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Abstract

This paper establishes a notion of message-safe programs as
a natural intermediate point between dynamically typed and
statically typed Dart programs.

Unlike traditional static type checking, the type system
in the Dart programming language is unsound by design.
The rationale has been that this allows compile-time detec-
tion of likely errors and enables code completion in inte-
grated development environments, without being restrictive
on programmers. We show that, despite unsoundness, judi-
cious use of type annotations can ensure useful properties of
the runtime behavior of Dart programs. This supports evolu-
tion from a dynamically typed program to a strictly statically
typed form.

We present a formal model of Dart that elucidates how
a core of the language and its standard type system works.
This allows us to characterize message-safe programs and
present a theorem stating that such programs will never
cause ‘message not understood’ errors, which is generally
not guaranteed for Dart programs that pass the standard type
checker. The formal model has been expressed in Coq.

Categories and Subject Descriptors D.3.1 [Programming

Languages]: Formal Definitions and Theory

General Terms Languages

Keywords Dart, type systems

1. Introduction

Most mainstream object-oriented languages are statically
typed, with well-understood soundness properties ensuring
that certain errors cannot occur at runtime. It is also well-
known that dynamically typed languages without type an-
notations can offer great flexibility at the cost of poten-
tial type related errors at runtime. Many intermediate levels
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have been proposed and studied, e.g. [2, 3, 5, 10, 13, 16–
18, 21, 22]. The Dart programming language [9] strikes
an interesting new balance, with a type system far less re-
strictive than required for traditional soundness. Dart per-
mits programmers to provide type annotations selectively
and thereby decide which parts of the program should be
statically type checked. The type system does not support
type soundness in the traditional sense: even for fully an-
notated programs, the static type checker may miss some
type-related errors. However, the type system has been de-
signed in a principled manner, and it does guarantee inter-
esting properties at runtime.

Support for evolution of programs from a dynamically
typed form into a statically typed form is valuable. To or-
ganize this software evolution process in a more structured
manner, we propose message-safe programs as an interme-
diate form between one that passes the standard Dart type
checker, and one that is type correct according to a tradi-
tional, sound type system.

To show that message-safe programs can be defined pre-
cisely and that they have the desired properties, we have cre-
ated a formal model of a core of the Dart programming lan-
guage, in the style of Featherweight Java [12] and based on
the most recent language specification [9]. We state a the-
orem that message-safe programs will not incur ‘message
not understood’ errors (technically, NoSuchMethodError
exceptions) at runtime.

The contributions of this paper are as follows:

• We present a core calculus of Dart called Fletch, speci-
fying its syntax, dynamic semantics, and typing, thereby
elucidating how the core of the Dart language works.

• We define the notion of message-safe programs, which
can be viewed as a natural level between dynamic and
static typing. The significance and relevance of message-
safe programs are motivated by their potential role in
practical software development. To support evolution
from dynamically typed to message-safe programs, we
outline a generalization of message-safety from complete
programs to program fragments.



• We give a specification of the system in Coq, including a
partial proof of the soundness property that message-safe
programs do not cause ‘message not understood’ errors.1

The paper is organized as follows: Section 2 presents
our underlying conceptual analysis, defines the notion of
message-safe programs, and describes a practical approach
to structure the transformation of a program from an untyped
to a typed form. Next, Section 3 introduces our formalization
of a core of Dart, and Section 4 presents the soundness re-
sults. Finally, Section 5 discusses related work and Section 6
concludes.

2. Analysis and Background

This section briefly describes the Dart language with a fo-
cus on the type system design. We then define message-safe
programs, and outline a two-step approach to structure trans-
formations from untyped to typed programs.

2.1 The Dart Programming Language

The Dart language is a recently introduced object-oriented
programming language that shares many traits with Java [11]
and C# [7], and others with JavaScript [8]. Although the
Dart language is primarily aimed at web programming, it
is a general purpose language, and our results are appli-
cable independently of any application domain. The lan-
guage is class based, and objects do not change class nor
add or remove members during their lifetime, which posi-
tions the language near the Java style of mainstream object-
orientation; the family resemblance is also strong in the area
of syntax, and with many other details.

However, a fundamental difference is that type annota-
tions are optional in Dart programs, and the dynamic se-
mantics of the language is independent of the type annota-
tions, which positions it closer to many dynamically typed
languages, e.g., JavaScript. That connection is underscored
by the fact that one of the main techniques used to execute
Dart programs is to translate them into JavaScript programs.
A native Dart virtual machine is also available, but currently
not widely deployed [19].

The Dart language offers a useful trade-off between dy-
namically and statically typed object-orientation, and its
type system deserves a more in-depth discussion.

2.2 The Dart Approach to Typing

We consider two kinds of type-related errors:
• A ‘message not understood’ error may occur at object

property (field or method) lookup operations, e.g., at x.p
if the object x does not have the specified property p,
or at x.m(y,z) if x.m does not resolve to a closure, or
the number of arguments is wrong. Technically, this is a
NoSuchMethodError exception.

1 The proof, http://cs.au.dk/~fstrocco/fletch/qpalds.html, is
partial in the sense that the current Coq source code include a small set
of unproven (’Admitted’) but plausible lemmas. Technically, the top level
results have been reduced to those unproven lemmas.

• A ’subtype violation’ error may occur at assignments,
calls, and return operations (note that these are the op-
erations with an associated data-flow), e.g., x = y, if the
runtime type of y is not a subtype of the declared type of
x. Technically, this is a TypeError exception.

Dart typing involves the dynamic semantics, which has
two modes of execution. Production mode execution pro-
ceeds without any use of type annotations. It will never fail
due to a ‘subtype violation’ error, but it might fail due to a
‘message not understood’ error.

Checked mode execution includes subtyping tests at as-
signments, calls, and return operations at runtime to de-
tect ‘subtype violation’ errors. Checked mode can also have
‘message not understood’ errors, and both modes can of
course have other errors, e.g., divide by zero. The idea is that
checked mode execution may be used by programmers dur-
ing development to catch type-related errors as with tradi-
tional static typing, whereas production mode will continue
to execute if at all possible.

There is a significant difference between sound static typ-
ing and the level of type checking that the standard Dart type
system employs. As mentioned, Dart type checking is so per-
missive that it allows for many programs that cause runtime
type errors. This is the consequence of a conscious trade-
off by the language designers [15]: Sound type systems re-
quire programmers to handle a large amount of complexity
in order to enable a sufficiently expressive style of program-
ming. Conversely, a type system that is not sound can be
simpler and more flexible. In general, the Dart type system
detects obviously wrong typing situations instead of guar-
anteeing type correctness, which makes it somewhat similar
to success typing [13]. However, the lack of soundness does
not make type declarations less useful for other purposes. In
particular, types can be very helpful in making the program-
mer’s expectations and intentions explicit, thus enabling type
sensitive lookup and completion features in integrated devel-
opment environments (IDEs).

There are three main causes of type unsoundness in Dart.
First, initialization, assignment, and argument passing must
satisfy an assignability check rather than a subtype check;
the difference is that both subtypes and supertypes are al-
lowed, but unrelated types are rejected. This means that the
type system accepts code that might work, but rejects code
that will definitely not work (in checked mode — it might
still work in production mode). This is of course not sound,
but it does single out the cases where the types are obvi-
ously wrong and hence require attention. Second, generic
types are considered covariant (e.g., List<Car> is a sub-
type of List<Vehicle> iff Car is a subtype of Vehicle).
This is not sound, but the trade-off is useful and meaningful,
as known from arrays in Java. Third, function types require
only assignability for the argument types and for the return
type, rather than the usual sound scheme where argument
types are contravariant and return types covariant.



A fact worth noting is that assignability is not transi-
tive. The following program fragment is accepted by the
Dart type checker, because both assignments satisfy the
assignability requirement, but an int value is not assignable
to a String variable, and hence a checked mode execution
will fail:

Object obj = 1;

String s = obj; // fails in checked mode

The lack of transitivity makes assignability quite inconve-
nient to work with in a formal model. The reason is that, in
general, a non-transitive typing relation fails to preserve re-
lations over multiple steps. We illustrate how this invalidates
the typical line of reasoning in a type soundness proof:

Assume that we consider a variable declaration with an
associated initialization expression,T x = e, and that we have
a proof that e has the type S, which is a subtype of T . Typing
succeeds, because it is allowed to initialize x with a value
whose type is a subtype of the declared type T . Now assume
that one more step is taken in the execution of the program,
changing e to e′, and assume that we have a proof that e′

has the type S′, which is a subtype of S. At this point, the
standard proof (of the type preservation part of soundness)
proceeds to use the transitivity of subtyping to conclude that
T x = e′ is type correct. However, without transitivity, we
cannot conclude that T x = e′ is type correct.

This kind of phenomenon breaks the standard line of rea-
soning about type soundness. Hence, our formal model has
been created such that it avoids the concept of assignabil-
ity. Interestingly, we have succeeded in obtaining our sound-
ness result using an even less restrictive type system where
the assignability requirements in the standard Dart type rules
have been omitted. In the same vein, the Dart language spec-
ification includes the notion of a type being more specific

than another type, which amounts to a slightly modified ver-
sion of subtyping. This relation is transitive, and we use it
directly in our treatment of soundness (Section 3.6).

2.3 Message-Safe Programs

Under which conditions can a Dart programmer be certain
that her program will not raise any ‘message not understood’
error during checked mode execution? This section presents
the core concept that can lead to such a guarantee.

We define a message-safe Dart program as one that satis-
fies the following requirements:

1. Every field, method argument, and local variable has an
explicitly declared type, and this type is never dynamic.

2. Type checking the program produces no static type warn-
ings2 using the standard Dart type checker with the fol-
lowing modifications:

2 The notion of a static type warning in the Dart specification corresponds
to a type error in most other languages; the point is that the type checker
rejects the program, but it is possible to run the program anyway.

(a) The type signature of an overriding method must be
identical to that of the overridden method.

(b) Subtyping among function types requires contravari-
ant argument types and covariant return types.

(c) If f is the name of a field declared in a class C and also
inherited from its superclass D then the type of f in C
must be a subtype of the type of f in D.

(d) An expression e of type Function, Object, or
dynamic cannot be invoked (as in e(e1..ek)).

One of our key contributions is to demonstrate that these re-
quirements suffice, as shown in the following sections. In-
formally, requirement 2(a) is motivated by the fact that a
method override with an unrelated return type could easily
cause a ‘message not understood’ error for a property looked
up on the returned value. Similarly, a ‘message not under-
stood’ error arises if the number of arguments is wrong. For
simplicity, in order to stay close to traditional OO typing,
and in order to prepare for strict static typing, we have not
allowed for covariant return types nor for arbitrary argument
types in this requirement, but that would be an easy gener-
alization. Requirement 2(b) is motivated by the same line
of reasoning as 2(a), once again staying close to traditional
function type rules and omitting the easy generalization to
allow arbitrary argument types. Requirement 2(c) could be
loosely described as “field overriding must be covariant”;
overriding for fields makes sense because all accesses use
getters and setters. Requirement 3(d) is necessary because
these particular cases implicitly introduce the dynamic type,
and the arity is left unchecked. Clearly, it would not be hard
to implement a checker that decides for any given Dart pro-
gram whether it is message-safe or not.

2.4 Message-Safety and Nominal Identity

A useful intuition about message-safe programs is that they
make programmers decide on a specific choice of the mean-
ing of every property (method or field) that is used in the pro-
gram. More concretely, for every property lookup (e.g., x.f)
in such a program, the declared type of the receiver object (x)
ensures that the property (f) is defined. Since the Dart types
are nominal, we say that message-safe programs enforce the
commitment to a specific nominal identity for each property
lookup operation. Such a nominal identity provides the lo-
cation in the source code where the property is defined and
where the documentation about how to use or redefine this
property should reside.

Of course this is all informal, and the property docu-
mentation may be absent or misleading, but compared to
the non-message-safe situation where a given property be-
ing looked up could resolve to many different declarations
in a large software system (such as “any declaration with
the right name”), we believe that the static commitment to
a nominal identity (which is essentially the same thing as
the static commitment to one particular declaration with the



right name) is a powerful tool for clarification of the intended
use and semantics of that property, and for communication
among developers, thus helping them toward writing well-
understood and correct software.

Late binding may cause the invocation of a method, e.g.,
x.m(y), to execute a method implementation in a subclass,
D, of the one, C, that contains the statically known imple-
mentation of m for that invocation. However, even though
the runtime value of m is from D, the documentation about m
is likely to be found in C or one of its superclasses. Hence,
the statically known declaration of m still serves as a com-
mitment to a specific nominal identity for m, also when late
binding is taken into account.

2.5 Message-Safety for Program Fragments

The notion of message-safety also makes sense for program
fragments, not only for complete programs. In fact, such a
generalization is almost trivial in most cases. Consider a
property access expression on the form x.f or x.m(...)
where x is a local variable or a formal argument to a method;
in this case a local check on the declared type of the receiver
x suffices to ensure that the property access will never cause
a ‘message not understood’ error in checked mode at run-
time. For the field access we just check that the receiver type
declares a field (or getter) named f, and for the method call
we check that the method exists, with the given arity. If x is
a field in this object, the relevant fragment of the program
is the enclosing class and all its subclasses; the subclasses
must be inspected in order to verify that there is no sub-
class that violates requirement 2(c) with respect to the field
x. For an access expression applied to a returned value, e.g.,
x.m(...).f or x.m(...).n(...), we must check that the
return type of m declares the requested property. Finally, first-
class closures in Fletch support a direct inspection of their
dynamic type (as opposed to the approaches using blame
assignment where checks must be delayed because the dy-
namic type of a closure cannot be inspected without calling
it), which makes it possible to treat them just like objects
when considering message-safety.

Although we focus on complete programs in this paper,
this suggests that the concept of message-safety can be gen-
eralized to a modular setting. From a software engineering
point of view, a developer who is working with a large pro-
gram could then use such a modular message-safety check
on one property lookup at a time, for example focusing on
a critical program fragment and thereby obtaining the ben-
efits of message-safety for that fragment, without requiring
the conditions from Section 2.3 to be satisfied for the entire
program.

2.6 A Two-Step Approach toward Type Safety

The Dart language specification [9, page 112] suggests that
a sound type checker can be implemented and used, for ex-
ample, as a stand-alone tool. This is a rather well-understood
undertaking, and we will not focus on sound type systems in

this paper. Instead, we observe that message-safe programs
constitute an intermediate form between dynamic typing and
sound static typing, which enables a structured evolution to-
ward type safe programs. The set of message-safe programs
separates such a transformation into a predominantly local
step that considers the usage of object features at property
lookup operations where ‘message not understood’ errors
may occur, and a global step that considers subtype con-
straints at assignments and other data-flow operations where
‘subtype violation’ errors may occur.

As an example, consider the following untyped program:

class Account {

var balance = 0;

withdraw(amount) {

balance -= amount; return amount;

}

}

pay(account,amt) {

return account.withdraw(amt) == amt;

}

make() { return new Account(); }

main() { var acc = make(); pay(acc,10); }

The first step toward a type safe program is to make the
program message-safe, the main part of which is adding
type annotations. For the programmer, a useful way to think
about this transformation is that every lookup operation (as
in x.f) enforces a sufficiently informative type (of x) to
ensure that the corresponding lookup (of f) will succeed.
In the example above, the use of account.withdraw(amt)
thus forces account to have a sufficiently informative type
to ensure that it has a withdrawmethod with one argument.
Here is a corresponding message-safe program:

class Account {

int balance = 0;

Object withdraw(Object amount) {

balance -= amount; return amount;

}

}

Object pay(Account account, Object amt) {

return account.withdraw(amt) == amt;

}

Object make() { return new Account(); }

void main() { Object acc = make(); pay(acc,10); }

Note that acc can have type Object because no features
are used via this variable, in contrast to account. It is not
required for message-safe programs that all types are as
general as possible (e.g., pay could return type bool), but
it is likely to be a practical and maintainable style to commit
only to the types required for property lookups.

The second step in the transformation to a type safe pro-
gram is to propagate types according to the dataflow that
takes place in assignments and argument passing operations.
Whenever a value is passed from some expression into a
variable, the expression must have a type that is a subtype
of that variable, and similarly for function arguments and



return values. This is achieved by replacing declared types
by subtypes in a process similar to constraint propagation,
until the program satisfies the standard subtype constraint
everywhere. A corresponding statically safe program is as
follows:

class Account {

int balance = 0;

int withdraw(int amount) {

balance -= amount; return amount;

}

}

bool pay(Account account, int amt) {

return account.withdraw(amt) == amt;

}

Account make() { return new Account(); }

void main() { Account acc = make(); pay(acc,10); }

In general, both steps may require restructuring of the
program code itself, not just insertion or adjustment of type
annotations: e.g., the code may be inherently type unsafe
(such that some executions will produce a ‘message not un-
derstood’ error at runtime), or it may be safe only according
to a structural typing discipline (such that some property ac-
cesses will succeed with different unrelated nominal types
at different times). But for programs that have a safe nomi-
nal typing, it seems plausible that the constraint solving step
could be performed automatically. However, exploring algo-
rithms for that is future work, and in this paper we will focus
on message-safe programs.

Note that the type annotations in the first step can be cho-
sen entirely based on the local use of features of each object,
without any global considerations. This fits nicely with the
expected importance of IDE support for code completion.
The intermediate message-safe program may raise ‘subtype
violation’ type errors at runtime, but it will not raise ‘mes-
sage not understood’ errors. The conceptual significance of
this is that, in message-safe programs, the type annotations

justify the actual property lookups but there is no guarantee

that the flow of data conforms to those type annotations.

3. Fletch

Fletch is a calculus that aims to capture the essence of the
Dart language, including the interaction between types and
checked mode execution. Fletch includes just enough ele-
ments from Dart to faithfully characterize the core of the
Dart type system and the associated dynamic semantics.

We specify two distinct type systems for Fletch: the stan-

dard type system, which, being the core of the Dart type sys-
tem, elucidates how Dart typing works; and the message-

safe type system, which embodies the additional constraints
required for making programs message-safe. The type sys-
tems are so similar that we specify them using a single set
of type rules; highlighted elements in the type rules should
then be omitted or included as described in the caption of
each figure to produce the two variants.

CL ::= class c <X ✁ N> extends N {F M}
F ::= G f ;

M ::= T m(G x) {return e; }
e ::= y | e.p | e.p = e | x = e | e(e) | new N() |

fn | JT, eK | τ = e | l

fn ::= T (G x) ⇒ e
y ::= x | this | null
p ::= f | m

l ::= ι | τ

T ::= G | void
G ::= X | N | dynamic | ⊥ | (G) → T
N ::= c<G>

Figure 1. Fletch syntax. Boxed parts occur only at runtime.

The calculus supports a ‘typeless’ style of programming:
put dynamic in all locations where a type is required. It
also supports message-safe programs: the message-safe type
system enforces programs with no occurrences of dynamic
to be message-safe, i.e., it embeds the requirements from
Sect. 2.3.

As is typical for such calculi, many features have been
omitted, e.g., general statements. A notable omission is con-
ditional expressions (b?e1:e2), which would require union
types in order to be integrated into Fletch. Apart from a cou-
ple of trivial syntactic abbreviations and some extensions
needed to describe runtime states, Fletch is a syntactic and
semantic subset of the Dart language, such that Fletch pro-
grams can easily be adapted to run on a Dart interpreter, with
the same behavior.

3.1 Syntax

Dart is an imperative language with classes, whose syntax
builds on the family of languages that includes Java, C++
and C#. Figure 1 shows the syntax of Fletch. The declara-
tion categories CL, M , and F define classes, methods, and
fields, and they are unsurprising. As usual, a denotes the pos-
sibly empty list a1, ..., an, n ≥ 0 of elements denoted by a;
nodup(a) indicates that the list a contains no duplicates.

Expressions (e) specify computations, including variable
and property lookups, assignments, function invocations,
object creation, anonymous functions, and runtime expres-
sions. Variables (y) denote method arguments (x) and the
predefined names this and null. Locations (l) are variable
locations (τ ) or heap locations (ι), which we will discuss
in Section 3.2. Names of fields, methods, classes, method
arguments, type parameters, variable locations, and heap lo-
cations are disjoint, and denoted by f , m, c, x, X , τ , and ι
respectively. In a slight abuse of notation we will use gram-
mar nonterminals to indicate sets of terms; for example, e
stands for the set of all syntactic expressions and we also
use e as a metavariable that ranges over this set.



Frame expressions JT, eK arise when a function is in-
voked. Such an expression carries the declared return type
of the invoked function. This enables a check on the type of
the returned value, as required for checked mode execution.

The anonymous function syntax T (G x) ⇒ e is slightly
different from the corresponding syntax in Dart, which omits
the return type T . It would be easy to introduce a prepro-
cessing phase that obtains the statically known type of the
returned expression e and adds it as the explicit return type.
In other words, the explicitly declared return types for Fletch
anonymous functions do not add essential information to
programs. However, they do eliminate the need for some
complicated machinery to compute the statically known re-
turn type whenever needed — which includes the dynamic
semantics in checked mode. We deviate slightly from Dart
here to avoid unnecessary complexity.

The class definitions in a program are modeled as a class

table CT : c →֒ CL, which maps a finite set of class
names into class definitions. We use ‘→֒’ to indicate a partial
function.

A class table CT is well-formed iff Object 6∈ dom(CT),
but every other class name used in CT is defined, and inher-
itance is acyclic. A Fletch program is a tuple (CT, e) where
CT is a class table and e is an expression, and it is well-

formed iff CT is well-formed and both e and all expressions
within all classes in CT contain only well-formed types (cf.
Section 3.7) and identifiers that are defined in the relevant
environment.

3.2 Semantic Entities

The operational semantics of Fletch requires more complex
semantic entities than many other calculi. We need to model
a heap in order to express mutability, which we cannot ig-
nore, because the semantics of lexically scoped closures and
checked mode execution depend substantially on being in
an immutable versus a mutable setting. We need an extra
level of indirection on method arguments in order to model
first class closures and lexical nesting. Since local variables
would be given the same treatment as method arguments,
had they been included in the model, we will use the word
variable as interchangeable with method argument.

We model the heap by the maps denoted by the metavari-
able σ, and the indirection for variables by the maps denoted
by ν. The former maps each heap location ι ∈ LocH to an
object or a closure, and the latter maps each variable location
τ ∈ LocV to a type and a heap location, as shown in Figure 2.
We use the word heap to designate the former, variable envi-

ronment to designate the latter, and environment to designate
any of the two. LocH and LocV are disjoint, countably infi-
nite sets.

A good intuition about ν is that it is a log — a steadily
growing map — modeling all the local state used in the exe-
cution so far. Each variable x is systematically replaced by
an invocation specific variable location τ , which ensures that

o : Obj = G× Fields × Methods

φ : Fields = f →֒ G× ι

µ : Methods = m →֒ ι

σ : Heap = LocH 7→ Obj ∪ fn

ν : VarEnv = LocV →֒ G× LocH

s : State = VarEnv × Heap × e

Figure 2. Semantic entities.

variables are aliased across all nested scopes for each invoca-
tion of a method, but distinct for distinct method invocations.

We illustrate this using an example. Assume that a
method m is invoked and returns an object containing two
closures cl1 and cl2, where cl1 will mutate a variable x and
cl2 will use x. An execution of cl1 changing x must then
work such that cl2 evaluates x to the new value. On the other
hand, no such interaction is allowed between cl2 and a clo-
sure C′

1 created from the same expression as cl1 during a
different invocation of m. By the use of variable environ-
ments, all occurrences of x will be replaced by a variable
location τ1 in the first invocation, and by τ2 6= τ1 in the
other invocation. Mutations of x will modify the given vari-
able environment to map τ1, resp. τ2, to new heap locations.

In this way, we model all the bindings in the runtime
stack, including the ones in activation records that have
already been discarded. An alternative approach would be
to model the runtime stack directly. Our approach enables
a significant simplification: we avoid modeling migration
of variables to the heap in case a closure using variables
in an activation record escapes out of the corresponding
method invocation, and we avoid specifying how to detect
that situation.

To be able to express checked mode execution, variable
environments ν provide not only a heap location for ev-
ery variable location, but also the statically declared type
of the corresponding variable, as represented by the syn-
tactic metavariable G from Figure 1. We use the follow-
ing shorthands: ν[τ 7→ ι] stands for ν[τ 7→ (G, ι)] where
ν(τ) = (G, ι′) for some ι′. Similarly, ν(τ) = ι means that
there exists a G such that ν(τ) = (G, ι).

We also introduce objects, closures, field maps, and
method maps. An object o contains its runtime type N (a
class applied to a suitable type argument list), a map φ from
field names to heap locations, and a map µ from method
names to heap locations. A closure is simply represented
by an anonymous function fn . There is no need to equip a
closure with an environment: upon invocation it contains no
free variables, because they have all been replaced by vari-
able locations, and this has been replaced during object
creation by a variable location τthis.

Notationally, [τ/y]e denotes standard capture avoiding
substitution in a Fletch expression e: all free occurrences



[FIELD-BASE]
CT(c) = class c<X ✁ . . .> . . . { . . . G2 f ; . . . }

ftype(c<G1>, f) = [G1/X]G2

[FIELD-SUPER]
CT(c) = class c<X ✁ . . .> extends N . . . {F . . . } ftype([G1/X]N, f) = G2 f 6∈ dom(F )

ftype(c<G1>, f) = G2

[FIELD-DYNAMIC] ftype(dynamic, f) = dynamic

[METHOD-BASE]
CT(c) = class c<X ✁ . . .> . . . { . . . T m(G2 x) { . . . } }

mtype(c<G1>,m) = [G1/X]((G2) → T )

[METHOD-SUPER]

CT(c) = class c<X ✁ . . .> extends N . . . {. . .M}
mtype([G1/X]N,m) = G2 m 6∈ dom(M)

mtype(c<G1>,m) = G2

[METHOD-DYNAMIC] mtype(dynamic,m) = dynamic

Figure 3. Lookup definitions.

of y in e are replaced by τ . The same notation is used for
substitution of types, etc. We also use brackets to denote
maps of any type, i.e., finite, partial functions, listing each
binding in the map. For instance, [τ 7→ (G, ι)] is the map
that maps τ to (G, ι), and [] is the map that is everywhere
undefined (the ‘empty’ map).

The state of a Fletch program during execution is repre-
sented by s (see Figure 2). The class table, CT, is frequently
consulted during execution, however, it is constant through-
out any program execution, so we will generally leave it im-
plicit, as is common in object calculi since Featherweight
Java [12].

Some locations are predefined, e.g., the null pointer,
which motivates the use of the base environments νbase = []
and σbase = [ιnull 7→ onull], where onull = (⊥, [], []) rep-
resents the predefined object null. Every runtime environ-
ment will extend one of these.

3.3 Auxiliary Functions

Figure 3 defines field and method type lookup by the func-
tions ftype and mtype. This will be used for expression typ-
ing as in other object calculi, but it will also be used in the
operational semantics for checked mode. Hence, we need to
introduce them at this point, before we discuss the semantics.
The only nonstandard element of ftype is the treatment of
the receiver type dynamic where all field names are consid-
ered to be defined and having the type dynamic. Similarly,
the only nonstandard part of mtype is that a receiver of type
dynamic is considered to have all methods, each of which
also has the type dynamic.

3.4 Dynamic Semantics

We specify the dynamic semantics of Fletch in terms of
a small-step operational semantics that relates States to
States, that is, each configuration is a triple 〈ν, σ, e〉. Fig-
ure 4 shows the rules for expression evaluation in Fletch.
Every expression evaluates to a heap location ι, which is the
only kind of values that Fletch supports. Expression evalua-
tion may have side effects in terms of updates to the heap or
the variable environment.

The Dart language includes getter and setter methods.
They can be explicitly declared, but otherwise for each de-
clared field the compiler automatically provides a getter and
a setter, and for each method a getter. For instance, if class C
contains field f then new C().f will call the automatically
generated getter method named f that returns the value of
the field f. Similarly, new C().f = e will call the generated
setter method named f= that sets the field f to the value of
its argument e. Since Dart does not introduce any significant
novelties about getters and setters, we only model automati-
cally generated getters and setters. For simplicity we do this
by means of primitive field read/write and method read oper-
ations. This does differ from the language specification, but
it is a faithful model of the core of the language.

Evaluation of a variable location [E-VAR-READ] amounts
to a lookup in ν for a location τ . Assignment to a variable
location τ [E-VAR-WRITE] updates the variable environment
ν to map that variable location to the given value. The sub-
type check in the premise is included iff the execution uses
checked mode, in which case it is enforced that the runtime
type of the new value ι is a subtype of the statically declared
type of the variable location τ . Assignment to a field [E-

FIELD-WRITE] looks up the object at ι1 and creates a new



[E-VAR-READ]
ν(τ) = ι

〈ν, σ, τ 〉 −→ 〈ν, σ, ι〉
[E-VAR-WRITE]

ν′ = ν[τ 7→ ι] ⊢ typeof(ι, σ) <: typeof(τ, ν)

〈ν, σ, τ = ι〉 −→ 〈ν′, σ, ι〉

[E-FIELD-WRITE]

σ(ι1) = (c<G>, φ, µ) φ(f) = (G′, _)

σ′ = σ[ι1 7→ (c<G>, φ[f 7→ (G′, ι2)], µ)] ⊢ typeof(ι2, σ) <: G′

〈ν, σ, ι1.f = ι2〉 −→ 〈ν, σ′, ι2〉

[E-FIELD-READ]
σ(ι1) = (c<G>, φ, µ) φ(f) = (_, ι2)

〈ν, σ, ι1.f〉 −→ 〈ν, σ, ι2〉
[E-METHOD-READ]

σ(ι1) = (c<G>, φ, µ) µ(m) = ι2

〈ν, σ, ι1.m〉 −→ 〈ν, σ, ι2〉

[E-NULL] 〈ν, σ, null〉 −→ 〈ν, σ, ιnull〉

[E-NEW]

F = fields(c<G>) M = methods(c<G>) o = (c<G>, [name(F ) 7→ ιnull], [name(M) 7→ ιmi
])

σ0 = σ[ι 7→ o] where ι is fresh ν′ = ν[τthis 7→ (c<G>, ι)] where τthis is fresh
∀Mi ∈ M : σi = σi−1[ιmi

7→ Ti mi(Gi xi) ⇒ [τthis/this]ei]
where Mi = Ti mi(Gi xi) ⇒ {return ei; } and ιmi

is fresh

〈ν, σ, new c<G>()〉 −→ 〈ν′, σn, ι〉

[E-FUNC]
σ′ = σ[ι 7→ T (G x) ⇒ e] where ι is fresh

〈ν, σ, T (G x) ⇒ e〉 −→ 〈ν, σ′, ι〉

[E-CALL]
σ(ι0) = T (G x) ⇒ e ν′ = ν[τ 7→ (G, ι)] where τ is fresh ⊢ typeof(ι, σ) <: G

〈ν, σ, ι0(ι)〉 −→ 〈ν′, σ, JT, [τ/x]eK〉

[E-RETURN]
⊢ typeof(ι, σ) <: T

〈ν, σ, JT, ιK〉 −→ 〈ν, σ, ι〉

Figure 4. Computational rules for expressions in Fletch. The boxed premises involving typeof are omitted for production
mode execution, but included for checked mode execution.

heap σ′ that differs from the old heap only at ι1, which con-
tains the object updated only at the selected field f to have
the new value ι2. Note that field assignment requires the field
to exist, both in checked mode and in production mode. In
checked mode it is also enforced that the new field value con-
forms to the declared type. Evaluation of a field [E-FIELD-

READ] or a method [E-METHOD-READ]) is straightforward,
and the null literal [E-NULL] evaluates to the null heap ad-
dress.

The new expression [E-NEW] creates and initializes a
fresh object based on the given class, with a null valued
fields map, and with closures corresponding to the method
declarations in the methods map. Occurrences of this in
method bodies are replaced by the location τthis of the
new object; the method arguments will be similarly replaced
upon invocation of each method. The auxiliary functions
fields and methods collect the set of fields and methods,
respectively, for a given type, taking class inheritance and
type parameter substitution into account, similar to ftype

and mtype from Figure 3. We use name to extract the field
names and method names, that is, name(F ) = f for a field
declaration F = G f and name(M) = m for a method
declaration M = T m(G x) { returne; }.

Closure creation [E-FUNC] stores the given closure in the
heap and evaluates to the corresponding heap location. Clo-
sure invocation [E-CALL] evaluates the body of the func-
tion in a new variable environment ν′ created by combin-
ing the current variable environment ν with bindings from
the formal to the actual arguments of the invocation, re-
placing variables by fresh variable locations in the body. In
checked mode, the dynamic types of the actual arguments
are checked against the formal argument types. The resulting
expression packages the declared return type T of the clo-
sure together with the closure body, which is needed in order
to be able to check that the dynamic return value conforms
to the declared return type. The return step [E-RETURN] per-
forms this check, if in checked mode, and produces the con-
tained value.



[ERR-NULLREAD] ν;σ ⊢ ιnull.p ERROR

[ERR-NULLWRITE] ν;σ ⊢ ιnull.f = ι ERROR

[ERR-VAR-WRITE]

τ ∈ dom(ν)
⊢ typeof(ι, σ) 6<: typeof(τ, ν)

ν;σ ⊢ τ = ι ERROR

[ERR-FIELD-WRITE]

σ(ι1) = (N,φ, µ)

f 7→ (S, ι′) ∈ F
typeof(ι2, σ) = T ⊢ T 6<: S

ν;σ ⊢ ι1.f = ι2 ERROR

[ERR-CALL]

typeof(ι, σ) = (G) → T
typeof(ιi, σ) = S ⊢ S 6<: Gi

ν;σ ⊢ ι(ι) ERROR

[ERR-RETURN]
⊢ typeof(ι, σ) 6<: T

ν;σ ⊢ JT, ιK ERROR

Figure 5. Acceptable runtime errors in message-safe pro-
grams.

typeof(ι, σ) =







⊥ if ι = ιnull
c<G> if σ(ι) = (c<G>, φ, µ)

(G) ⇒ T if σ(ι) = T (G x) ⇒ e

typeof(τ, ν) = G if ν(τ) = (G, ι) for some ι

Figure 6. Definition of typeof(ι, σ), which looks up the
dynamic type of a heap location ι in the heap σ, and
typeof(τ, ν), which looks up the declared type of a vari-
able location τ in the variable environment ν.

Figure 5 shows how a failed runtime configuration can be
detected, which is necessary in order to distinguish between
an execution that stops with a subtype violation or a null
pointer error vs. one that stops by encountering a message
not understood. The former is a configuration 〈ν, σ, e〉 where
ν;σ ⊢ e ERROR; the latter is any other stuck configuration.

We omit the associated congruence rules, both in Figure 4
and in Figure 5, as they are entirely unsurprising.

3.5 Typing Support for Evaluation

As Figure 4 shows, the dynamic semantics of Fletch requires
the ability to answer certain simple type-related questions. It
must be possible to determine the runtime types of objects
and closures and the statically declared types of variables.
Figure 6 shows the definition of typeof, which takes a
heap location ι or a variable location τ and determines the
requested type.

[ST-BOTTOM] ∆ ⊢ ⊥ ≪ T

[ST-DYNAMIC] ∆ ⊢ T ≪ dynamic

[ST-VAR] ∆ ⊢ X ≪ ∆(X)

[ST-COVARIANCE]
∆ ⊢ G1 ≪ G2

∆ ⊢ c<G1> ≪ c<G2>

[ST-CLS]
CT (c) = class c<X ✁ N> extends N {...}

∆ ⊢ c<G> ≪ [G/X]N

[ST-REFL] ∆ ⊢ T ≪ T

[ST-TRANS]
∆ ⊢ T1 ≪ T2 ∆ ⊢ T2 ≪ T3

∆ ⊢ T1 ≪ T3

Figure 7. Specific typing definition.

A type environment ∆ is a finite map from type variables
to class types. We use the notation X1 <: N1, ..., Xn <: Nn

for explicit listings, where <: is also used for the subtyping
relation described later. Each element X <: N indicates that
X must be bound to a subtype N ′ of N .

3.6 Subtyping

Specific typing is a partial order on types. We say that ∆ ⊢
T1 ≪ T2 if T1 is a more specific type than T2 in the type
environment ∆, as defined in Figure 7. Note that the rules
follow the declared extends relationship between classes
in the program, but leaves several special cases to subtyp-
ing (defined below), e.g., a rule [SUB-DYN-SUB] that makes
dynamic a subtype of all other types.

Type rules for specific typing do not describe the full
subtype relation for Fletch types. The language has a special
type annotation dynamic that allows the programmer to
leave a type unspecified in the program and unchecked by
the compiler. The type dynamic behaves as a supertype
and as a subtype of any other type in the language, and no
type warnings ever appear for expressions of type dynamic.
Generic type parameters may also be declared as dynamic.

An unfortunate side effect of the type dynamic is that
the subtype relation in Fletch is not transitive. For example,
it is the case that ∆ ⊢ List<int> <: List<dynamic>
and ∆ ⊢ List<dynamic> <: List<String>. If typing
rules for dynamic had been transitive we could conclude
∆ ⊢ List<int> <: List<String>, which should not
hold. Transitivity only holds among class types, but not
when the type dynamic is used.



[SUB-DYN-SUB]
∆ ⊢ dynsub(T1) ≪ T2

∆ ⊢ T1 <: T2

[SUB-FUNs]

assignable
∆
(G1, G2)

assignable
∆
(T1, T2) or T2 = void

∆ ⊢ (G1) → T1 <: (G2) → T2

[SUB-FUNf ]

∆ ⊢ G2 <: G1

∆ ⊢ T1 <: T2 or T2 = void

∆ ⊢ (G1) → T1 <: (G2) → T2

[SUB-OBJECT] ∆ ⊢ (G1) → T1 <: Object

Figure 8. Subtyping definition. The standard type system
(most closely modeling Dart) and the operational seman-
tics use [SUB-FUNs], and the message-safe type system uses
[SUB-FUNf]. The boxes just point out the differences (cf.
Section 2.3, requirement 2(b)).

We need to define a simple syntactic transformation of
types to promote dynamic to the bottom type:

dynsub(T ) =







⊥ if T = dynamic

c<dynsub(G)> if T = c<G>
T otherwise

With dynsub(T ), we can define the subtype relation as
shown in Figure 8. This ensures ∆ ⊢ List<dynamic> <:
List<String>, as ∆ ⊢ List<⊥> ≪ List<String>,
which solves the previously mentioned transitivity problem.

The notion of assignability in object-oriented languages
often coincides with subtyping. As Figure 9 shows, the
assignability relation in Fletch is strictly larger than the sub-
typing relation: types are assignable if either of them is a
subtype of the other. Type parameters are treated likewise.
While this clearly allows programmers to assign values to
variables that cause runtime failures in checked mode, the
static type checker does reject direct assignments between
unrelated types. As an example, the following program is
type correct by these rules:

class C<X,Y> {

int x;

C<String,Object> y;

void initX() {this.x = new Object();}

void initY() {this.y = new C<Object,String>();}

}

3.7 Type Well-Formedness

Figure 10 defines what it means for a type T to be well-
formed in a type environment ∆, written ∆ ⊢ T OK. Note
that type well-formedness requires subtyping for type pa-

[ASSIGN-UP]
∆ ⊢ T1 <: T2

assignable
∆
(T1, T2)

[ASSIGN-DOWN]
∆ ⊢ T2 <: T1

assignable
∆
(T1, T2)

[ASSIGN-GEN]
assignable

∆
(G1, G2)

assignable
∆
(c<G1>, c<G2>)

Figure 9. Assignability.

∆ ⊢ dynamic OK ∆ ⊢ ⊥ OK

∆ ⊢ void OK ∆ ⊢ Object OK

X ∈ dom(∆)

∆ ⊢ X OK

∆ ⊢ G OK ∆ ⊢ T OK

∆ ⊢ (G) → T OK

CT(c) = class c<X ✁ N> extends N {...}
∆ ⊢ G <: [G/X]N ∆ ⊢ G OK

∆ ⊢ c<G> OK

Figure 10. Well-formed types.

rameters rather than assignability: if we have a class defi-
nition class c<X ✁ String> {. . .} then c<Object>
is not a well-formed type, since X must be a subtype of
String. Type well-formedness is used in the top-level rules
for definition typing (Figure 13) and class typing (Fig-
ure 14).

3.8 Expression Typing

The typing judgment ν;σ; ∆; Γ ⊢ e : T indicates that the ex-
pression e is well typed with the type T in the environments
ν, σ, ∆ and Γ. Here, ν maps variable locations to heap loca-
tions, σ maps heap locations to objects or closures, ∆ maps
type variables to their upper bounds, and Γ maps variables to
their declared types. When type checking a program, ν and
σ will be empty, but they are required for type checking a
program state during execution, i.e., in the soundness proof.
The initial environments for an execution are νbase = ∅,
σbase = [ιnull 7→ onull], ∆base = ∅, and Γbase = {null : ⊥}.

The Fletch type systems differ from the Dart type sys-
tem in a couple of ways. In particular, in Figure 12 there are
several type rules concerned with runtime expressions, e.g.,
heap locations, that are absent in the Dart specification be-
cause it does not formalize the dynamic semantics. The [T-

FUNCTION] rule contains the return type, which is absent in
the Dart syntax; we gave reasons for having it in Section 3.1.



ftype(G, f) = H

accessor(G, f) = H

mtype(G,m) = H

accessor(G,m) = H

ftype(bound∆(N), f) = H implies ∆ ⊢ G <: H

foverride∆(f,N,G)

mtype(m, bound∆(N)) = (H) → S

implies G = H T = S

moverride∆(m,N, (G) → T )

Figure 11. Auxiliary definitions. Boxed parts enforce prop-
erties required in message-safe programs (cf. Section 2.3,
requirement 2(a) and 2(c)).

Finally, the message-safe variant of many rules encode some
requirements specific to message-safe programs, e.g., that a
method can only override another method if they have the
same signature.

So far, the standard type system only differs from the
message-safe type system in unsurprising ways, introducing
more strict requirements in the areas where Dart typing has
the greatest degree of built-in unsoundness. However, as we
mentioned in Section 2 there is a conflict between the use
of assignability and proofs of soundness, which is the rea-
son why the assignability premises are boxed in Figure 12.
These premises are included in the standard type system, but
omitted in the message-safe type system. This may come
as a surprise because this makes message-safe typing more
flexible than standard typing, rather than more strict.

In fact, it only makes message-safe typing more flexible
during some steps of execution. If standard typing would
have failed at some point — e.g., because the type of an
actual argument to a method invocation is not a subtype of
the declared argument type — then message-safe typing will
also fail at the point where the method is invoked, but it
will allow the evaluation of the actual arguments to proceed
to that point, whereas standard typing would fail as soon
as an actual argument obtains a type that is not a subtype
of the formal argument type. No errors are suppressed, but
they may be detected later when using the message-safe type
system.

The reason why the relaxation of the message-safe type
system is necessary in the first place is that the standard
type system “predicts” errors much earlier, and it is then
not true that computation can proceed all the way until an
easily recognizable error configuration has been reached.
This means that the progress property only holds if specified
in a complex manner (that does not offer any additional

∆ = X <: N ∆ ⊢ G OK

CT(c) = class c<X ✁ N> extends N {...}
foverride∆(f,N,G)

G f ; OK in c

∆ = X <: N ∆ ⊢ T OK ∆ ⊢ G OK

∅; νbase; ∆; Γbase, x :G, this : c<X> ⊢ e0 : S
CT(c) = class c<X ✁ N> extends N { .. }

assignable
∆
(S, T )

moverride∆(m,N, (G) → T )

T m(G x){ return e0; } OK in c

Figure 13. Definition typing.

insight, and by the way does not match the behavior of
an actual implementation where argument evaluation would
also be allowed to finish before an error is detected). As we
shall see, usage of the message-safe type system actually
produces a soundness result in terms of the standard type
system as an easy corollary.

The rules [T-VAR], [T-READ], [T-WRITE], and [T-ASSIGN]
are unsurprising apart from the assignability checks, which
allow some types to be both subtypes and supertypes where
typical type systems would require a subtype. When assign-
ability is omitted, even unrelated types are allowed.

The rule [T-CALL] is also unsurprising, apart from the fact
that it allows for supertypes (with assignability) or unrelated
types (without assignability) for the actual arguments. The
[T-NEW] rule is very simple because mutability allows us to
omit constructors. [T-FUNCTION] is also standard, noting that
the list G x cannot contain any duplicate variable names. Fi-
nally, the rules [T-RUNTIME-LOC], [T-RUNTIME-FRAME] and
[T-RUNTIME-VASSIGN] are simple extrapolations from pro-
grams to runtime expressions, to be used in the soundness
proof.

Figure 11 defines a few auxiliary functions: accessor
is a convenient short-hand for property lookup, foverride
defines requirements on redeclaring a field in a subclass, and
moverride defines requirements on method overriding. The
last two predicates use the bound∆(T ) function. It replaces
all the type variables occurring in the type T to their upper
bound as defined in the type environment ∆.

Finally, Figures 13 and 14 show the top-level rules for
typing of classes that causes all the other elements of type
checking to be applied.

4. Properties of Fletch

Soundness is traditionally associated with Milner’s phrase
well-typed programs can’t go wrong, but we need to allow
for subtype violation errors, whereas message not under-
stood must be ruled out. We have defined two type systems



[T-VAR] ν;σ; ∆; Γ ⊢ y : Γ(y)
[T-READ]

ν;σ; ∆; Γ ⊢ e0 : T accessor(bound∆(T ), p) = G

ν;σ; ∆; Γ ⊢ e0.p : G

[T-WRITE]
ν;σ; ∆; Γ ⊢ e0 : T accessor(bound∆(T ), f) = G ν;σ; ∆; Γ ⊢ e1 : S assignable

∆
(S,G)

ν;σ; ∆; Γ ⊢ e0.f = e1 : S

[T-ASSIGN]
ν;σ; ∆; Γ ⊢ e0 : T assignable

∆
(T,Γ(x))

ν;σ; ∆; Γ ⊢ x = e0 : T

T-DYNAMIC-CALLs

ν;σ; ∆; Γ ⊢ e0 : T T ∈ {Object, Function, dynamic} ν;σ; ∆; Γ ⊢ e : T

ν;σ; ∆; Γ ⊢ e0(e) : dynamic

[T-NEW]
∆ ⊢ N OK

ν;σ; ∆; Γ ⊢ new N() : N

[T-CALL]
ν;σ; ∆; Γ ⊢ e0 : (G) → T ν;σ; ∆; Γ ⊢ e : S assignable

∆
(S,G)

ν;σ; ∆; Γ ⊢ e0(e) : T

[T-FUNCTION]
∆ ⊢ G OK ν;σ; ∆; Γ, x : G ⊢ e0 : S assignable

∆
(S, T )

ν;σ; ∆; Γ ⊢ T (G x) ⇒ e0 : (G) → T

[T-RUNTIME-LOC] ν;σ; ∆; Γ ⊢ ι : typeof(ι, σ)
[T-RUNTIME-FRAME]

ν;σ; ∆; Γ ⊢ e : S assignable
∆
(S, T )

ν;σ; ∆; Γ ⊢ JT, eK : T

[T-RUNTIME-VLOC] ν;σ; ∆; Γ ⊢ τ : typeof(τ, ν)

[T-RUNTIME-VASSIGN]
ν;σ; ∆; Γ ⊢ e : T assignable

∆
(T, typeof(τ, ν))

ν;σ; ∆; Γ ⊢ τ = e : T

Figure 12. Expression typing. Boxed elements in conclusions are extensions relative to the Dart language, boxed premises (all
on assignability) are included in the standard type system and omitted in the message-safe type system. The rule [T-DYNAMIC-

CALLs] is included in the standard type system and omitted in the message-safe type system (cf. Section 2.3, requirement
2(d)).

∆ = X <: N ∆ ⊢ N OK ∆ ⊢ N OK

nodup(X) nodup(f) nodup(m)
F OK in c M OK in c

class c<X ✁ N> extends N {F M} OK

Figure 14. Class typing.

for Fletch, and in this section we shall use the message-safe
type system. As usual, the main step on the way to a sound-
ness proof is progress and preservation:

LEMMA 4.1 (Progress). If e does not contain dynamic,

ν;σ; ∅; Γbase ⊢ e : T , σ OK, σ ⊢ ν OK, and ν and σ do

not contain dynamic then either

• e is a value, or

• 〈ν, σ, e〉 −→ 〈ν′, σ′, e′〉 for some ν′, σ′, e′, or

• ν;σ ⊢ e ERROR

Proof By induction on the typing derivation ν;σ; ∅; Γbase ⊢
e : T . The Coq sources contain a proof of this lemma using
several unproven but plausible lemmas. �

LEMMA 4.2 (Preservation). If e does not contain dynamic,

ν;σ; ∅; Γbase ⊢ e : T , σ OK, σ ⊢ ν OK, 〈ν, σ, e〉 −→



fields(c<G>) = H f

methods(c<G>) = T m (G′ x){· · · }
∅ ⊢ typeof(ιf , σ) <: H typeof(ιm, σ) = (G′) → T

ν;σ ⊢ (c<G>, f : G 7→ ιf ,m 7→ ιm) OK

ν;σ; ∅;x : G ⊢ e : T

ν;σ ⊢ ((G x) → T, e) OK

ν;σ ⊢ onull OK

Figure 15. Well-formed objects.

〈ν′, σ′, e′〉 ν and σ do not contain dynamic, and σbase ⊆ σ
then both of the following hold:

• σ′ OK, σ′ ⊢ ν′ OK, ν′ and σ′ do not contain dynamic,

and

• ν′;σ′; ∅; Γbase ⊢ e′ : S, ∅ ⊢ S <: T for some S or

• ν′;σ′ ⊢ e′ ERROR, σbase ⊆ σ′

Proof Induction on the derivation 〈ν, σ, e〉 −→ 〈ν′, σ′, e′〉.
The Coq sources contain a proof of this lemma using several
unproven but plausible lemmas. �

In these lemmas, the notation σ OK means that every
location in the heap σ is well-formed. Figure 15 shows what
it means for an object to be well-formed, and a similar
criterion applies for closures. The notation σ ⊢ ν OK means
that each variable location in ν is mapped to a pair (G, ι)
such that typeof(ι, σ) is a subtype of G.

From these lemmas we can obtain the soundness result:

THEOREM 4.3 (Type soundness). If e does not contain

dynamic, ν;σ; ∅; Γbase ⊢ e : T , σ OK, σ ⊢ ν OK, σbase ⊆ σ,

ν and σ do not contain dynamic, 〈ν, σ, e〉 −→∗ 〈ν′, σ′, e′〉,
and e′ is a normal form then either

• e′ is a value, ν′;σ′; ∅; Γbase ⊢ e′ : T ′, and ∅ ⊢ T ′ <: T ,

or

• σ′; ν′ ⊢ e′ ERROR

and in both cases σ′ OK, σ′ ⊢ ν′ OK, and σbase ⊆ σ′.

Proof By induction on 〈ν, σ, e〉 −→∗ 〈ν′, σ′, e′〉. See the
proof in Coq for further details. �

The connection back to the standard type system is easy
to establish: it is trivial to see that when a typing exists in the
standard type system then by omitting assignability a typing
is derived in the message-safe type system. This means that
soundness holds for all programs which are standard typable,
because the final result is a value, whose typing is identical
in the two type systems. The Coq sources contain a small
corollary proving this result. In summary, we have demon-
strated that Fletch does ensure the fundamental property that

message-safe programs will never encounter a ‘message not
understood’ error.

5. Related Work

The Featherweight Java formalization [14] specifies a core
of Java with mutable references. We have used that formal-
ization as inspiration for the overall approach in the creation
of our Coq formalization of Fletch; all the details are very
different, of course.

Many papers present approaches to typing that allow for
more flexibility than traditional, sound type systems. We
briefly present the most influential ones, and position our
work relative to each of them.

An early approach which aims to reconcile the flexibil-
ity of dynamic typing with the safety of static typing is soft

typing [5], later complemented by [21]. The basic idea is
that expressions whose type do not satisfy the requirements
by the context are wrapped in a type cast, thus turning the
static type error into a dynamic check. The Dart concept
of assignability makes the same effect a built-in property
of the dynamic semantics. Strongtalk [4] is an early sys-
tem with a similar goal, supporting very expressive (but not
statically decidable) type specifications for Smalltalk. The
Dart type system may have inherited the trait of being op-
tional from there. Pluggable type systems [3] are optional
type systems that may be used with its target language as
needed. The Dart language has been designed to enable the
use of pluggable type systems3, e.g., by insisting that the dy-
namic semantics does not depend on type annotations (ex-
cept for checked mode errors). This allows for a separate,
strict type checker, and it also prepares the ground for the use
of a message-safety checker. Hybrid typing [10] combines
static type checking with dynamic checking of type refine-
ments based on predicates (boolean expressions). Of special
interest is the potential for statically deciding some predi-
cate based relations (e.g., the implication p1 ⇒ p2), thus
surpassing the static guarantees of traditional type check-
ing. Given that this is concerned with strict static typing en-

hanced with dynamic predicates, there is little overlap with
Dart typing. Gradual typing [17] uses conventional type an-
notations extended with ‘?’, which corresponds to the Dart
dynamic type. It builds on Ob<: [1] (i.e., it uses structural
type equivalence and does not include recursive types), and
hence the foundations differ substantially from Fletch. Their
notion of type consistency does not have a corresponding
concept in Fletch nor in Dart, but is replaced by our in-
clusion of dynamic in the subtype rules. Contracts allow
for general computation (and hence, no static checking) in
Scheme [6, 18], with a special emphasis on tracking blame
for first-class functions that only reveal typing violations
when invoked. Neither Fletch nor Dart support contracts,
but in a sense they are not needed because the type of first-

3 https://www.dartlang.org/slides/2011/11/stanford/

dart-a-walk-on-the-dart-side.pdf



class functions can be checked dynamically. Like types [22]
were introduced recently, where usage of a like typed vari-
able is checked statically, but it is checked dynamically that
the value of such a variable actually supports the operations
applied to it. It could be claimed that the point of this work
is to support structural typing to some extent, and no such
support is present in Dart — checked mode checks will fail
for an assignment to an unrelated type, no matter whether
the object in question would be able to respond to the mes-
sages actually sent. Another recent paper presents progres-

sive types [16], letting Racket programs tune the typing to
allow or prevent certain kinds of runtime errors. Our work
is slightly similar, in the sense that it enables programmers
to rule out a particular kind of run-time type errors. Fi-
nally, TypeScript [2] enables optional type annotations in
JavaScript programs. Using structural types and coinductive
subtype rules, the foundations differ substantially from Dart
and Fletch.

All of these approaches aim to give various trade-offs be-
tween dynamic and static typing. However, none of them
present a specific intermediate level of typing strictness sim-
ilar to our notion of message-safe programs. Moreover, we
believe this is the first formalization of the core of the Dart
language.

Success typing is a way to design complete but unsound
type systems [13], that is, type systems where a statically de-
tected type error corresponds to a problem in the code that
definitely causes a runtime error if reached; the ‘normal’ is
the converse, namely soundness, where programs with no
static type errors will definitely not raise a type error at run-
time. The point is that a complete (but unsound) type sys-
tems will avoid annoying programmers with a large number
of unnecessary static type errors, and just focus on certain
points that are genuinely problematic. The notion of related

types [20] has a similar goal and approach, detecting useless
code, such as if-statements that always choose the same
branch, because the test could never (usefully) evaluate to
true. The use of message-safe programs resembles a com-
plete type system, but it is not identical: It is certainly pos-
sible to write a program that produces static type warnings
in Dart which will run without type errors (so the typing is
both unsound and incomplete), but the fact that message-safe
programs prevent ‘message not understood’ errors offers a
different kind of guarantee that success typing does not.

6. Conclusion

We have introduced Fletch as a core of the Dart program-
ming language to expose the central aspects of its type sys-
tem. Moreover, we have proposed the notion of message-
safe programs as a natural intermediate point between dy-
namically typed and statically typed Dart programs. Based
on Fletch we have expressed appropriate progress and
preservation lemmas and a type soundness theorem, which
demonstrates the fundamental property that message-safe

programs in Dart never encounter ‘message not understood’
errors.

This result provides new insights into the design space
between dynamic and static typing. In future work, we plan
to implement tool support to guide Dart programmers toward
type safe programs via message-safe programs. Also, we
believe Fletch and our formalization in Coq may be useful in
further studies of Dart and related programming languages.
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