′

⟨𝜅,Ξ : 𝑎⟩𝑛 𝜋
==⇒ ⟨𝜅,Ξ[𝜋 Z⇒ 𝜙]⟩𝑛′

chan
𝜙 =

[
𝑛 ↦→ if 𝑒 < 1 { return }; P(𝜋) := 𝑛+1

]
⟨𝜅,Ξ : 𝑐 = chan [𝑒]⟩𝑛 𝜋

==⇒ ⟨𝜅 [𝑐 ↦→ 𝑒],Ξ[𝜋 Z⇒ 𝜙]⟩𝑛+1

go

𝜙 = [𝑛 ↦→ P(𝜋) := 𝑛 + 1; P(𝜋 ′) := 0] ⟨𝜅, [] : 𝑉 ⟩0 𝜋 ′
===⇒ ⟨𝜅′, Ξ′⟩𝑛′

𝜋 ′ fresh

⟨𝜅, Ξ : go { 𝑉 }⟩𝑛 𝜋
==⇒ ⟨𝜅′, Ξ[𝜋 Z⇒ 𝜙] ⊎ Ξ′ [𝜋 ′ Z⇒ [−1 ↦→ {}, 𝑛′ ↦→ {}]]⟩𝑛+1

v-seq
⟨𝜅,Ξ : 𝑉1⟩𝑛

𝜋
==⇒ ⟨𝜅1,Ξ1⟩𝑛1 ⟨𝜅1,Ξ1 : 𝑉2⟩𝑛1

𝜋
==⇒ ⟨𝜅2,Ξ2⟩𝑛2

⟨𝜅,Ξ : 𝑉1; 𝑉2⟩𝑛
𝜋
==⇒ ⟨𝜅2,Ξ2⟩𝑛2

for

𝜅 ⊢ ⟨[] : 𝑎⟩𝑛+1 𝜋
==⇒ ⟨𝜙⟩𝑛′

𝜙 ′ =

[
𝑛 ↦→ if 𝑖 < 𝑒2 { P(𝜋) := 𝑛 + 1 } else { P(𝜋) := 𝑛′ + 1 }
𝑛′ ↦→ 𝑖 := 𝑖 + 1; P(𝜋) := 𝑛 with 𝑖 fresh

]
⟨𝜅,Ξ : for 𝑒1 .. 𝑒2 { 𝑎 }⟩𝑛 𝜋

==⇒ ⟨𝜅,Ξ[𝜋 Z⇒ 𝜙 ⊎ 𝜙 ′]⟩𝑛′+1

Translation of VirGo programs 𝑉 =⇒ Ξ, 𝜅

program
⟨[], [] : 𝑉 ⟩0

𝜋0
===⇒ ⟨𝜅,Ξ⟩𝑛 𝜙 = [𝑛 ↦→ {}]

𝑉 =⇒ Ξ[𝜋0 Z⇒ 𝜙], 𝜅

Fig. 6. Translation to sequential processes.
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Concretely, each process becomes a mapping from each program point to a CoreDafny statement
that models the semantics of the next instruction.
We use the following notation (see top of Figure 6): 𝜋 ∈ Π and 𝑛 ∈ 𝑁 range over finite sets of,

respectively, process identifiers and program points (i.e., possible values of the program counters).
The program points are represented as integers Z according to their order in the textual program
code, using −1 to denote the program point for processes that have not yet been created. Process
identifiers 𝜋 can similarly be represented as natural numbers N so that 0 ≤ 𝜋 < |Π |. P(𝜋) refers to
the name of the CoreDafny variable holding the current value of the program counter of process
𝜋 , and similarly, T(𝜋) is the name of the CoreDafny variable holding the process exit program
point for 𝜋 .

Process encoding. We formalize the translation in Figure 6 using three syntax-driven inductive
judgments. The first judgment handles atomic VirGo statements: 𝜅 ⊢ ⟨𝜙 : 𝑎⟩𝑛 𝜋

==⇒ ⟨𝜙 ′⟩𝑛′ , where
environment 𝜅 binds channel names to expressions denoting their capacity, 𝜋 is the identifier of
the process being translated, 𝜙 is the current encoding of the process 𝜋 (mapping program points
to CoreDafny statements), 𝑎 is the statement to be translated, 𝑛 is the program point immediately
before 𝑎, 𝜙 ′ is the result of adding the translation of 𝑎 to 𝜙 , and 𝑛′ is the next program point.
Rule send translates a send on 𝑐 into an increment of variable 𝑐 (capacity allowing). Rule receive
translates a receive from 𝑐 as a decrement of 𝑐 (if 𝑐 > 0). Rules skip and a-seq are straightforward.

Judgment ⟨𝜅,Ξ : 𝑉 ⟩𝑛 𝜋
==⇒ ⟨𝜅,Ξ′⟩𝑛′ deals with the translation of general statements (𝑉 in Figure 2).

Here, Ξ and Ξ′ are mappings from process identifiers to process encodings (input and output,
respectively) and the other parameters are identical to the previous judgment. Rule atomic models
atomic statements using the corresponding judgment. We use ⊎ to denote union of maps (with
disjoint keys) and we write Ξ[𝜋 Z⇒ 𝜙] to append 𝜙 to the value corresponding to 𝜋 in Ξ. Rule
chan models channel creation by recording the channel capacity 𝑒 in environment 𝜅 and inserting
a capacity check to ensure it is a buffered channel (the program terminates if the capacity is <1).
Rule go models the spawning of a new concurrent process: it increments the program counter

of the parent process (𝜋 ) and sets the program counter of the child process (𝜋 ′, a globally fresh
identifier) to 0, thus allowing it to start its execution. The encoding of the child is extended with
two additional bindings: −1 as a value indicating the process has not yet been spawned, and 𝑛′
as the last program point, to mark goroutine termination. Process 𝜋 ′ is encoded separately in
environment Ξ′. Rules v-seq and for are straightforward.
Finally, judgment 𝑉 =⇒ Ξ, 𝜅 expresses the translation of a whole VirGo program 𝑉 with main

process 𝜋0. In rule program, 𝑛 becomes the final (noop) instruction point of the main program.
To generate the nested match-constructs of Figure 5, we produce a case in the the outer match-

construct for each 𝜋 ∈ dom(Ξ), then we iterate over the elements of each Ξ(𝜋) to generate the
cases of each inner match-construct.

Syntactic occurrences. Figure 7 (top) defines some sets of syntactic occurrences that compactly
gather relevant information about the representation of higher-level constructs in the process
encoding. They are used to annotate the generated CoreDafny program with logical formulae.
P is the set of all occurrences of a channel declaration. Each element 𝑝 ∈ P is a tuple (𝜋, 𝑛, 𝑐)
where 𝜋 is the process identifier declaring the channel, 𝑛 is the program point of the declaration,
and 𝑐 is the declared channel name. O is the set of all occurrences of a channel operation in the
translated program. Each element 𝑜 ∈ O is a tuple (𝜋, 𝑛, 𝑐, 𝑑) where 𝜋 is the process identifier
executing that operation, 𝑛 is the program point where that operation is executed, 𝑐 is the channel
name on which the operation is invoked, and 𝑑 is the direction of the operation: send (!) or receive
(?). G is the set of all occurrences of a goroutine spawning operation. Each element 𝑔 ∈ G is a
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Conventions and notations

Given function 𝐽 (𝑟 ) and set 𝑅 = {𝑟1, . . . , 𝑟𝑘 } we write 𝐽 (𝑅) for 𝐽 (𝑟1) ∧ . . . ∧ 𝐽 (𝑟𝑘 )
N ∋ T(𝜋) termination point

Syntactic occurrences

𝑝 = (𝜋, 𝑛, 𝑐, 𝑒) ∈ P ⊆ Π × 𝑁 × C × E Occurrences of chan [𝑒]

𝑜 = (𝜋, 𝑛, 𝑐, 𝑑) ∈ O ⊆ Π × 𝑁 × C × {!, ?} Occurrences of 𝑐! and 𝑐?

𝑔 = (𝜋, 𝑛, 𝜋 ′) ∈ G ⊆ Π × 𝑁 × Π Occurrences of go

𝑙 = (𝜋, 𝑛, 𝑛′, 𝑖, 𝑒, 𝑒′,𝑂) ∈ L ⊆ Π × 𝑁 × 𝑁 × I × E × E × ℘(O) Occurrences of for

𝑜 = (𝜋, 𝑛, 𝑐, 𝑑) ∈ OL =
⋃{𝑂 | (𝜋, 𝑛, 𝑛′, 𝑖, 𝑒, 𝑒′,𝑂) ∈ L} Operations in loops

Enabled and Post-condition

enabled (𝜋) = −1 < P(𝜋) < T(𝜋) ∧∧
(𝜋,𝑛,𝑐,𝑑 ) ∈O

P(𝜋) = 𝑛 =⇒ (𝑑 =! =⇒ 𝑐 < 𝜅 (𝑐)) ∧ (𝑑 =? =⇒ 𝑐 > 0)

enabled (𝑉 ) =
∨
𝜋∈Π

enabled (𝜋) 𝑉 =⇒ Ξ, 𝜅 Π = dom(Ξ)

terminated (𝑉 ) =
∧
𝜋∈Π

P(𝜋) ≠ −1 =⇒ P(𝜋) = T(𝜋)

Invariant

𝑜 = (𝜋, 𝑛, 𝑐, 𝑑) 𝑜 ∉ OL

I com(𝑜) = if 𝑛 < P(𝜋) then 1 else 0
𝑜 ∈ OL

I com(𝑜) = 0

𝑙 = (𝜋, 𝑛1, 𝑛2, 𝑖, 𝑒, 𝑒′,𝑂)
𝑁 = {𝑛 ∈ 𝑁 | (𝜋, 𝑛, 𝑐, 𝑑) ∈ 𝑂} 𝐸 = Σ

𝑛∈𝑁
if 𝑛 < P(𝜋) < 𝑛2 then 1 else 0

I forCom(𝑐, 𝑙, 𝑑) = (𝑖 − 𝑒) ∗ |𝑁 | + 𝐸

𝑝 = (𝜋 ′, 𝑛′, 𝑐) 𝐸 (𝑑) = Σ
𝑙∈L

I forCom(𝑐, 𝑙, 𝑑) + Σ
(𝜋,𝑛,𝑐,!) ∈O

I com((𝜋, 𝑛, 𝑐, 𝑑))

I chan(𝑝) = P(𝜋 ′) > 𝑛′ =⇒ 0 ≤ 𝑐 ≤ 𝜅 (𝑐) ∧ 𝑐 = 𝐸 (!) − 𝐸 (?)

𝜋 = 0 =⇒ 𝑘 = 0 𝜋 > 0 =⇒ 𝑘 = −1
Iproc(𝜋) = 𝑘 ≤ P(𝜋) ≤ T(𝜋)

𝑔 = (𝜋, 𝑛, 𝜋 ′)
Igo(𝑔) = 𝑛 < P(𝜋) ⇐⇒ P(𝜋 ′) = −1

𝑙 = (𝜋, 𝑛, 𝑛′, 𝑖, 𝑒, 𝑒′,𝑂)
I for (𝑙) = if 𝑒 ≤ 𝑒′

then 𝑒 ≤ 𝑖 ≤ 𝑒′ ∧ (P(𝜋) < 𝑛 =⇒ 𝑖 = 𝑒) ∧ (𝑛 < P(𝜋) < 𝑛′ =⇒ 𝑖 < 𝑒′)
∧ (𝑛′ ≤ P(𝜋) =⇒ 𝑖 = 𝑒′)

else 𝑖 = 𝑒 ∧ !(𝑛 < P(𝜋) < 𝑛′)

𝑉 =⇒ Ξ, 𝜅 Π = dom(Ξ) 𝑉 :: P,G,L,O
inv(𝑉 ) = I chan(P) ∧ Iproc(Π) ∧ I com(O) ∧ I forCom(C × L × {!.?}) ∧ Igo(G) ∧ I for (L)

Fig. 7. Generation of termination condition, postcondition, and invariant.
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triple (𝜋, 𝑛, 𝜋 ′) where 𝜋 is the identifier of the parent process, 𝑛 is the program point where the
spawning is executed, and 𝜋 ′ is the process identifier of the newly spawned process. L is the set of
all occurrences of a for-loop in the source program. Each element 𝑙 ∈ L is a tuple (𝜋, 𝑛, 𝑛′, 𝑖, 𝑒, 𝑒′,𝑂)
where 𝜋 is the identifier of the process executing the loop, 𝑛 is the loop initialization program point,
𝑛′ is the termination program point, 𝑖 is the name of the loop variable (in CoreDafny), 𝑒 (resp.
𝑒′) is the lower (resp. upper) bound expression, and 𝑂 ⊆ O is the set of all channel operations in
the loop body. Finally, the set OL ⊆ O contains all operations that occur in loops. Hereafter, we
write 𝑉 :: P,G,L,O when the encoding of program 𝑉 produces occurrence set P, G, L and O.
We assume these sets to be globally available.

Initialization. The initialization phase (lines 7–11) in Figure 5 sets all state variables to their
initial values. The program counter of all processes is set to −1 (except for the main thread set to 0).
Each channel initially holds 0 messages, and each loop variable is set to its lower bound.

Progress. The termination condition of the while-loop, enabled (𝑉 ) (line 14 in Figure 5), is formally
defined in Figure 7. The aim of the enabled (𝑉 ) property is to model when the whole program can
progress, i.e., at least one process is enabled. A process with identifier 𝜋 is enabled (enabled (𝜋)) if it
has started and has not terminated (−1 < P(𝜋) < T(𝜋)), and any channel action it is currently due
to execute (P(𝜋) = 𝑛) is enabled: a send operation is enabled when the number of messages in the
channel has not reached its capacity, and a receive operation is enabled when the channel is not
empty.

4.3 Step 2: Termination Property and Invariants

We aim to verify that a program 𝑉 gracefully terminates under certain conditions. We define
graceful termination as terminated (𝑉 ), formally defined in Figure 7 as: all processes that have
started (P(𝜋) ≠ −1) have terminated (P(𝜋) = T(𝜋)).
Dafny is only able to reason about the generated programs when annotated with suitable

invariants. We generate invariant properties using function inv(𝑉 ), invoked at line 15 of Figure 5,
and defined in Figure 7. It is defined as a conjunction over predicates that enforce properties for
each high-level language construct, correlating program points to process counters and channel
buffer values. We use the convention in Figure 7 (top) to extend any function 𝐽 to sets by taking
the conjunction of the application of 𝐽 on each element in the set.

Predicate I chan(𝑐) states the properties related to channel 𝑐 once it has been created (left-hand-side
of the implication). The number ofmessages in the channelmust not be negative andmust not exceed
its capacity. Additionally, the number of messages in the channel must be equal to the difference
between the number of send and receive operations performed until the current execution point.
To symbolically compute the number of operations we use I com(𝑜) and I forCom(𝑐, 𝑙, 𝑑). Function
I com(𝑜) deals with operations that occur outside of loops, returning 1 if the operation has executed,
0 otherwise. Function I forCom(𝑐, 𝑙, 𝑑) models operations on channel 𝑐 occurring in loop 𝑙 . It adds
the number of operations in completed iterations and the number of operations executed in the
current iteration (𝐸).

Predicate Iproc(𝜋) states properties for each process (with identifier 𝜋 ) whose program counter
(P(𝜋)) should be within the expected range. Similarly, predicate Igo(𝑔) states that the program
counter of a spawned process (P(𝜋 ′)) must be set to -1 (not yet started) if its parent 𝜋 ′ has not yet
reached its spawning instruction.
Predicate I for (𝑙) deals with state variables associated with loops. Essentially, if the loop is

executable, then the loop variable (𝑖) must be within the bounds, and if the program counter is
within the range of the loop (𝑛 < P(𝜋) < 𝑛′), then the loop variable must be less than the upper
bound (𝑒′).
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𝑙 = (𝜋, 𝑛1, 𝑛2, 𝑖, 𝑒1, 𝑒2,𝑂) 𝑁 = {𝑛 | (𝜋, 𝑛, 𝑐, 𝑑) ∈ 𝑂} 𝑒 = if 𝑒1 > 𝑒2 then 0 else 𝑒2 − 𝑒1

for (𝑐, 𝑙, 𝑑) = 𝑒 ∗ |𝑁 |

𝑂 = {𝑛 | (𝜋, 𝑛, 𝑐, 𝑑) ∈ O \ OL}
𝑜𝑝𝑠 (𝑐, 𝑑) = |𝑂 | + Σ

𝑙∈L
for (𝑐, 𝑙, 𝑑)

𝐸! = 𝑜𝑝𝑠 (𝑐, !) 𝐸? = 𝑜𝑝𝑠 (𝑐, ?)
𝑐𝑜𝑚(𝑐) = 𝐸? ≤ 𝐸! ≤ 𝐸? + 𝜅 (𝑐)

𝑉 =⇒ Ξ, 𝜅

balanced (𝑉 ) =
∧

𝑐∈dom(𝜅 )
𝜅 (𝑐) > 0 ∧ 𝑐𝑜𝑚(𝑐)

Fig. 8. Precondition formula.

4.4 Step 3: Strategies for Precondition Discovery

The precondition 𝑃 and postcondition 𝑄 at lines 4–5 of Figure 5 depend on the strategy being used.
We outline three strategies below, which we use in the given order (until success or all strategies
have been attempted).

Strategy 1: Attempt to prove {true}enc(𝑉 ){terminated (𝑉 )}, i.e., that the CoreDafny encoding
of a VirGo programs 𝑉 guarantees terminated (𝑉 ) without any precondition. If this succeeds, then
all processes terminate for all inputs and all schedules.

Otherwise, we synthesize a formula, balanced (𝑉 ), defined in Figure 8, which is used in the next
two strategies. For each channel, the formula enforces that its capacity is strictly positive and
(corresponding to C1 and C2 in Section 3) that the number of send (𝐸!) and receive (𝐸?) actions
match, up to the capacity of the channel (𝜅 (𝑐)). The function that generates symbolic expressions
for 𝐸! and 𝐸? works similarly to the invariant formula I forCom(𝑐, 𝑙, 𝑑) in Figure 7.

Strategy 2: Check {true}enc(𝑉 ){balanced (𝑉 ) ⇐⇒ terminated (𝑉 )}, i.e., that the CoreDafny
encoding of a VirGo program 𝑉 satisfies terminated (𝑉 ) if and only if balanced (𝑉 ) holds. If this
succeeds, then all processes terminate for all schedules and inputs for which balanced (𝑉 ) holds,
and balanced (𝑉 ) is the weakest precondition that satisfies this requirement. This follows from the
fact that all concurrency parameters are immutable in VirGo. Note that this check can be applied
to any precondition suggestion strategy.
Strategy 3: Attempt to prove {balanced (𝑉 )}enc(𝑉 ){terminated (𝑉 )}, i.e., that the CoreDafny

encoding of a VirGo program 𝑉 satisfies terminated (𝑉 ) when balanced (𝑉 ) holds. If this succeeds,
then all processes terminate for all inputs and all schedules whenever balanced (𝑉 ) holds (but this
may not be the weakest precondition).

5 Translating All VirGo Features to CoreDafny

This section describes the rest of the translation from VirGo to CoreDafny, including all features
omitted from the previous section. These detailed extensions are not essential for understanding
the main ideas of the approach but are given for the sake of completeness. We keep explanations
brief as the rules are mostly simple extensions of the ones in Section 4. The extensions presented
here preserve the sound approach presented earlier and are reflected in our implementation.

We describe the encoding to program points of each VirGo construct (Section 5.1), followed by
invariant and precondition generation (Sections 5.2 and 5.3, respectively).
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Conventions

Constants for synchronous channel encoding: RDY = 0 SND = 1 ACK = −1

Atomic operations 𝜅 ⊢ ⟨𝜙 : 𝑎⟩𝑛 𝜋
==⇒ ⟨𝜙⟩𝑛

send
𝑆1 = if 𝜅 (𝑐) > 0 {

if 𝑐 < 𝜅 (𝑐) {𝑐 := 𝑐+1; P(𝜋) := 𝑛+2}
} else {

if 𝑐 == RDY {𝑐 := SND; P(𝜋) := 𝑛+1}
}

𝑆2 = if 𝑐 == ACK {
𝑐 := RDY;
P(𝜋) := 𝑛+2

}

𝜅 ⊢ ⟨𝜙 : 𝑐!⟩𝑛 𝜋
==⇒ ⟨𝜙 [𝑛 ↦→ 𝑆1, 𝑛 + 1 ↦→ 𝑆2]⟩𝑛+2

receive
𝑆 = if 𝜅 (𝑐) > 0 {

if 𝑐 > 0 {𝑐 := 𝑐−1; P(𝜋) := 𝑛+1}
} else {

if 𝑐 == SND {𝑐 := ACK; P(𝜋) := 𝑛+1}
}

𝜅 ⊢ ⟨𝜙 : 𝑐?⟩𝑛 𝜋
==⇒ ⟨𝜙 [𝑛 ↦→ 𝑆]⟩𝑛+1

add
𝑆 = if 𝑤 < −𝑒 { return };

𝑤 := 𝑤 + 𝑒; P(𝜋) := 𝑛+1

𝜅 ⊢ ⟨𝜙 : 𝑤.Add(𝑒)⟩𝑛 𝜋
==⇒ ⟨𝜙 [𝑛 ↦→ 𝑆]⟩𝑛+1

Additional control flow constructs ⟨𝜅,Ξ : 𝑉 ⟩𝑛 𝜋
==⇒ ⟨𝜅,Ξ⟩𝑛

wg

⟨𝜅,Ξ : 𝑤 = WaitGroup⟩𝑛 𝜋
==⇒ ⟨𝜅,Ξ⟩𝑛

wait
𝜙 = [𝑛 ↦→ if 𝑤 == 0 { P(𝜋) := 𝑛+1 }]

⟨𝜅,Ξ : 𝑤.Wait()⟩𝑛 𝜋
==⇒ ⟨𝜅,Ξ[𝜋 Z⇒ 𝜙]⟩𝑛+1

return
𝜙 = [𝑛 ↦→ P(𝜋) := T(𝜋)]

⟨𝜅,Ξ : return⟩𝑛 𝜋
==⇒ ⟨𝜅,Ξ[𝜋 Z⇒ 𝜙]⟩𝑛+1

if
⟨𝜅,Ξ : 𝑉1⟩𝑛+1

𝜋
==⇒ ⟨𝜅1,Ξ1⟩𝑛

′ ⟨𝜅1,Ξ1 : 𝑉2⟩𝑛
′+1 𝜋

==⇒ ⟨𝜅2,Ξ2⟩𝑛2

𝜙 =

[
𝑛 ↦→ P(𝜋) := 1 + if 𝑒 then 𝑛 else 𝑛′

𝑛′ ↦→ P(𝜋) := 𝑛2

]
⟨𝜅,Ξ : if 𝑒 { 𝑉1 } else { 𝑉2 }⟩𝑛 𝜋

==⇒ ⟨𝜅2,Ξ2 [𝜋 Z⇒ 𝜙]⟩𝑛2

Fig. 9. Translation rules for additional syntactic features and synchronous channel operations.

5.1 Encoding

The rules to transform a VirGo program into CoreDafny processes are given in Figure 9. Rules are
added or revised to deal with synchronous communication, waitgroups, conditionals, and return
statements. Rules send and receive now check whether the channel is buffered (𝜅 (𝑐) > 0) or
synchronous. The asynchronous case is as in Section 4. In the synchronous case (𝜅 (𝑐) == 0), a
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Enabled

enabled! (𝜋, 𝑛, 𝑐) =

if 𝜅 (𝑐) > 0
then P(𝜋) = 𝑛 =⇒ 𝑐 < 𝜅 (𝑐)
else (P(𝜋) = 𝑛 =⇒ 𝑐 = RDY) ∧ (P(𝜋) = 𝑛 + 1 =⇒ 𝑐 = ACK)

enabled? (𝜋, 𝑛, 𝑐) = P(𝜋) = 𝑛 =⇒ (𝜅 (𝑐) > 0 =⇒ 𝑐 > 0) ∧ (𝜅 (𝑐) == 0 =⇒ 𝑐 = SND)

enabled𝐶 (𝜋, 𝑛, 𝑐, 𝑑) = (𝑑 =! =⇒ 𝑒𝑛𝑎𝑏𝑙𝑒𝑑! (𝜋, 𝑛, 𝑐)) ∧ (𝑑 =? =⇒ 𝑒𝑛𝑎𝑏𝑙𝑒𝑑? (𝜋, 𝑛, 𝑐))

enabled𝑊 (𝜋, 𝑛,𝑤) = P(𝜋) = 𝑛 =⇒ 𝑤 = 0

enabled (𝜋) = −1 < P(𝜋) < T(𝜋) ∧∧
(𝜋,𝑛,𝑐,𝑑 ) ∈O

𝑒𝑛𝑎𝑏𝑙𝑒𝑑𝐶 (𝜋, 𝑛, 𝑐, 𝑑) ∧
∧

(𝜋,𝑛,𝑤 ) ∈WW

𝑒𝑛𝑎𝑏𝑙𝑒𝑑𝑊 (𝜋, 𝑛,𝑤)

enabled (𝑉 ) =
∨
𝜋∈Π

enabled (𝜋)

Fig. 10. Revised enabled predicate with support for synchronous channels and waitgroups.

channel is only available when it is ready (RDY), and the first process to send a message sets the
value of the channel to sending (SND). The sender is then blocked until a receiver acknowledges the
synchronization by setting the channel to ACK, and continuing to the next instruction.

Waitgroup declarations do not require new program points as the corresponding Dafny variables
modeling waitgroup counters are initialized to 0. Waitgroup operations are modeled via the add and
wait rules. Adding to the waitgroup simply increments the value with the given expression 𝑒 . Note
that the Go waitgroup method𝑤.Done() is translated to𝑤.Add(-1) in VirGo. The guard𝑤 < −𝑒
checks whether the new value is negative, in which case the execution of the entire CoreDafny
model is terminated immediately (without reaching its expected end state). This models the run-
time error thrown when a waitgroup counters become negative in Go. Waiting on a waitgroup
blocks until the counter is zero, just like in Go.
VirGo return statements translate to setting the process counter to its termination point. Two

program points are reserved for if statements: one for the branching instruction that decides the
continuation, and one at the end of the true branch that transfers control flow to the continuation,
skipping the else branch instructions.

Progress. In Figure 10, we give a revised enabled (𝑉 ) predicate, used to identify whether some
process canmake some progress. It is extended tomodel the blocking behavior of unbuffered channel
and𝑤.Wait() operations. For channels, an additional case is added for processes in the rendezvous
state, while send or receive operation cases take the capacity into account. For waitgroups, a process
is blocked on a wait operation until the waitgroup counter is 0.

5.2 Invariants with Support for Waitgroups, Conditionals, and Return

We proceed in two steps as the invariant construction that supports if statements need first to keep
track of the conditions that make a given program point reachable in the source VirGo program.

Reachability. A reachability environment, 𝜓 : (Π × 𝑁 ) ↦→ E binds a process program point to
a Boolean expression modeling the path conditions under which the program point is reachable.
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Conventions

Ψ ∋ 𝜓 : (Π × 𝑁 ) ↦→ E Reachability environment

Reachability for atomic operations 𝑒 ⊢ ⟨𝑠⟩𝑛
𝜋
⇝ ⟨𝜓 | 𝑒⟩𝑛

send
𝑒 ⊢ ⟨𝑐!⟩𝑛

𝜋
⇝ ⟨[(𝜋, 𝑛) ↦→ 𝑒] | false⟩𝑛+2

receive
𝑒 ⊢ ⟨𝑐?⟩𝑛

𝜋
⇝ ⟨[(𝜋, 𝑛) ↦→ 𝑒] | false⟩𝑛+1

add
𝑒 ⊢ ⟨𝑤.Add(𝑒)⟩𝑛

𝜋
⇝ ⟨[(𝜋, 𝑛) ↦→ 𝑒] | false⟩𝑛+1

Reachability for statements 𝑒 ⊢ ⟨𝑉 ⟩𝑛
𝜋
⇝ ⟨𝜓 | 𝑒⟩𝑛

return
𝜓 = [(𝜋, 𝑛) ↦→ 𝑒]

𝑒 ⊢ ⟨return⟩𝑛
𝜋
⇝ ⟨𝜓 | 𝑒⟩𝑛+1

waitgroup

𝑒 ⊢ ⟨𝑤 = WaitGroup⟩𝑛
𝜋
⇝ ⟨[] | false⟩𝑛

chan
𝜓 = [(𝜋, 𝑛) ↦→ 𝑒]

𝑒 ⊢ ⟨𝑐 = chan [𝑒]⟩𝑛
𝜋
⇝ ⟨𝜓 | false⟩𝑛+1

wait
𝜓 = [(𝜋, 𝑛) ↦→ 𝑒]

𝑒 ⊢ ⟨𝑤.Wait()⟩𝑛
𝜋
⇝ ⟨𝜓 | false⟩𝑛+1

go

𝑒 ⊢ ⟨𝑉 ⟩0
next(𝜋 )
⇝ ⟨𝜓 | 𝑒′⟩𝑛′

𝑒 ⊢ ⟨go { 𝑉 }⟩𝑛
𝜋
⇝ ⟨𝜓 [(𝜋, 𝑛) ↦→ 𝑒] | false⟩𝑛+1

seq
𝑒 ⊢ ⟨𝑉1⟩𝑛

𝜋
⇝ ⟨𝜓1 | 𝑒1⟩𝑛1 𝑒 ∧ !𝑒1 ⊢ ⟨𝑉2⟩𝑛1

𝜋
⇝ ⟨𝜓2 | 𝑒2⟩𝑛2

𝑒 ⊢ ⟨𝑉1; 𝑉2⟩𝑛
𝜋
⇝ ⟨𝜓1 ⊎𝜓2 | 𝑒1 ∨ 𝑒2⟩𝑛2

for
𝑒 ⊢ ⟨𝑎⟩𝑛+1

𝜋
⇝ ⟨𝜓 | false⟩𝑛′

𝑒 ⊢ ⟨for 𝑒1 .. 𝑒2 { 𝑎 }⟩𝑛
𝜋
⇝ ⟨𝜓 [𝑛 ↦→ 𝑒] | false⟩𝑛′+1

if
𝑒 ∧ 𝑒′ ⊢ ⟨𝑉1⟩𝑛+1

𝜋
⇝ ⟨𝜓1 | 𝑒1⟩𝑛1 𝑒 ∧ !𝑒′ ⊢ ⟨𝑉2⟩𝑛1+1

𝜋
⇝ ⟨𝜓2 | 𝑒2⟩𝑛2

𝑒 ⊢ ⟨if 𝑒′ { 𝑉1 } else { 𝑉2 }⟩𝑛
𝜋
⇝ ⟨(𝜓1 ⊎𝜓2) [𝑛 ↦→ 𝑒] | 𝑒1 ∨ 𝑒2⟩𝑛2

Reachability for programs 𝑉 ⇝ 𝜓

program
true ⊢ ⟨𝑉 ⟩0

𝜋0
⇝ ⟨𝜓 |𝑒⟩𝑛

𝑉 ⇝ 𝜓

Fig. 11. Rules for constructing the path reachability for each program point.
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Figure 11 gives the syntax-directed rules to construct such an environment. The main judgement
is of the form 𝑒 ⊢ ⟨𝑉 ⟩𝑛

𝜋
⇝ ⟨𝜓 | 𝑒′⟩𝑛 where 𝑒 is a Boolean expression that needs to be satisfied

for statement 𝑉 to be executed, 𝜓 is the reachability environment under-construction, and 𝑒′

represents a Boolean condition that is true when the program has returned early. We write 𝑉 ⇝ 𝜓

for “the reachability environment𝜓 is derived from 𝑉 ”. Reachability is affected by if statements,
where the path condition for the program points in each branch statements are extended with
the guard expression (negated for the else branch). Reachability also keeps track of the (negated)
path conditions of preceding return statements, since instructions syntactically following a return

statement may not execute if the function has returned early.

Invariant generation. The rules to construct invariants from Section 4.3 are extended with predi-
cates modeling all features, and extended with program point reachability,𝜓 (𝜋, 𝑛). Figure 12 gives
the revised rules for channel operations which deal with buffered and synchronous channels. In
the unbuffered case, the channel state is constrained wrt. the number of concurrency operations
performed as well as restrictions enforcing that at most one process is executing a rendezvous at
any given point. Conversely, the invariant models the rendezvous instruction as unreachable for
buffered channels.
In Figure 13, we introduce additional sets of syntactic occurrences to deal with waitgroup

operations, conditionals, and return statements. The information about loops is extended to include
waitgroup operations in their body. The sets WW and WA represent the occurrences of each
𝑤.Wait() and𝑤.Add(𝑒) operations, respectively, keeping track of the executing process, program
point and, for the latter, the added expression 𝑒 . Waitgroup invariants model the waitgroup counter
relative to process states. The expression value of every Add operation outside a loop is added to the
waitgroup counter, while expressions in loops are multiplied by the number of loop iterations. The
invariant also models run-time errors caused by negative waitgroup counters. The set R contains all
return statements, represented as process and program points pairs, (𝜋, 𝑛). The generated invariant
I ret(𝑟 ), 𝑟 ∈ R, models how a process executing a reachable return statement skips to termination
without visiting any successor program points. The set I contains all if statements, represented as
tuples (𝜋, 𝑛1, 𝑛2, 𝑛3, 𝑒), where 𝑒 is the guard expression, 𝜋 the process, and program points 𝑛1, 𝑛2
and 𝑛3 represent the guard program point, the beginning of the else branch, and the successor of
the if statement, respectively. The generated invariant I if (𝑖), 𝑖 ∈ I, asserts which branch program
points are unreachable, depending on the value of the guard.

5.3 Preconditions

Figure 14 details how the precondition predicate is extended to support waitgroups, as used in
Strategies 2 and 3. Essentially, it generates an expression representing the sum of all expressions
across add operations and requires this sum to amount to 0 for each waitgroup. This matches a
programming pattern often observed in practice where𝑤.Wait() is used only once, and syntactically
preceded by all𝑤.Add(𝑒) operations.

6 Implementation

The approach has been implemented in the tool Ginger. It reuses Gomela to parse Go in the front-
end and Dafny as a verifier in the back-end. We now present how the behaviors of Go program
fragments are over-approximated with VirGo, and how to handle additional Go features.

6.1 Over-Approximating Go Programs with VirGo

To apply Ginger on real-world programs, they must be broken down into VirGo-expressible
fragments. A program fragment is a set of related functions that cover the scope of a set of
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Invariant generation with support for synchronous channels

𝑜 = (𝜋, 𝑛, 𝑐, 𝑑) 𝑜 ∉ OL

I com(𝑜) = if 𝜓 (𝜋, 𝑛) ∧ 𝑛 < P(𝜋) then 1 else 0
𝑜 ∈ OL

I com(𝑜) = 0

𝑜 = (𝜋, 𝑛, 𝑐, !) 𝑜 ∉ OL

I send(𝑜) = if 𝜓 (𝜋, 𝑛)∧ 𝑛 < P(𝜋) then 1 else 0
+ if 𝜓 (𝜋, 𝑛)∧ 1 + 𝑛 < P(𝜋) then 1 else 0

𝑜 ∈ OL

I send(𝑜) = 0

𝑜 = (𝜋, 𝑛, 𝑐, ?) 𝑜 ∉ OL

I recv(𝑜) = if 𝜓 (𝜋, 𝑛) ∧ 𝑛 < P(𝜋) then 2 else 0
𝑜 ∈ OL

I recv(𝑜) = 0

𝑙 = (𝜋, 𝑛, 𝑛′, 𝑥, 𝑒, 𝑒′,𝑂,𝑊 )
𝑁 = {�̂� ∈ 𝑁 | (𝜋, �̂�, 𝑐, 𝑑) ∈ 𝑂} 𝐸 = Σ

�̂�∈𝑁
if �̂� < P(𝜋) < 𝑛′ then 1 else 0

I forCom(𝑐, 𝑙, 𝑑) = if 𝜓 (𝜋, 𝑛) then (𝑥 − 𝑒) ∗ |𝑁 | + 𝐸 else 0

𝑙 = (𝜋, 𝑛, 𝑛′, 𝑥, 𝑒, 𝑒′,𝑂,𝑊 )

𝑁 = {�̂� ∈ 𝑁 | (𝜋, �̂�, 𝑐, !) ∈ 𝑂} 𝐸 = Σ
�̂�∈𝑁

if �̂� < P(𝜋) < 𝑛′ then 1 else 0
+ if 1 + �̂� < P(𝜋) < 𝑛′ then 1 else 0

I forSend(𝑐, 𝑙) = if 𝜓 (𝜋, 𝑛) then (𝑥 − 𝑒) ∗ |𝑁 | + 𝐸 else 0

𝑙 = (𝜋, 𝑛, 𝑛′, 𝑥, 𝑒, 𝑒′,𝑂,𝑊 )
𝑁 = {�̂� ∈ 𝑁 | (𝜋, �̂�, 𝑐, ?) ∈ 𝑂} 𝐸 = Σ

�̂�∈𝑁
if �̂� < P(𝜋) < 𝑛′ then 2 else 0

I forRecv(𝑐, 𝑙) = if 𝜓 (𝜋, 𝑛) then (𝑥 − 𝑒) ∗ |𝑁 | + 𝐸 else 0

𝐸 (𝑑) = Σ
(𝜋,𝑛,𝑐,𝑑 ) ∈O

I com(𝜋, 𝑛) + Σ
𝑙∈L

I forCom(𝑐, 𝑙, 𝑑) InoRendezvous =
∧

(𝜋,𝑛,𝑐,!) ∈O
P(𝜋) ≠ 𝑛 + 1

Iasync(𝑐) = 0 ≤ 𝑐 ≤ 𝜅 (𝑐) ∧ 𝑐 = 𝐸 (!) − 𝐸 (?) ∧ InoRendezvous

𝐸1 = Σ
(𝜋,𝑛,𝑐,!) ∈O

I send(𝜋, 𝑛) + Σ
𝑙∈L

I forSend(𝑐, 𝑙, 𝑑) 𝐸2 = Σ
(𝜋,𝑛,𝑐,?) ∈O

I recv(𝜋, 𝑛) + Σ
𝑙∈L

I forRecv(𝑐, 𝑙, 𝑑)

ImaxOneRendezvous =
∧

(𝜋,𝑛,𝑐,!) ∈O
P(𝜋) = 𝑛 + 1 =⇒

∧
(𝜋 ′,𝑛′,𝑐,!) ∈O

𝜋 ′ ≠ 𝜋 =⇒ P(𝜋 ′) ≠ 𝑛′ + 1

I sync(𝑐) = ACK ≤ 𝑐 ≤ SND ∧ 𝑐 = 𝐸1 − 𝐸2 ∧ ImaxOneRendezvous

𝑝 = (𝜋 ′, 𝑛′, 𝑐)
I chan(𝑝) = 𝜓 (𝜋 ′, 𝑛′) =⇒ if 𝜅 (𝑐) > 0 then Iasync(𝑐) else I sync(𝑐)

Fig. 12. Invariant generation rules for buffered and unbuffered channels operations.

concurrency primitives [8, 22, 38]. Functions are related if they are connected in the call graph and
share concurrency primitives. A fragment is constructed from a function that allocates concurrency
primitives. All callees that use concurrency primitives are transitively included. Concurrency
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Syntactic occurrences

𝑤𝑎 = (𝜋, 𝑛,𝑤, 𝑒) ∈ WA ⊆ Π × 𝑁 ×W × E Occurrences of𝑤.Add(𝑒)

𝑤𝑤 = (𝜋, 𝑛,𝑤) ∈ WW ⊆ Π × 𝑁 ×W Occurrences of𝑤.Wait()

𝑙 = (...,𝑊 ) ∈ L ⊆ ... × ℘(WA) Occurrences of for extended with𝑤.Add(𝑒)

𝑤𝑎 = (𝜋, 𝑛,𝑤, 𝑒) ∈ WAL =
⋃

{𝑊 | (...,𝑊 ) ∈ L} 𝑤.Add(𝑒) operations in loops

𝑖 = (𝜋, 𝑛, 𝑛′, 𝑛′′, 𝑒) ∈ I ⊆ Π × 𝑁 × 𝑁 × 𝑁 × E Occurrences of if

𝑟 = (𝜋, 𝑛) ∈ R ⊆ Π × 𝑁 Occurrences of return
Invariant generation with support for waitgroups

𝑤𝑎 = (𝜋, 𝑛,𝑤, 𝑒) 𝑜 ∉ WAL

Iadd(𝑤𝑎) = if 𝜓 (𝜋, 𝑛) ∧ 𝑛 < P(𝜋) then 𝑒 else 0
𝑤𝑎 ∈ WAL

Iadd(𝑤𝑎) = 0

𝑙 = (𝜋, 𝑛, 𝑛′, 𝑥, 𝑒, 𝑒′,𝑂,𝑊 ) 𝐴 = {(�̂�, 𝑒) | (𝜋, �̂�,𝑤, 𝑒) ∈𝑊 }
𝐸1 = Σ

(𝜋,�̂�,𝑤,𝑒 ) ∈𝑊
𝑒 𝐸2 = Σ

(�̂�,𝑒 ) ∈𝐴
if �̂� < P(𝜋) < 𝑛′ then 𝑒 else 0

I forAdd(𝑤, 𝑙) = if 𝜓 (𝜋, 𝑛) then (𝑥 − 𝑒) ∗ 𝐸1 + 𝐸2 else 0

𝐸 = Σ
𝑙∈L

I forAdd(𝑤, 𝑙) + Σ
(𝜋,𝑛,𝑤,𝑒 ) ∈WA

Iadd(𝜋, 𝑛)

Iwg(𝑤) = 0 ≤ 𝑤 ∧𝑤 = 𝐸

𝑟 = (𝜋, 𝑛)
I ret(𝑟 ) = 𝜓 (𝜋, 𝑛) =⇒ !(𝑛 < P(𝜋) < T(𝜋))

𝑔 = (𝜋, 𝑛, 𝜋 ′)
Igo(𝑔) = 𝜓 (𝜋, 𝑛) ∧ 𝑛 < P(𝜋) ⇐⇒ P(𝜋 ′) ≠ −1

𝑖 = (𝜋, 𝑛1, 𝑛2, 𝑛3, 𝑒)
I if (𝑖) = if 𝑒 then !(𝑛2 ≤ P(𝜋) < 𝑛3) else !(𝑛1 < P(𝜋) < 𝑛2)

𝑙 = (𝜋, 𝑛, 𝑛′, 𝑥, 𝑒, 𝑒′,𝑂,𝑊 )
I for (𝑙) = if 𝜓 (𝜋, 𝑛) ∧ 𝑒 ≤ 𝑒′

then 𝑒 ≤ 𝑥 ≤ 𝑒′ ∧ (P(𝜋) < 𝑛 =⇒ 𝑥 = 𝑒) ∧ (𝑛 < P(𝜋) < 𝑛′ =⇒ 𝑥 < 𝑒′)
∧ (𝑛′ ≤ P(𝜋) =⇒ 𝑥 = 𝑒′)

else 𝑥 = 𝑒 ∧ !(𝑛 < P(𝜋) < 𝑛′)

Fig. 13. Invariant generation rules for waitgroups.

parameters are recorded while the fragment is being identified. Fragments are ruled out if precision
is degraded in the discovery phase due to, e.g., escaping channels.
We adopt Gomela’s front-end to excise each fragment from its calling context, identify con-

currency parameters, and strip it of non-concurrent operations. These fragments are passed to
Ginger for VirGo translation. The crux of the translation technique is to over-approximate the
Go semantics by preserving the control flow and the interactions with concurrency primitives but
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Precondition generation with support for waitgroups

𝑙 = (𝜋, 𝑛1, 𝑛2, 𝑥, 𝑒1, 𝑒2,𝑂,𝑊 )
for (𝑤, 𝑙) = Σ

(𝜋,𝑛,𝑤,𝑒 ) ∈𝑊
𝑒 ∗ (if 𝜓 (𝜋, 𝑛1) ∧ 𝑒1 < 𝑒2 then 𝑒2 − 𝑒1 else 0)

𝑤𝑔(𝑤) = Σ
(𝜋,𝑛,𝑤,𝑒 ) ∈WA\WAL

𝑒 + Σ
𝑙∈L

for (𝑤, 𝑙) 𝑉 =⇒ Ξ, 𝜅

balanced (𝑉 ) =
∧
𝑤∈W

𝑤𝑔(𝑤) = 0

Fig. 14. Precondition generation for waitgroups.

abstracting away from non-concurrency related constructs, following techniques used in [8, 17, 18].
Note that since VirGo does not support named function calls and definitions, all process spawning
and function calls are inlined. Additionally, we perform two syntactical transformation on the
internal representation of Go programs to widen the applicability of Ginger.
First, to support the pattern of spawning goroutines in loops, we “commute” nested for-go

patterns to go-for whenever possible, i.e., we transform the fragment on the left below to the one
on the right.

for 0..x { go { P } } =⇒ go { for 0..x { P } }

When P is c!;...;c! or c?;...;c?, this transformation is sound since we transform 𝑘 identi-
cal processes each performing 𝑛 identical operations into one process performing 𝑘 · 𝑛 opera-
tions. The transformation can also be soundly applied when P executes “atomically”, e.g., if P is
mu.lock(); Q; mu.unlock() (for some Q), and mu.unlock() does not appear anywhere else in the
fragment (incl. Q). Ginger raises an alarm when the transformation cannot be applied soundly.

Second, to provide partial support for conditionals in loops, wemerge brancheswhenever possible,
i.e., when they perform the same sequence of concurrent actions. For instance, we transform the
fragment on the left below to the one on the right while preserving behavior equivalence.

for 0..x { if 𝑒 { c! } else { c! } } =⇒ for 0..x { c! }

6.2 Additional Language Features

The VirGo language, as presented in Figure 2, is fully supported by the translation to CoreDafny
implemented in Ginger.

As described in Section 5, synchronous channels (with capacity 0) are encoded using an additional
alternative for send and receive operations. For each operation on 𝑐 , if 𝜅 (𝑐) = 0 then we use an
additional rendezvous state to encode synchronous communication. Waitgroup operations are
encoded by allowing𝑤.Add(𝑒) to increment the corresponding state variable by 𝑒 , and𝑤.Wait()

by blocking until the counter is set to 0. We also support standard mutexes by encoding them as
channels of capacity one. If-then-else are supported bymapping each program point to a conjunction
of conditionals that must be met for the instruction to be reachable. Every variable in conditionals
that does not correspond to known concurrency parameters produces a fresh Dafny variable. Return
statements are encoded as a jump to the termination point of the relevant process (T(𝜋)). Using
these techniques, Ginger can analyze programs such as the fragment in Figure 1 (right), which
includes a conditional and a return statement. We use a similar technique to support standard
patterns such as blocking operations with timeouts, e.g., the Go program on the left becomes the
VirGo program on the right below:
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Table 1. Expressible fragments, and results of their verification.

Primitive Fragments Expressible

First successful strategy

Total Strat. 1 Strat. 2 Strat. 3

Channels 258 159 (61.6%) 157 41 116 0
WaitGroup 205 171 (83.4%) 170 86 67 17
Both 120 48 (40%) 46 18 25 3
Total 583 378 (64.8%) 373 145 208 20

select {

case res := <-c1:...

case <-time.After(time.Second ):... }
=⇒ if timeout_123 { c1?;... }

else { ... }

The generated precondition may constrain fresh variable timeout_123.

7 Evaluation

We evaluate the approach by running Ginger on code fragments extracted from the large enterprise
code base of Uber, which includes thousands of thoroughly tested microservices. The code base
consists of ∼3million LoC across packages that contain concurrency features. From these packages,
we extracted 583 parameterized fragments (|X| > 0) discovered using a simple syntactical analysis
on the code base. The syntactical analysis selects fragments that are parameterized (they include
parameterized loop bounds or a concurrency operation such as make(chan T, k) or wg.Add(k),
where k is a variable). Overall these parameterized fragments total 30, 777 lines of code, where
individual fragments are 53 lines on average, ranging from 7 to 309 lines. The number of distinct
concurrency parameters per fragment has an average of 1.08 and ranges from 1 to 3, and concurrency
parameters are used 2.20 times on average, between 1 and 6 times. Although typical fragments are
small, they often exhibit complex concurrent behavior as in the motivating example from Section 2
and Examples 7.1 and 7.2 below.

We answer the following questions:
RQ1 How many parametric fragments can be expressed in VirGo via Ginger?
RQ2 How many expressible fragments can be successfully verified?
RQ3 How much CPU time does it take to verify VirGo encodings?

RQ1 - VirGo expressivity Table 1 shows the expressivity of VirGo wrt. the 583 parameterized
fragments we extracted from Uber’s code base. We classify fragments based on the types of concur-
rency primitives affected by parameters and measure the relative number of VirGo-expressible
fragments. Note that 294 (out of 378) fragments are expressible thanks to a sound application of the
go-for commute transformation; 32 additional fragments necessitated a potentially unsound go-for
commute transformation. For all of these we manually confirmed that the analysis is sound. When
translation fails, it is due to unsupported features, e.g., general select statements, or unsupported
loops (nested, non-terminating, etc.). Features such as premature loop exit (via break or return)
are suitable candidates for future work, while others are more challenging, e.g., non-deterministic
select statements in loops.
RQ2 - Verifiability Table 1 also shows the precondition strategy that succeeds first, applied in the
same order as presented in Section 4.4. The number of fragments verifiable with Strategy 1 relative
to Strategies 2 and 3 suggests that developers often write fragments with some implicit assumptions.
Strategies 2 and 3 help make these assumptions explicit. Suggested preconditions validated by
Strategy 2 can be used by the developer to devise counter-examples e.g., by challenging assumptions
about the sign of values used for channel capacities. When the verification fails with Strategy 2,
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1 done = chan [0];

2 go { done!; };

3 go {

4 for 0 .. readers / 2 {

5 done!;

6 }

7 };

8 go { done!; };

9 go {

10 for readers / 2 .. readers {

11 done!;

12 }

13 }

14 go {

15 for 0 .. readers + 2 {

16 done?;

17 }

18 }

(a) Successfully verified example.

1 if numLevels == 0 { return } else { skip }

2 w = WaitGroup;
3 c = chan [numLevels ];

4 for 0 .. complianceLevels { w.Add (1); };

5 go {

6 for 0 .. complianceLevels {

7 c!;

8 w.Add(-1);

9 }

10 };

11 w.Wait ();

12 for 0 .. numLevels {

13 c?;

14 }

(b) Example that fails to verify.

Fig. 15. Complex examples of VirGo-expressible programs.

the invariant constructed in Section 4.3 is too weak to support the proof. Failure to verify with
any strategy is either caused by unsuccessful applications of the go-for commute transformation
presented in Section 6.2 (three cases) or by loss of vital constraints over concurrency parameters in
the front-end.

Although we manually validated the fragments verified by Ginger, the impact of these bugs on
the overall system’s functionality would need to be evaluated in a wider context, and ideally in
conjunction with the developers. Additionally, our manual validation process, may not capture all
contextual dependencies and interactions within the entire code base, potentially overlooking the
broader implications of the detected bugs.

Next we discuss two VirGo programs (adapted from representative Go code) that highlight the
challenge addressed by the technique.

Example 7.1. Figure 15a is a program for which the absence of partial deadlocks depends the value
of readers. At first glance, the number of send operations on done appears equal to the number of
receive operations, making the program partial deadlock free. However, readers corresponds to an
unconstrained function parameter, and thus may be instantiated to a negative number, in which
case there will be unmatched (blocking) send operations.
If the number of loop iterations is defined as iter(𝑥,𝑦), where iter(𝑥,𝑦) = 𝑚𝑎𝑥 (𝑦 − 𝑥, 0),

Ginger infers the following precondition and validates it with Strategy 2:

iter(0, readers/2) + iter(readers/2, readers) + 2 = iter(0, readers + 2)
When readers is negative, the equality may not be satisfied (e.g., if readers = −2 the formula
reduces to 2=0), and some of the sending goroutines get stuck.
For this example, Goat [38] and GCatch [22] unconditionally report partial deadlocks as they

either over-approximate or unsoundly fix the number of loop iterations without considering the
arithmetic connection between loop bounds. By contrast, Gomela [8] fails to detect the partial
deadlock because readers is not tested by default for negative values.

Example 7.2. The program in Figure 15b is an example of a correct program that Ginger is unable
to verify. In the source program, complianceLevels is assigned to numLevels, but the front-end fails
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Table 2. Verification time per CoreDafny program per strategy (including failures). All experiments were

performed on a MacBook Pro™ with a M1 Pro CPU (10 cores), and 32GB of memory.

Precondition strategy

Number

of fragments

Verification time (s)

Avg. P50 P90 Max

Strategy 1 378 2.19 1.73 3.08 4.3
Strategy 2 233 2.85 2.98 3.17 5.33
Strategy 3 25 2.86 2.98 3.21 3.32

to capture this equality. For this reason, all precondition strategies fail because send operations
cannot be unblocked by receive operations, as all receive operations may only be executed after
waiting on the waitgroup has been unblocked. The inferred balanced precondition is:

0 < numLevels ≤ complianceLevels ≤ numLevels + numLevels

It is easy to see that this condition is satisfied when numLevels == complianceLevels. As in the
previous example, other tools fail to precisely reason about this example, as it is parameterized.
Notably Gomela reports that some valuations fail and others succeed.

RQ3 - Performance In Table 2, we measure the verification time for each precondition strategy.
We omit the execution times of the Gomela and Ginger translation phases as they are negligible.
The majority of examples can be verified in under four seconds. This shows the technique can be
applied to many real-world examples in a practical amount of time.

8 Related Work

Several approaches have been developed to detect or rule out bugs in concurrent Go programs.
Besides the static verifiers we mentioned earlier (Goat [38], Gomela [8], GCatch [22]), earlier works
include static checkers based on behavioral types [11, 17, 18, 27], abstract interpretation [24], and
forkable regular expressions [34]. Except Gomela, which instantiates concurrency parameters
based on user-provided values, all these approaches over-approximate concurrency parameters, or
otherwise rely on unsound heuristics to handle imprecision introduced by loops, failing to perform
a trustworthy analysis of Figure 1. Additionally, they cannot suggest preconditions that enforce
partial deadlock freedom. Another static verifier for Go programs is Gobra [39], an extension of the
Viper [26] framework, which enables the verification of programs for memory safety and partial
correctness based on user-provided specifications (e.g., pre- and post-condition annotations within
Go Programs). Gobra cannot detect blocking bugs such as partial deadlocks.
Dynamic partial deadlock detection techniques have also been proposed, such as [35], and

GoLeak and LeakProf [30], two dynamic tools introduced by Uber that leverage an extensive testing
and profiling infrastructure. GFuzz [21] relies on random exploration of test execution paths by
fuzzing select case choices. Yuan et al. [40] have curated a benchmark suite of Go programs that
targets dynamic verifiers and does not include parameterized communication patterns.
The automated generation of invariants has been studied extensively with particular focus on

(sequential) transition systems rather than concurrent program fragments. Well-known techniques
such as Craig interpolation [14, 23] and IC3 [3] (aka. PDR [9]) require exact knowledge of the
underlying transition system, with the latter notably being adapted for software verification [5].
Some techniques rely on the existence of templates from which to derive invariants [4, 6, 33]. Other
techniques use a black-box approach based on learning [12, 28] or large language models [15]. The
discovery of invariants at runtime has also been studied, most notably with Daikon [10] which
aims at discovering a (sequential) program’s likely invariants by analyzing its executions. Our
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technique uses a white-box approach and generates invariants following patterns informed by the
specific communication mechanisms and their usage in Go. The techniques above could complete
ours when it fails to generate a strong enough invariant.
Parameterized verification [2] addresses the analysis of concurrent system with an arbitrary

number of processes, where some verification techniques generate invariants, e.g., [29]. While
VirGo does not natively allow the arbitrary spawning of processes, it supports arbitrary parameters
for loop bounds, path conditions and communication primitives.

Dafny has generally been used to write correct-by-construction programs, including concurrent
systems [20], but not often as the backend verifier. We conjecture that using Dafny’s backend,
Boogie [1], would improve CPU-time at the cost of reduced transparency for the intermediate steps.
The Civl verifier [16] (a recent extension of Boogie) could serve as an alternative back-end. Civl
natively supports concurrency, and hence might allow us to simplify our encoding.

9 Conclusion

We have presented a novel approach for automatically verifying partial deadlock freedom in
program fragments that feature parametric communication, by translating Go fragments to Dafny
programs. The experimental results demonstrate that the approach can be used on an enterprise
code base to verify a large number of such fragments that are out of reach for other verification
techniques. For future work, it may be interesting to explore opportunities for generalizing the
approach to cover a larger family of parameterized fragments and to adapt the approach to related
languages that support channel-based process communication, such as Rust and Kotlin.

Data Availability Statement

The source code of Ginger is available at https://github.com/VladSaioc/ginger. An artifact that
contains Ginger, the illustrated examples, and some additional fragments representative of real life
coding patterns is archived on Zenodo [32]. Due to their proprietary nature, the fragments used in
the evaluation are not publicly available.
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