
Automated Detection of Client-State Manipulation Vulnerabilities

Anders Møller

Department of Computer Science

Aarhus University

amoeller@cs.au.dk

Mathias Schwarz

Department of Computer Science

Aarhus University

schwarz@cs.au.dk

Abstract—Web application programmers must be aware of
a wide range of potential security risks. Although the most
common pitfalls are well described and categorized in the
literature, it remains a challenging task to ensure that all
guidelines are followed. For this reason, it is desirable to
construct automated tools that can assist the programmers in
the application development process by detecting weaknesses.
Many vulnerabilities are related to web application code
that stores references to application state in the generated
HTML documents to work around the statelessness of the
HTTP protocol. In this paper, we show that such client-state
manipulation vulnerabilities are amenable to tool supported
detection.

We present a static analysis for the widely used frameworks
Java Servlets, JSP, and Struts. Given a web application archive
as input, the analysis identifies occurrences of client state
and infers the information flow between the client state and
the shared application state on the server. This makes it
possible to check how client-state manipulation performed by
malicious users may affect the shared application state and

cause leakage or modifications of sensitive information. The
warnings produced by the tool help the application program-
mer identify vulnerabilities. Moreover, the inferred information
can be applied to configure a security filter that automatically
guards against attacks. Experiments on a collection of open
source web applications indicate that the static analysis is
able to effectively help the programmer prevent client-state
manipulation vulnerabilities.

Keywords-Web application security; information flow analy-
sis; static analysis

I. INTRODUCTION

Errors in web applications are often critical. To protect

web applications against malicious users, the programmers

must be aware of numerous kinds of possible vulnerabilities

and countermeasures. Among the most popular guidelines

for programming safe web applications are those in the

OWASP Top 10 report that covers “the 10 most critical web

application security risks” [18]. Essential to many security

properties is the flow of untrusted data in the programs. This

flow is often not explicit in the program code, so it can be

difficult to ensure that sensitive data is properly protected.

Although tool support exists for detecting and preventing

some risks, manual code review and testing remain crucial to

ensure safety. However, code review and testing are tedious

and error-prone means, so it is desirable to identify classes

of vulnerabilities that are amenable to tool support.

As an example, consider the category A4 - Insecure

Direct Object References from the 2010 OWASP Top 10

list. A direct object reference is a reference to an internal

implementation object, such as a database record, that is

exposed to the user as a form field or a URL parameter in

an HTML document. Such references are examples of client

state, which is used extensively in web applications to work

around the statelessness of the HTTP protocol, for example

to store session state in the HTML documents at the clients.

Figure 1 shows two snippets of source code from a web

application named JSPChat. Part (a) shows a JSP page

containing an HTML form for saving personal information

in a chat service, and part (b) shows the servlet code that

is executed when the form data is submitted by the user.

The first thing to notice is that the nickname form field

on line 20 in the JSP page functions as a direct object

reference that refers to a ChatRoom object and a Chatter

object stored on the server. As the application programmer

cannot trust that the user does not modify such references

in an attempt to access resources that belong to other users,

it is important to ensure that object references are protected.

This can be done for example using a layer of indirection

(i.e. using a map stored on the server from client-state values

to the actual object references), via cryptographic signatures

or encryption of the client state, or by checking that the user

is authorized to access the resources being referenced in the

requests. This is, however, easy to forget when programming

the web application. In the example, the servlet reads the

nickname parameter, stores it in a field in the servlet object,

and then uses it – without any security measures – to look

up the corresponding ChatRoom and Chatter objects in

the shared application state on lines 48 and 50. Obviously,

a malicious user can easily forge the parameter value and

thereby access another person’s data. (The careful reader

may have noticed another vulnerability in the program code;

we return to that in Section VIII.)

As documented in security alerts and reports by, e.g.,

ISS [10], MSC [3], Advosys [1] and Sanctum [26], vulner-

abilities of this kind have been known—and exploited—for

more than a decade. However, they remain widespread on

the web, as evident from the 2010 OWASP report. A recent

study shows that application developers are still unaware of

common classes of related vulnerabilities, despite awareness

programs provided by, for example, OWASP, MITRE, and

SANS Institute [19]. A notable recent example of client-

state manipulation is the attack on the Citigroup website that

allowed hackers to disclose account numbers and transaction

history for 200,000 credit cards [17].

1 <% ChatRoomList roomList =

2 (ChatRoomList)application.getAttribute("chatroomlist");

3 ChatRoom chatRoom = roomList.getRoomOfChatter(nickname);

4 Chatter chatter = chatRoom.getChatter(nickname); %>

5 <html><head>

6 <meta http-equiv="pragma" content="no-cache">

7 <title>

8 Edit your (<%=chatter.getName()%>’s) Information

9 </title>

10 <link rel="stylesheet" type="text/css"

11 href="<%=request.getContextPath()%>/chat.css">

12 </head>

13 <body bgcolor="#FFFFFF">

14 <form name="chatterinfo" method="post"

15 action="<%=request.getContextPath()%>/servlet/saveInfo">

16 <table width="80%" border="0" cellspacing="0"

17 cellpadding="2" align="center" bordercolor="#6633CC">

18 <tr><td valign="top"><h4>Nickname:</h4></td>

19 <td valign="top"><%=chatter.getName()%></td>

20 <input type="hidden" name="nickname"

21 value="<%=chatter.getName()%>">

22 </tr>

23 <tr><td valign="top"><h4>Email:</h4></td>

24 <td valign="top">

25 <input type="text" name="email"

26 value="<%=chatter.getEmail()%>">

27 </td></tr>

28 <tr><td valign="top">

29 <input type="submit" name="Submit" value="Save">

30 </td></tr></table></form></body></html>

31 public class SaveInfoServlet extends HttpServlet {

32 String nickname = null;

33 String email = null;

34 HttpSession session = null;

35 String contextPath = null;

36

37 public void doGet(HttpServletRequest request,

38 HttpServletResponse response)

39 throws IOException, ServletException {

40 nickname = request.getParameter("nickname");

41 contextPath = request.getContextPath();

42 email = request.getParameter("email");

43 session = request.getSession(true);

44 ChatRoomList roomList = (ChatRoomList)

45 getServletContext()

46 .getAttribute("chatroomlist");

47 ChatRoom chatRoom =

48 roomList.getRoomOfChatter(nickname);

49 if (chatRoom != null) {

50 Chatter chatter = chatRoom.getChatter(nickname);

51 chatter.setEmail(email);

52 ...

53 }

54 }

55 }

(a) editInfo.jsp (b) SaveInfo.java

Figure 1. A simplified version of the JSPChat1 web application.

According to OWASP, “automated tools typically do not

look for such flaws because they cannot recognize what

requires protection or what is safe or unsafe”. Nevertheless,

in this paper we show that it is possible to develop automated

tools that can detect many of these flaws. Our approach is

based on a simple observation: Vulnerability involving client-

state manipulation is strongly correlated to information flow

from hidden fields or other kinds of client state to operations

involving the shared application state on the server. This

approach is along the lines of previous work on static taint

analysis [14], [22], however with crucial differences in how

we characterize the sources and sinks of the information

flow. We discuss related work in Section IX.

In summary, the main contributions of this paper are as

follows:

• Our starting point is a characterization of client-state

manipulation vulnerabilities (Section II) that has con-

siderable overlap with category A4 from the OWASP

2010 list of the most critical risks. In particular, we

describe safety conditions under which the use of client

state is likely not to cause vulnerabilities.

• Based on this characterization, we present an automated

approach to detect occurrences of client state in a

given web application and check whether the safety

conditions are satisfied (Sections III–VI).

• In addition to reporting the detected vulnerabilities to

the application programmer, we describe how the infor-

1http://www.web-tech-india.com/software/jsp_chat.php

mation obtained by the analysis can also be used for

automatically configuring a security filter (Section VII)

that guards against client-state manipulation attacks at

runtime.

• Through experiments performed on 7 open source web

applications with a prototype implementation of our

analysis, we show that the approach is effective for

helping the programmer detect client-state manipulation

vulnerabilities. On a total of 1536 servlets, JSP pages,

and Struts actions, our tool identifies 3349 occurrences

of hidden fields and other client-state parameters be-

ing read, and it reveals 183 exploitable vulnerabilities

involving 28 different field names.

The static analysis that underlies our automated approach

to detect client-state manipulation vulnerabilities consists of

three components. The first component (Section IV) infers

the dataflow between the individual servlets and pages that

constitute the application, in order to identify the client-

state parameters. This requires a static approximation of the

dynamically constructed output of the servlets and pages and

extraction of relevant URLs and parameter fields in forms

and hyperlinks. The second component (Section V) analyzes

the program code to find out which objects represent shared

application state (i.e., state that is persistent or shared

between multiple clients, as opposed to session state or

transient state). The third component (Section VI) performs

an information flow analysis to identify the possible flow

of user controllable input from client-state parameters to

2

shared application state objects. The vulnerability warnings

being produced by the tool can either be used to guide

the programmer to apply appropriate countermeasures by

modifying the application source code, or to automatically

configure a security filter that we provide.

Our goal is not to develop a technique that can fully

guarantee absence of client-state manipulation vulnerabil-

ities. Rather, we aim for a pragmatic approach that can

detect many real vulnerabilities while producing as few

spurious warnings as possible. Since authorization checks

and other countermeasures come in many different forms,

the information flow analysis component may require some

customization, but the analysis is otherwise fully automatic.

II. CLIENT-STATE MANIPULATION VULNERABILITIES

In a web application, client state comprises information

that is stored within a dynamically generated HTML docu-

ment in order to be transmitted back to the server at a sub-

sequent interaction, for example when a form is submitted.

Since the HTTP protocol is stateless, client state is widely

used for keeping track of users and session state that involves

multiple interactions between the each client and the server.

Client state appears as hidden fields in HTML forms – as in

the example in Section I – and as URL query parameters in

hyperlinks. Such state is not intended to be modified by the

user, but nothing prevents malicious users from doing so, and

this is easy to forget when programming web applications.

A related situation occurs with HTML select menus, radio

buttons, and checkboxes, which also contain a fixed set

of values that the user is intended to choose from. We

commonly refer to HTTP GET/POST request parameters

that contain such state as client-state parameters. Cookies

provide another mechanism for carrying client state; in this

paper we focus on ordinary HTTP request parameters, but

our approach in principle also works for cookies.

For the discussion we consider Java-based web applica-

tions, specifically ones based on Java Servlets, JSP or Struts.

We use the general term page to refer to a servlet instance,

a JSP page, or a Struts action instance; each produces an

HTML document when executed.

Figure 2 illustrates the data flow of client state for the

JSPChat example. The value of nickname is passed as client

state from a JSP page, editInfo.jsp, to a servlet, Save-

Info.java, using a hidden field in the HTML document.

The following characterization is our key to automate de-

tection of the vulnerabilities we consider: A web application

is vulnerable to client-state manipulation if is is possible, by

users modifying client state, to access or manipulate shared

application state that is not otherwise possible.

This class of vulnerabilities is closely related to

MITRE’s weakness categories CWE-472 (External Control

of Assumed-Immutable Web Parameter)2 and CWE-639

2http://cwe.mitre.org/data/definitions/472.html

Figure 2. Data flow of client state from a JSP page to a servlet via an
HTML document. The nickname parameter is sent from editInfo.jsp
to SaveInfo.java via the HTML document.

(Authorization Bypass Through User-Controlled Key)3 –

and, as discussed in the previous section, to OWASP’s risk

category A4 (Insecure Direct Object References). Moreover,

the description of CWE-472 mentions that it “is a primary

weakness for many other weaknesses and functional conse-

quences, including XSS, SQL injection, path disclosure, and

file inclusion”.

All client-state parameters – most importantly, those

that originate from hidden fields in HTML forms – are

potential sources of client-state manipulation vulnerability.

On the other hand, we observe that uses of client state are

safe, that is, not vulnerable to client-state manipulation, if

at least one of the following conditions is satisfied:

1) The client-state parameter value stored in the HTML

document is encrypted using a key private to the server.

The server then decrypts the value when it is returned.

A variant is to leave the value unencrypted but add

an extra hidden field or URL parameter containing

a digital signature (or MAC, message authentication

code) computed from the client-state value and the

server’s private key. The server then verifies that the

client-state value is unaltered by checking the signature

when the form data is returned. To prevent against

replay attacks and impersonation attacks, a time stamp

and a client ID can be included in the encryption or

signature generation. A drawback of this approach is

that extra work is needed when producing and receiving

the client state.

2) The client state entirely consists of large random values

that are practically impossible to predict by attackers.

A typical example is the use of session IDs: in many

web applications, all session state is stored on the server

and the only client state being used consists of session

IDs, i.e. references to the session state on the server.

A drawback of this approach is that it requires extra

space on the server to store the session state.

3) An indirection is used: the client state consists of,

for example, only numbers between 1 and some small

constant, and these numbers are then mapped to the

3http://cwe.mitre.org/data/definitions/639.html

3

actual application state on the server. This approach

is particularly useful for select menus, radio buttons,

and checkboxes. In this way, client-state manipulation

cannot provide access to data beyond what is accessible

from this map. A drawback of this approach is the

burden involved in maintaining the indirection map.

4) The client-state parameter is treated as untrusted input,

no different from other kinds of parameters, and any

access to application state involving the given client-

state value is guarded by an authorization check.

5) Finally, a sufficient condition for safety according to the

definition above is that all the shared application state

that can be accessed through client-state manipulation

is already available by other means – that is, the

information should not be considered sensitive.

OWASP’s ESAPI4 library contains support for implementing

the first four of these approaches. The use of encryption and

signatures to prevent manipulation of hidden form fields was

originally suggested by MSC [3] and Advosys [1]. Thus, the

countermeasures are well-known; the goal of our analysis is

to detect when they are applied inadequately.

III. OUTLINE OF THE ANALYSIS

We adapt the well-known approach to static information

flow analysis for identifying the possible dataflow from

sources to sinks that does not pass through sanitizers [8],

[11], [14], [22], [24], [25]:

• The sources in our setting are the locations in the code

where client-state parameters are read. With common

web application frameworks, such as Java Servlets, JSP,

and Struts, it is not explicit in the application source

code which parameters contain client state, so we need

a static analysis to infer this information.

• The sinks are the operations in the source code that

affect shared application state. We conservatively as-

sume that this application state is not accessed by other

means. As is it not explicit which objects and methods

involve shared application state (in contrast to session

state or transient state), we need another static analysis

component to extract this information.

• The sanitizers correspond to the various kinds of protec-

tion described in Section II. For example, decrypting an

encrypted client-state value is one kind of sanitization.

Our analysis tool has built in a collection of application

agnostic mechanisms for identifying sinks and sanitizers.

The user can customize the analysis by providing additional

application specific patterns.

We propose the following procedure for analyzing a given

web application: (1) Run the analysis on the application,

with only the default sink and sanitizer patterns. (2) Study

the warnings being produced and add customization rules

4https://www.owasp.org/index.php/Category:OWASP_

Enterprise_Security_API

Figure 3. Structure of the analysis.

to those that are considered false positives to enable the

analysis to reason more precisely about the relevant parts of

the application. (3) Then run the analysis again, using the

new customization. Provided that the analysis is sufficiently

precise, most warnings now indicate actual exploitable vul-

nerabilities.

One approach to remedy the vulnerabilities detected by

the analysis is that the programmer manually incorporates

appropriate countermeasures into the web application source

code as discussed in Section II. Another option is to feed the

vulnerability report to our security filter that we describe in

Section VII for automatic protection. Our experiments (see

Section VIII) indicate that the burden of the customization

step is manageable. However, we note that a fully automatic

approach to protect against client-state manipulation can be

obtained by omitting customization entirely and applying

the security filter without having eliminated false positives.

Compared to the more manual approach involving cus-

tomization, the price is a modest runtime overhead incurred

by the security filter since it may protect some client state

unnecessarily.

The following sections explain how we identify client-

state parameters and application state and perform the infor-

mation flow analysis. The structure of the combined analysis

is illustrated in Figure 3.

IV. IDENTIFYING CLIENT STATE

When a page p reads an HTTP parameter, for example in

lines 40 and 42 in Figure 1, the only way we can find out

whether that is a client-state parameter is to analyze all the

pages of the application that dynamically construct HTML

documents with links or forms referring to p.

For each page q in the web application we first generate a

context-free grammar Gq that conservatively approximates

the set of HTML documents that may be generated by

q. This can be done as in our previous work on analysis

of dynamically generated HTML documents [16]. We then

infer the references between the pages by identifying a and

form elements in Gq . Combined with information extracted

from the deployment descriptors (web.xml in Servlets and

struts.xml in Struts) this results in a graph in which nodes

correspond to pages and edges describe possible links and

form actions. In the example in Figure 1, this step identifies

4

the edge from editInfo.jsp to SaveInfo.java. To find

the client-state parameters in the HTML documents gener-

ated by q, we now identify all elements that define hidden

fields, select boxes, radio buttons, and links in Gq and collect

the corresponding parameter names. Since these names may

be generated dynamically in the program we approximate

them conservatively by a regular language Cout (q). In the

example from Figure 1 this step identifies nickname as the

only client-state parameter originating from editInfo.jsp,

thus Cout (editInfo.jsp) = {nickname}.

The names of the incoming client-state parameters to a

page p can now be expressed as Cin (p) = ∪qiCout (qi) for

each page qi that has an edge to p. (In principle, p may

have multiple incoming edges with different Cout sets, in

which case the analysis issues a warning, though that never

happens in our experiments.) For the example, this gives

Cin(SaveInfo.java) = {nickname}. Parameter values in

the Servlet framework are read using the getParameter

method of the HttpServletRequest object. As the request

parameter name that is given as argument to this method may

not be a constant in the source code, we approximate for

each call to getParameter the possible values as a regular

language. If the language overlaps with Cin (p), we mark

the method call as a client-state value source. This step

will mark the method call in line 40 in Figure 1 as such a

source. The call in line 42 will not be marked since email

is not in Cin(SaveInfo.java). We identify parameter read

operations in a similar way for JSP and Struts.

The result of these steps is a set of method calls in the

application code that will serve as sources of client-state

values in the information flow analysis in Section VI. All of

the steps can be done soundly in the sense that every call

to getParameter and related operations that may return

client state is always included in the statically inferred set

of client-state value sources. In our experiments, we never

observe any imprecision of this phase.

V. IDENTIFYING SHARED APPLICATION STATE

To find the operations in the code that affect shared appli-

cation state, i.e. state that is shared between all requests, we

first identify the application state that is stored in memory,

which we call the internal application state. This includes:

• all HttpServlet objects (and hence the value of this

inside servlet classes) and ServletContext objects,

and all values of static fields,

• all values of fields of objects that have been classi-

fied as internal application state, and conversely, all

objects that have non-static fields containing internal

application state (since session state and transient state

sometimes points to shared application state, this rule

may conservatively classify such state as application

state), and

• all values returned from static methods or from methods

on internal application state objects.

Finding all expressions in the code that may yield internal

application state according to these rules can be done with a

simple iterative fixpoint algorithm combined with an off-the-

shelf alias analysis, such as the one provided by Soot [23].

We also find the external application state stored in files

and databases. Such state is read and written using special

API functions. Our analysis currently recognizes signatures

of methods from the Java IO library and the Java persistence

API. Other methods can be added using the customization

mechanism described in Section VI.

Web applications often rely on libraries, such as Hiber-

nate or Apache Commons, which are typically provided in

separate jar files. We allow libraries to be omitted from the

analysis for analysis performance reasons. This will simply

cause the analysis to treat all method calls to those libraries

conservatively as operations on external application state.

The result of this analysis component is consequently an

over-approximation of the set of expressions in the code

that yield internal application state and of the set of method

calls that involve external application state. We use this

information in the following section.

VI. INFORMATION FLOW FROM CLIENT STATE

TO SHARED APPLICATION STATE

As outlined in Section III, we use an information flow

analysis to identify flow of the client-state values in the pro-

gram to the shared application state. In general, information

flow analysis considers of two kinds of flow: explicit and

implicit flow [4]. Explicit flow is caused by assignments

and parameter passing. Other forms of explicit flow may be

described using customized derivation rules, as described

below. Implicit flow arises when the value of a variable

depends on a branch condition involving another variable.

We believe explicit flow is the most important indication

of client-state manipulation vulnerability, so we choose to

disregard implicit flow. A similar choice was made in other

work about information flow in web applications [15], [22].

Information flow analysis requires a characterization of

sources, sinks, and sanitizers. The sources in our analysis

are the client-state value sources that were identified in Sec-

tion IV. The sinks are program points where the application

writes to fields of internal application state objects or calls

methods that involve external application state.

Sanitizers can be methods that determine whether a given

client-state value is safe, for example by performing access

control or MAC checking cf. Section 2. Other sanitizers are

methods that convert unsafe values to safe ones, for example

by decrypting the values. As sanitizers are highly application

specific, they are provided through customization, and none

are built into the analysis.

The information flow analysis is flow sensitive, meaning

that different information is obtained at different program

points. Our current implementation is also context sensitive,

so methods are analyzed separately for each call site.

5

The information flow analysis can be customized to

improve precision by eliminating different kinds of flow. The

customization rules fall in three categories:

C1: The first category consists of derivation rules that de-

scribe explicit flow that may occur as a result of method

invocations. Each rule consists of a method signature

and a description of the relevant dataflow between

arguments and return values. We provide a collection

of predefined derivation rules for string manipulation

methods and wrapper class methods in the java.lang

package of the Java standard library, but additional

application specific rules can be added by the user of

the analysis. Sanitizers of the kind that convert unsafe

values to safe ones can be described in this way.

C2: The second category is for sanitizers that return a

boolean indicating whether the given value is safe or

not. When this boolean is used as a branch condition,

the analysis will consider the sanitized value as safe in

the true branch, so the analysis is path sensitive in this

special case.

C3: The third category allows fine-tuning of the conditions

under which methods are treated as sinks. As mentioned

in Section V, library methods are by default considered

external application state sinks. Since this in some cases

leads to false positives, it is useful to be able to adjust

the behavior.

The customization rules can be given either as annotations

in the code or in a separate file. We give concrete examples

of customizations in Section VIII.

VII. AUTOMATIC CONFIGURATION OF

A SECURITY FILTER

The approach of using MACs to protect against client-

state manipulation attacks that we discussed in Section II can

be implemented with a generic servlet filter that intercepts

all HTML documents generated by the application and all

HTTP request that are sent by the clients, without modifying

the web application code [20]. For every use of client

state in the HTML documents, an additional hidden field

or query parameter containing the MAC is automatically

inserted. Whenever an HTTP request is received from a

client, the MAC check is performed on the appropriate

request parameters. For this to work, the filter needs to be

configured with information about which fields and param-

eters contain client state that should not be manipulated,

and this information is precisely what our static analysis

can provide. It is of course important that the client-state

analysis is precise enough to correctly distinguish between

parameters that carry client state and ones that do not. It

is less critical that the information flow analysis is able

to correctly distinguish between safe and unsafe uses of

client state. However, to avoid the overhead of generating

and checking MACs for parameters that are already safe by

other means, it is nevertheless useful that also this analysis

component is as precise as possible.

Note that using this security filter is optional; as dis-

cussed in Section III it can be viewed as an alternative or

supplement to manually eliminating the vulnerabilities by

appropriately patching the application source code.

VIII. EVALUATION

Our prototype implementation, WARlord5, reads in a Java

web archive (.war) file containing a web application built

with Java Servlets, JSP or Struts, together with an analysis

customization file, and performs the analysis described in the

preceding sections. The implementation is based on the Soot

analysis infrastructure [23], the JSP compiler from Tomcat6,

and our HTML grammar analysis [16]. With this tool, we

aim to answer the following research questions:

Q1: Is the analysis precise enough to detect client state

vulnerabilities with a low number of false positives?

Specifically, can it identify the common uses of client

state, and is it capable of distinguishing between safe

and unsafe uses of client state in the sense described

in Section II?

Q2: Are the warning messages produced by the tool useful

to the programmer for deciding whether they are false

positives or indicate exploitable vulnerabilities?

Q3: In situations where the programmer decides that a

vulnerability warning is a false positive, is it practically

possible to exploit the customization mechanism to

eliminate the false positive?

Q4: Is the analysis fast enough to be practically useful

during web application development?

To answer these questions, we experiment with a col-

lection of web applications. For each application, we go

through the process suggested in Section III: We first run

the WARlord tool on the application with no customization.

After a manual study of the warnings being produced,

appropriate customization is added, if possible, to address

the false positives. If any exploitable vulnerabilities are

found after running the analysis again, this time with the

new customization, we fix them manually using one of the

techniques mentioned in Section II.

Our experiments are based on 7 open source web applica-

tions found on the web: JSPChat1 (the small chat application

mentioned in Section I), Hipergate7 (a customer resource

management application written entirely in JSP), Takatu8

(a large tax administration system), JWMA9 (a web mail

application), Pebble10 (a widely used blogging application),

5http://www.brics.dk/WARlord/
6http://tomcat.apache.org/tomcat-7.0-doc/jasper-howto.html
7http://hipergate.sourceforge.net/
8http://takatu.sourceforge.net/
9http://jwma.sourceforge.net/
10http://pebble.sourceforge.net/

6

Frameworks Pages
Client-state params

(Unique names)

JSPChat Servlets, JSP 16 19 (3)
Hipergate JSP 760 1333 (282)
Takatu JSP, Struts 558 1840 (31)
Pebble Servlets, JSP 122 22 (11)
Roller JSP, Struts 53 86 (27)
JWMA Servlets, JSP 26 48 (18)
WebGoat Servlets 1 1 (1)

Figure 4. List of benchmarks. The ‘frameworks’ column shows which web
frameworks that are used in each benchmark; ‘pages’ is the total number of
JSP pages, servlet source files, and Structs action source files; ‘client-state
params’ is the number of client-state parameters inferred by the analysis,
and ’unique names’ is the number of distinct names of such parameters.

Roller11 (another blogging application), and WebGoat12 (a

web application written by OWASP to demonstrate typical

security problems in web applications). Our prototype sup-

ports Struts 2 but not version 1, so we do not include the

full list of benchmarks from Stanford SecuriBench [13]. The

benchmarks on our list cover a variety of application kinds

of different size, they are written by different programmers,

and they use different web frameworks (a mix of Java

Servlets, JSP, and Struts). The Takatu project does not appear

to be active, but it represents an interesting snapshot of

an incomplete web application. Some characteristics of the

benchmarks are listed in Figure 4. ’Client-state params’

shows the total number of client-state parameters computed

as
∑

p
|Cin(p)| for all pages p. Although Cin (p) may in

principle be infinite, each of the sets is a singleton in

our experiments. Note that client-state values appear in

all the benchmarks. The number of distinct names of the

parameters, i.e. |
⋃

p
Cin(p)|, gives an indication of how

many different kinds of client state that occur.

A. Experiments

JSPChat: The analysis identifies uses of 19 client-state

parameters, and only 1 warning is produced about potential

client-state manipulation vulnerability. The single warning

is shown in Figure 5: as hinted in Section I, the application

is prone to a timing attack since the request variables are

stored in fields on the Servlet, which the analysis reveals.

Notice that the output includes a trace from the source to

the sink, which can make it easier to confirm or dismiss the

error by manual inspection. If we manually correct this error

by changing the field into a local variable, the analysis finds

another error: the application is also prone to a classical

client-state manipulation attack, since a malicious user may

change the nickname request parameter and consequently

change the information for another user. This error can be

corrected by fetching the nickname from the session instead

of a client-state parameter. After also correcting this error,

11http://roller.apache.org/
12https://www.owasp.org/index.php/Category:OWASP_

WebGoat_Project

Write of client-state value (nickname) to

application state in line 23 of

sukhwinder.chat.servlet.SaveInfoServlet.

Trace:

sukhwinder.chat.servlet.SaveInfoServlet:

void doGet(HttpServletRequest,HttpServletResponse)

Figure 5. Output from the WARlord tool for the JSPChat benchmark.

WARlord gives no more warnings. A manual inspection

confirms that the remaining occurrences of client-state pa-

rameters are indeed safe. No customization is necessary for

this application.

Hipergate: Hipergate uses an extreme number of client-

state parameters to pass data between pages. All client-

specific values are passed around using hidden fields. Run-

ning the analysis yields 119 warnings. With 6 customizations

this number is brought down to 80 warnings, almost all

of which are caused by client-state parameter values that

flow into parameterized database queries without any checks.

We have inspected all of the warnings, and many of them

correspond to code that is vulnerable to attacks.

The main source of false positives originates from a use

of randomly generated ID strings for database rows. Such

strings are hard to guess and we do not consider this as

vulnerable. If we exclude warnings given on uses of these

random strings, 41 warnings remain.

All in all, 20 of the warnings reveal exploitable client-

state manipulation vulnerabilities. One of the warnings

reveals that a file can be read from the disk using a

file name originating from a client-state parameter in

wb_style_persist.jsp, which can be exploited to change

the file on the disk. Although the programmer has carefully

inserted authorization checks to ensure that the user should

be granted access to the page in question, no checks are

made for any of the client-state parameters, and they can

therefore be manipulated by the client. The tool also gives

a warning on the page docrename_store.jsp, which can

be exploited to rename files. The programmer has inserted a

check to ensure that the user has rights to rename the files,

but this is performed on another parameter than the one

holding the file name, and an attacker can therefore create

an exploit that changes only the file name. Furthermore,

the tool emits 5 warnings for the page reference.jsp

where parameters can be injected into an SQL string. 1

warning on the page catusrs_store.jsp reveals that a

client-state parameter can give access to update permissions

for any user, and 2 warnings reveal a similar problem for

catgrps_store.jsp. Similarly, 10 warnings in 6 other

pages reveal places where client-state values give direct

access to the database. In all 10 cases, data is queried and

changed using a client-state parameter.

For the remaining 21 warnings, we find that attacks could

give access to shared application state but only in ways that

are harmless. The tool is able to classify 1253 out of 1333

uses of client-state parameters as safe.

7

Method Behavior
FileUtils.underneathRoot(File,File) C2 Sanitizer for arg 2
FileManager.isUnderneathRootDirectory(File) C2 Sanitizer for arg 1
Element.get(Serializable) C1 No value flow
StaticPageIndex.getStaticPage(String) C1 No value flow
FileUtils.getContentType(String) C1 No value flow

Figure 6. Customization rules for the Pebble benchmark.

Takatu: The analysis identifies 1840 client-state parame-

ters. 184 warnings are issued, all but 9 caused by reading

from the database using an ID that comes from a hidden

field. These IDs are used for querying objects from the

database. After manually inspecting the warnings we can

see that 162 of them can be exploited to change data on

the server. Other 13 warnings indicate places where objects

are read from the database and calculations are performed

based on these objects, which violates safe use of client

state. The remaining 9 warnings indicate places where a

client-state parameter holds the value of a flag that is used

to query the database but none of them can be exploited. No

customization is required for this application.

Interestingly, this web application at multiple places asks

the user to confirm the deletion of an object. The ID of

the object is stored in a hidden field that is not protected,

so the client can delete any object of the same type if he

changes the ID used as object reference. The errors are

easily corrected e.g. by signing the vulnerable parameters

and checking the signature when the parameter is sent back

to the server.

Pebble: WARlord identifies 22 uses of client-state param-

eters and initially produces 4 warnings. It uses a dispatcher,

so all requests except those to JSP pages go through a single

servlet. The number of client-state parameters seems small

because of this structure, but the classes being dispatched to

make heavy use of the client-state parameters.

The web application stores files on the disk such that

each blog has its own directory, and it uses the value of a

parameter from a hidden field to determine the name of the

file to save to, which is the cause of 2 warnings. However,

each value used this way is verified to be a child of the

blog folder, so the folder structure ensures that users cannot

overwrite each other’s files. The two first customization rules

shown in Figure 6 handle this check of the parent folder.

Only 1 warning is produced after the customization. It is

caused by the page where a new blog is added. This page

uses an id parameter originating from a hidden field to set

the database ID of the newly created blog and to create a

directory for the files belonging to the blog. The id param-

eter is verified to only contain letters, and another check

ensures that the ID is not already in use. Together, these

two checks mean that there are no exploitable vulnerabilities

related to the 4 warnings. The safety depends on a subtle

invariant about the directory structure where files are stored

on the disk. While this invariant is beyond what we can

express with the customization mechanism, extracting the

relevant code into a separate method would make the code

easier to read, less prone to become vulnerable as a result

of future changes, and it would become expressible as a

sanitizer using the customization mechanism.

Roller: This web application has been systematically re-

viewed for the class of vulnerabilities we are trying to detect.

All client-state parameters are protected with authorization

checks that are well-documented in the code. Running

WARlord initially results in 53 warnings on the 53 pages.

We added 14 customization rules, which mainly describe

information flow for a few string manipulation functions

and information about queries of public information such

as blog comments. Those functions are part of the Apache

Commons API, so these rules are generally useful in all

applications that use this API.

Only 1 warning remains after adding these rules. That

warning refers to a page that allows blog comments to be

deleted using a client-state parameter to identify the blog

comments. All comments belong to a blog, and user rights

are defined for each blog. The page checks whether each

comment belongs to the blog and refuses any attempt to

delete comments on other blogs in a way that cannot be

modeled with our customization mechanism. However, if

the code was rewritten slightly to use a separate method to

check the ownership directly, this method could be marked

as a sanitizer. That would also make it possible to check that

future changes to this code does not create a vulnerability,

and it would make the code more readable.

JWMA: This web application acts as a front-end for an

email server using the Java Mail API, and it stores almost

all data in the session state belonging to the user. It has little

shared application state, but it uses client-state parameters

extensively, in particular hidden fields.

With no customization, WARlord produces 10 warnings.

Almost all of them involve the Java Mail API, which is part

of the J2EE platform. We added the 7 customizations shown

in Figure 7 to the the analysis (5 of them about the Java

Mail API). The remaining warnings are caused by the client

being able to change the recipient and contents of a message

by changing client state. Through manual inspection it can

be seen that JWMA allows clients to send emails to any

recipient using other pages in the application, so we do not

classify this as exploitable, though the reasoning cannot be

captured with the customization mechanism.

WebGoat: We also tested a single servlet in the WebGoat

application. The purpose of this servlet, which uses a single

hidden field, is to demonstrate vulnerabilities of exactly

the kind we want to detect. Unlike the other benchmarks,

this application generates output using a custom DOM-like

framework and we decided to manually create the set of

parameters that may hold client-state values.

Perhaps surprisingly, our tool reports 0 warnings for this

application. The reason is that WebGoat does not use the

input variable for anything else than selecting a message

8

Method Behavior
dtw.webmail.pluging.RandomAppendPlugin.supportsAppendType(String,Locale) C1 Flow from arg 1 to return
javax.mail.internet.InternetAddress.parse(String) C1 Flow from arg 1 to return
javax.mail.Store.getFolder(String) C1 Flow from base and arg 1 to return
dtw.webmail.JWMASession.authenticate(String,String,boolean) C1 No value flow
javax.mail.Folder.create(int) C3 Writes base object to app state
javax.mail.Folder.getMessages(int[]) C3 Reads app state if base is app state
javax.mail.Folder.getMessage(int) C3 Reads app state if base is app state

Figure 7. Customization rules used for the JWMA benchmark. 5 out of the 7 rules relate directly to the Java Mail API.

to send back to the client. This usage does not violate any

of the safe usages presented in Section II and we therefore

conclude that while the illustrative servlet of course mimics

the behavior of a vulnerable piece of server code, it is

actually not vulnerable to any attack. A manual inspection

of the code confirms that the client is indeed not able to

change the shared application state in any way by changing

the value of the hidden field.

B. Summary of Results

Figure 8 summarizes the benchmark results from the

previous section. The first column, ’Client-state params’,

is the same as in Figure 4. The following columns show

the number of warnings before customization, the number

of customization rules, and the number of warnings after

customization. The tool produces at most one warning for

each of the client-state parameters from the first column

(however each warning may contain multiple traces from

sources to sinks). The next column, ’Exploitable’, shows

how many of the warnings we could manually verify to

be exploitable by malicious clients performing client-state

manipulation attacks. The column ’Safe client-state params’

shows the number of client-state parameters that the analysis

after customization determines not to be vulnerable. For each

category, the numbers in parentheses show the results after

grouping together data that involve parameters of the same

name, which, as in Figure 4 gives an indication of the variety.

The final column shows the time spent for the full analysis.

The tests have been performed on a 2.4 GHz Core i5

laptop running OS X. The JVM was given 1 GB of heap

space for each benchmark. The time and memory was

primarily used by the Soot framework for loading classes

and performing the pointer analysis.

With this, we are able to answer the research questions:

Q1: A manual inspection of the application code confirms

that the client-state analysis succeeds in finding all

client-state value sources without any imprecision. This

amounts to a total of 3344 client-state parameters. The

analysis determines that 98% of those parameters are

safe, that is, they are not involved in any warnings.

Moreover, 27 of the 57 warnings that are produced

in total reveal exploitable vulnerabilities. The false

positives are not evenly distributed among the bench-

marks, and they are concentrated on a small number of

different parameter names.

Q2: Based on the warnings given by the tool, especially the

trace information, it was in each case possible for us to

quickly determine whether it indicated a vulnerability

or not. The entire process of classifying the warnings

and adding customization rules for all 7 benchmarks

took one person less than a day, despite having no prior

knowledge of the benchmark code.

Q3: Adding customization rules in many cases reduced

the number of spurious warnings considerably. As

discussed for the individual benchmarks, the remaining

cases typically involve subtle, undocumented invariants.

Moreover, if allowing simple refactorings, such as

extracting a safety check to a separate method, most

of these cases could be captured within the existing

customization framework. In the case of Hipergate,

however, some uses of client state are safe for reasons

that go beyond the current capabilities of customization.

Q4: The tool analyzes between 10 and 200 pages per

minute. Pages can be analyzed individually, so when a

programmer is modifying the application, he can decide

to run the tool only on pages that have changed.

IX. RELATED WORK

Client-state manipulation vulnerabilities, in particular the

kind involving hidden fields, have been known for many

years, as described in Sections I and II. Likewise, automated

techniques for protecting against security vulnerabilities in

web applications have a long history. We here explain the

connections between our approach and the most closely

related alternatives that have been proposed.

One direction of work is using runtime enforcement of

security policies, as exemplified by the security gateway

proposed by Scott and Sharp [20]. Given a security policy,

their gateway can, for example, automatically attach MACs

to hidden fields. The approach requires that the programmer

specifies which input fields need this kind of protection,

which, as discussed in Section I, is too easy to forget.

In contrast, the idea in our approach is to inform the

programmer – using static analysis of the application source

code – that protection may be inadequate. We adopt Scott

and Sharp’s security gateway as presented in Section VII,

however the configuration of our security filter is provided

by static analysis, not by the programmer.

An essential constituent of our approach is the observation

that client-state manipulation vulnerabilities are correlated to

9

Client-state Warnings before Customization Warnings after
Exploitable

Safe
Time

params customization rules customization client-state params

JSPChat 19 (3) 1 (1) 0 1 (1) 1 (1) 18 (2) 30 s
Hipergate 1333 (282) 119 (61) 6 80 (50) 20 (18) 1253 (232) 60 m
Takatu 1840 (31) 184 (10) 0 184 (10) 162 (9) 1656 (22) 3 m
Pebble 22 (11) 4 (4) 5 1 (1) 0 0 21 (10) 1 m
Roller 86 (27) 53 (1) 14 1 (1) 0 0 85 (26) 4 m
JWMA 48 (18) 10 (10) 7 5 (5) 0 0 43 (13) 3 m
WebGoat 1 (1) 0 (0) 0 0 (0) 0 0 1 (1) 30 s

Figure 8. Summary of experimental results.

information flow from client state to application state. To-

gether with automatic inference of client state (Section IV)

and shared application state (Section V), this allows us to

detect likely errors largely without requiring the program-

mers to provide any specifications. Some application specific

customization is required though, as seen in Section VIII.

For future work, it may be interesting to apply probabilistic

specification inference [15] to automate this phase.

The WebSSARI tool by Huang et al. [8] pioneered the use

of static information flow analysis to enforce web application

security, and numerous researchers have since followed that

path (see for example [11], [14], [22], [24], [25]). Our

proof-of-concept implementation uses a simple information

flow analysis, as described in Section VI. More advanced

alternatives include the algorithms by Livshits and Lam [14]

and Tripp et al. [22].

The first phase of our analysis that identifies the client-

state parameters (Section IV) applies techniques from our

earlier work on static analysis of HTML output of Java-

based web applications [12], [16]. The WAM-SE and

WAIVE analysis tools by Halfond et al. [6], [7] also infer

interface specifications for web applications, however with-

out identifying which parameters contain client state, for

example originating from hidden fields.

Providing comprehensive support for diverse web appli-

cation frameworks, such as Java Servlets, JSP, and Struts,

is a challenging endeavour. A general framework, F4F, has

recently been proposed by Sridharan et al. [21], however we

have found that it is not sufficiently flexible for our setting,

in particular for the client state identification phase. Still,

the ideas in F4F may be adapted in future work to enable

support for additional web application frameworks.

Finally, we note that several commercial tools are capable

of detecting security vulnerabilities in web applications.

According to a 2007 IBM white paper [9], the AppScan tool

is capable of detecting vulnerabilities involving hidden field

manipulation and parameter tampering. The latest version

uses techniques from TAJ [22], however we have been

unable to perform a proper comparison and obtain fur-

ther information about the techniques applied by AppScan.

Microsoft’s CAT.NET13 also uses static information flow

13http://blogs.msdn.com/b/securitytools/archive/2010/02/

04/cat-net-2-0-beta.aspx

analysis, but it cannot detect client-state manipulation vul-

nerabilities without detailed specifications provided by the

user. Other commercial tools include NTOSpider14 from NT

OBJECTives, WebInspect15 from Fortify/HP, and CodeSe-

cure16 and HackAlert17 from Armorize. To our knowledge,

most of these tools (with the exception of CodeSecure,

which is developed from WebSSARI) employ crawling [2],

[5], not static analysis. We believe static analysis can be

a promising supplement to dynamic approaches as it may

provide better coverage of the web application source code.

X. CONCLUSION

We have demonstrated that it is possible to provide

tool support that can effectively help programmers prevent

client-state manipulation vulnerabilities in web application

code. The static analysis we have presented is capable of

precisely identifying client state, in particular state stored

in hidden fields, and help distinguishing between safe and

unsafe use of such state. With WARlord, our prototype

implementation of the analysis, we quickly discovered 183

exploitable weaknesses in 7 web applications. The analysis

has high precision: for a total of 3166 non-exploitable client-

state parameters, 97% were classified as safe.

Moreover, we have argued that the information inferred

by the analysis can also be used for automatic configuration

of a security filter that at runtime protects against client-state

manipulation attacks.

Our experiments also indicate potential for improvements.

Specifically, although analyzing the Hipergate benchmark

revealed 20 weaknesses, it also resulted in a number of

false positives originating from a small group of client-state

parameters. It appears that many of these false positives

can be avoided if the analysis is extended to also infer the

provenance of the client-state values, which can be a subject

for future work. It may also be worthwhile to extend the

technique to reason about client state stored in cookies.

ACKNOWLEDGEMENTS

This work was supported by Google, IBM, and The

Danish Research Council for Technology and Production.

14http://www.ntobjectives.com/ntospider
15https://www.fortify.com/products/web_inspect.html
16http://armorize.com/index.php?link_id=codesecure
17http://armorize.com/index.php?link_id=hackalert

10

REFERENCES

[1] Advosys Consulting. Preventing HTML form tampering,
2000. http://advosys.ca/tips/form-tampering.html.

[2] J. Bau, E. Bursztein, D. Gupta, and J. C. Mitchell. State of
the art: Automated black-box web application vulnerability
testing. In Proc. 31st IEEE Symposium on Security and
Privacy, 2010.

[3] D. I. Brussin. A white paper analyzing the MSC hidden form
field web site vulnerability, 1998. Miora Systems Consulting.

[4] D. E. Denning and P. J. Denning. Certification of programs
for secure information flow. Communications of the ACM,
20, July 1977.

[5] A. Doupé, M. Cova, and G. Vigna. Why Johnny can’t pentest:
An analysis of black-box web vulnerability scanners. In Proc.
7th International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment, July 2010.

[6] W. G. J. Halfond, S. Anand, and A. Orso. Precise interface
identification to improve testing and analysis of web applica-
tions. In Proc. International Symposium on Software Testing
and Analysis. ACM, July 2009.

[7] W. G. J. Halfond and A. Orso. Automated identification of
parameter mismatches in web applications. In Proc. 16th
ACM SIGSOFT International Symposium on Foundations of
Software Engineering, November 2008.

[8] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, and S.-
Y. Kuo. Securing web application code by static analysis and
runtime protection. In Proc. 13th International World Wide
Web Conference, May 2004.

[9] IBM. The dirty dozen: preventing common application-
level hack attacks, 2007. ftp://ftp.software.ibm.

com/software/rational/web/whitepapers/r_wp_

dirtydozen.pdf.

[10] Internet Security Systems. Form tampering vulnerabili-
ties in several web-based shopping cart applications, 2000.
ISS E-Security Alert, http://www.iss.net/threats/
advise42.html.

[11] N. Jovanovic, C. Kruegel, and E. Kirda. Static analysis
for detecting taint-style vulnerabilities in web applications.
Journal of Computer Security, 18(5):861–907, 2010.

[12] C. Kirkegaard and A. Møller. Static analysis for Java
Servlets and JSP. In Proc. 13th International Static Analysis
Symposium, volume 4134 of LNCS. Springer-Verlag, August
2006.

[13] B. Livshits. Defining a set of common benchmarks for web
application security. In Workshop on Defining the State of the
Art in Software Security Tools, August 2005.

[14] V. B. Livshits and M. S. Lam. Finding security vulnerabilities
in Java applications with static analysis. In Proc. 14th
USENIX Security Symposium, August 2005.

[15] V. B. Livshits, A. V. Nori, S. K. Rajamani, and A. Banerjee.
Merlin: specification inference for explicit information flow
problems. In Proc. ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, June 2009.

[16] A. Møller and M. Schwarz. HTML validation of context-
free languages. In Proc. 14th International Conference on
Foundations of Software Science and Computation Structures,
2011.

[17] L. Moran. How Citigroup hackers broke in ’through
the front door’ using bank’s website, 2011.
http://www.dailymail.co.uk/news/article-2003393/

How-Citigroup-hackers-broke-door-using-banks-website.html.

[18] Open Web Application Security Project. OWASP top 10,
2010. https://www.owasp.org/.

[19] T. Scholte, D. Balzarotti, and E. Kirda. Quo vadis? a study
of the evolution of input validation vulnerabilities in web
applications. In Proc. 15th International Conference on
Financial Crypto, February 2011.

[20] D. Scott and R. Sharp. Abstracting application-level web
security. In Proc. 11th International World Wide Web Con-
ference, May 2002.

[21] M. Sridharan, S. Artzi, M. Pistoia, S. Guarnieri, O. Tripp,
and R. Berg. F4F: Taint analysis of framework-based web
applications. In Proc. 26th ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and
Applications, October 2011.

[22] O. Tripp, M. Pistoia, S. J. Fink, M. Sridharan, and O. Weis-
man. TAJ: effective taint analysis of web applications. In
Proc. ACM SIGPLAN Conference on Programming Language

Design and Implementation, June 2009.

[23] R. Vallee-Rai, L. Hendren, V. Sundaresan, P. Lam, E. Gagnon,
and P. Co. Soot – a Java optimization framework. In
Proc. IBM Centre for Advanced Studies Conference. IBM,
November 1999.

[24] G. Wassermann and Z. Su. Static detection of cross-site
scripting vulnerabilities. In Proc. 30th International Con-
ference on Software Engineering. ACM, May 2008.

[25] Y. Xie and A. Aiken. Static detection of security vulnerabil-
ities in scripting languages. In Proc. 15th USENIX Security
Symposium, July/August 2006.

[26] ZDNet. New e-rip-off maneuver: Swapping price tags, 2001.
http://www.zdnetasia.com/new-e-rip-off-maneuver-swapping-

price-tags-21187583.htm.

11

