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Automated Detection of Client-State Manipulation Vulnerabilities

ANDERS MØLLER and MATHIAS SCHWARZ, Aarhus University

Web application programmers must be aware of a wide range of potential security risks. Although the most
common pitfalls are well described and categorized in the literature, it remains a challenging task to ensure
that all guidelines are followed. For this reason, it is desirable to construct automated tools that can assist
the programmers in the application development process by detecting weaknesses. Many vulnerabilities are
related to web application code that stores references to application state in the generated HTML docu-
ments to work around the statelessness of the HTTP protocol. In this article, we show that such client-state
manipulation vulnerabilities are amenable to tool-supported detection.

We present a static analysis for the widely used frameworks Java Servlets, JSP, and Struts. Given a web
application archive as input, the analysis identifies occurrences of client state and infers the information
flow between the client state and the shared application state on the server. This makes it possible to check
how client-state manipulation performed by malicious users may affect the shared application state and
cause leakage or modifications of sensitive information. The warnings produced by the tool help the applica-
tion programmer identify vulnerabilities before deployment. The inferred information can also be applied to
configure a security filter that automatically guards against attacks at runtime. Experiments on a collection
of open-source web applications indicate that the static analysis is able to effectively help the programmer
prevent client-state manipulation vulnerabilities. The analysis detects a total of 4,802 client-state parame-
ters in the 10 applications, whereof 4,437 are classified as safe and 241 reveal exploitable vulnerabilities.
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1. INTRODUCTION

Errors in web applications are often critical. To protect web applications against ma-
licious users, the programmers must be aware of numerous kinds of possible vulner-
abilities and countermeasures. Among the most popular guidelines for programming
safe web applications are those in the OWASP Top 10 report that covers “the 10 most
critical web application security risks” [Open Web Application Security Project 2010].
Many security properties depend on the flow of untrusted data in the programs. This
flow is often not explicit in the program code, so it can be difficult to ensure that sen-
sitive data is properly protected. Although tool support exists for detecting and pre-
venting some risks, manual code review and testing remain crucial to ensure safety.
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However, code review and testing are tedious and error-prone means, so it is desirable
to identify classes of vulnerabilities that are amenable to tool support.
As an example, consider the category A4 - Insecure Direct Object References from the

2010 OWASP Top 10 list. A direct object reference is a reference to an internal imple-
mentation object, such as a database record, that is exposed to the user as a form field
or a URL parameter in an HTML document. Such references are examples of client
state, which is used extensively in web applications to work around the statelessness
of the HTTP protocol, for example, to store session state in the HTML documents at
the clients.
Figure 1 shows two excerpts of source code from a web application named JSPChat1.

Part (a) shows a JSP page containing an HTML form for saving personal information
in a chat service, and part (b) shows the servlet code that is executed when the form
data is submitted by the user. The first thing to notice is that the nickname form field on
line 20 in the JSP page functions as a direct object reference that refers to a ChatRoom
object and a Chatter object stored on the server. As the application programmer cannot
trust that the user does not modify such references in an attempt to access resources
that belong to other users, it is important to ensure that object references are pro-
tected. This can be done, for example, using a layer of indirection (i.e., using a map
stored on the server from client-state values to the actual object references), via cryp-
tographic signatures or encryption of the client state, or by checking that the user is
authorized to access the resources being referenced in the requests. This is, however,
easy to forget when programming the web application. In the example, the servlet
reads the nickname parameter, stores it in a field in the servlet object, and then uses it
– without any security measures – to look up the corresponding ChatRoom and Chatter
objects in the shared application state on lines 47 and 49. Obviously, a malicious user
could easily forge the parameter value and thereby access another person’s data. (The
careful reader may have noticed another vulnerability in the program code; we return
to that in Section 7.)
As documented in security alerts and reports by, e.g., ISS [Internet Security Systems

2000], MSC [Brussin 1998], Advosys [Advosys Consulting 2000], and Sanctum [ZDNet
2001], vulnerabilities of this kind have been known—and exploited—for more than
a decade. A study of several hundred penetration test reports conducted by Imperva
between 2000 and 2003 placed it as the most common kind of web application vul-
nerability [Cerf and Shulman 2004]. However, it remains widespread, as evident from
the 2010 OWASP report. A recent study shows that web application developers are
still unaware of common classes of related vulnerabilities, despite awareness programs
provided by, for example, OWASP, MITRE, and SANS Institute [Scholte et al. 2011].
A notable recent example of client-state manipulation is the attack on the Citigroup
website that allowed hackers to disclose account numbers and transaction history for
200,000 credit cards [Moran 2011].
According to OWASP, “automated tools typically do not look for such flaws because

they cannot recognize what requires protection or what is safe or unsafe”. Neverthe-
less, in this article we show that it is possible to develop automated tools that can
detect many of these flaws. Our approach is based on a simple observation: Vulner-
ability involving client-state manipulation is strongly correlated to information flow
from hidden fields or other kinds of client state to operations involving the shared ap-
plication state on the server. This approach is along the lines of previous work on static
taint analysis [Livshits and Lam 2005; Tripp et al. 2009], however, with crucial differ-
ences in how we characterize the sources and sinks of the information flow. We discuss
related work in Section 8.

1http://www.web-tech-india.com/software/jsp_chat.php
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1 <% ChatRoomList roomList =
2 (ChatRoomList)application.getAttribute("chatroomlist");

3 ChatRoom chatRoom = roomList.getRoomOfChatter(nickname);

4 Chatter chatter = chatRoom.getChatter(nickname); %>

5 <html><head>
6 <meta http-equiv="pragma" content="no-cache">
7 <title>
8 Edit your (<%=chatter.getName()%>’s) Information

9 </title>
10 <link rel="stylesheet" type="text/css"
11 href="<%=request.getContextPath()%>/chat.css">

12 </head>
13 <body bgcolor="#FFFFFF">
14 <form name="chatterinfo" method="post"
15 action="<%=request.getContextPath()%>/servlet/saveInfo">

16 <table width="80%" border="0" cellspacing="0"
17 cellpadding="2" align="center" bordercolor="#6633CC">

18 <tr><td valign="top"><h4>Nickname:</h4></td>
19 <td valign="top"><%=chatter.getName()%></td>
20 <input type="hidden" name="nickname"
21 value="<%=chatter.getName()%>">

22 </tr>
23 <tr><td valign="top"><h4>Email:</h4></td>
24 <td valign="top"><input type="text" name="email"
25 value="<%=chatter.getEmail()%>">

26 </td></tr>
27 <tr><td valign="top">
28 <input type="submit" name="Submit" value="Save">
29 </td></tr></table></form></body></html>

(a) editInfo.jsp

30 public class SaveInfoServlet extends HttpServlet {
31 String nickname = null;

32 String email = null;

33 HttpSession session = null;

34 String contextPath = null;

35
36 public void doGet(HttpServletRequest request,

37 HttpServletResponse response)

38 throws IOException , ServletException {

39 nickname = request.getParameter("nickname");

40 contextPath = request.getContextPath();

41 email = request.getParameter("email");

42 session = request.getSession(true);

43 ChatRoomList roomList = (ChatRoomList)

44 getServletContext()

45 .getAttribute("chatroomlist");

46 ChatRoom chatRoom =

47 roomList.getRoomOfChatter(nickname);

48 if (chatRoom != null) {

49 Chatter chatter = chatRoom.getChatter(nickname);

50 chatter.setEmail(email);

51 ...

52 }

53 }

54 }

(b) SaveInfo.java

Fig. 1. A simplified version of the JSPChat web application.
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In summary, the main contributions of this article are as follows:

—Our starting point is a characterization of client-state manipulation vulnerabilities
(Section 2) that has considerable overlap with category A4 from the OWASP 2010 list
of the most critical risks. In particular, we describe safety conditions under which the
use of client state is likely not to cause vulnerabilities.

—Based on this characterization, we present an automated approach to detecting oc-
currences of client state in a given web application and to checking whether the safety
conditions are satisfied (Sections 3–6).

— Through experiments performed on 10 open-source web applications with a prototype
implementation of our analysis, we show that the approach is effective for helping the
programmer detect client-state manipulation vulnerabilities (Section 7). On a total
of 1,575 servlets, JSP pages, and Struts actions, our tool identifies 4,802 possible oc-
currences of hidden fields and other client-state parameters. After customization, the
tool classifies 4,437 of these occurrences as safe. Of the 365 warnings being produced,
241 cases reveal exploitable vulnerabilities involving 59 different field names.

The static analysis that underlies our automated approach to detecting client-state
manipulation vulnerabilities consists of three components. The first component (Sec-
tion 4) infers the dataflow between the individual servlets and pages that constitute
the application in order to identify the client-state parameters. This requires a static
approximation of the dynamically constructed output of the servlets and pages and
extraction of relevant URLs and parameter fields in forms and hyperlinks. The second
component (Section 5) analyzes the program code to find out which objects represent
shared application state, i.e., server state that is persistent or shared between multiple
clients, as opposed to session state or transient state. The third component (Section 6)
performs an information flow analysis to identify the possible flow of user-controllable
input from client-state parameters to shared application state objects. The vulnerabil-
ity warnings being produced by the tool are useful for guiding the programmer to apply
appropriate countermeasures by modifying the application source code. Alternatively,
the information obtained by the analysis can be used for automatically configuring a
security filter that guards against client-state manipulation attacks at runtime (Sec-
tion 8.2).
Our goal is not to develop a technique that can fully guarantee absence of client-

state manipulation vulnerabilities. Rather, we aim for a pragmatic approach that can
detect many real vulnerabilities while producing as few spurious warnings as possible.
Since authorization checks and other countermeasures come in many different forms,
the information flow analysis component may require some customization, but the
analysis is otherwise fully automatic.

2. CLIENT-STATE MANIPULATION VULNERABILITIES

In a web application, client state comprises information that is stored within a dynam-
ically generated HTML document in order to be transmitted back to the server at a
subsequent interaction, for example, when a form is submitted. Since the HTTP proto-
col is stateless, client state is widely used for keeping track of users and session state
that involve multiple interactions between each client and the server. Storing session
state at the client instead of at the server can have several benefits. Most importantly,
it decreases the load on the server and avoids the need for a session-state expiration
mechanism. Client state appears as hidden fields in HTML forms (as in the example
in Section 1) and as URL query parameters in hyperlinks. Such state is not intended
to be modified by the user, but nothing prevents malicious users from doing so, and
this is easy to forget when programming web applications. A related situation occurs
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editInfo.jsp

SaveInfo.java
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HTML document
in browser

nickname
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Fig. 2. Dataflow of client state from a JSP page to a servlet via an HTML document. The nickname param-
eter is sent from editInfo.jsp to SaveInfo.java via the HTML document.

with HTML select menus, radio buttons, and checkboxes, which also contain fixed sets
of values that the user is intended to choose from. We commonly refer to HTTP GET/-
POST request parameters that contain such state as client-state parameters. Cookies
provide a related mechanism; in this article, we focus on ordinary HTTP request pa-
rameters, but our approach in principle also works for cookies.
For the discussion, we consider Java-based web applications, specifically ones based

on Java Servlets, JSP, or Struts. We use the general term page to refer to a servlet
instance, a JSP page, or a Struts action instance; each produces an HTML document
when executed.
Figure 2 illustrates the dataflow of client state for the JSPChat example. The value

of nickname is passed as client state from a JSP page, editInfo.jsp, to a servlet, Save-
Info.java, using a hidden field in the HTML document.
The following characterization is our key to automating detection of the vulnerabil-

ities we consider: A web application is vulnerable to client-state manipulation if users,
by modifying client state, can gain additional capabilities to access or change shared
application state. Note that by this definition, if all parts of the application state that
can be accessed or changed by modifying client state can also be accessed by other
means, for example, via another page in the application, it is not considered vulnera-
ble to this kind of attack.
This class of vulnerabilities is closely related to MITRE’s weakness categories CWE-

472 (External Control of Assumed-Immutable Web Parameter)2 and CWE-639 (Au-
thorization Bypass Through User-Controlled Key)3—and, as discussed in the previous
section, to OWASP’s risk category A4 (Insecure Direct Object References). Moreover,
the page for CWE-472 mentions that it “is a primary weakness for many other weak-
nesses and functional consequences, including XSS, SQL injection, path disclosure,
and file inclusion”. Descriptions of the categories are shown in Figure 3.
All client-state parameters—most importantly, those that originate from hidden

fields in HTML forms—are potential sources of client-state manipulation vulnerability.
On the other hand, we observe that uses of client state are safe, that is, not vulnerable
to client-state manipulation, if at least one of the following conditions is satisfied.

1) The client-state parameter value stored in the HTML document is encrypted us-
ing a key that is private to the server. The server then decrypts the value when it
is returned. A variant is to leave the value unencrypted but add an extra hidden
field or URL parameter containing a digital signature (or MAC, message authen-
tication code) computed from the client-state value and the server’s private key.
The server then verifies that the client-state value is unaltered by checking the

2http://cwe.mitre.org/data/definitions/472.html
3http://cwe.mitre.org/data/definitions/639.html
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CWE-472 (External Control of Assumed-Immutable Web Parameter)
“If a web product does not properly protect assumed-immutable values from modification in hid-
den form fields, parameters, cookies, or URLs, this can lead to modification of critical data. Web
applications often mistakenly make the assumption that data passed to the client in hidden fields
or cookies is not susceptible to tampering. Improper validation of data that are user-controllable
can lead to the application processing incorrect, and often malicious, input.”

CWE-639 (Authorization Bypass Through User-Controlled Key)
“Retrieval of a user record occurs in the system based on some key value that is under user control.
The key would typically identify a user related record stored in the system and would be used to
lookup that record for presentation to the user.”

OWASP A4 (Insecure Direct Object References)
“A direct object reference occurs when a developer exposes a reference to an internal implemen-
tation object, such as a file, directory, or database key. Without an access control check or other
protection, attackers can manipulate these references to access unauthorized data.”

Fig. 3. Weakness categories from MITRE and OWASP that are related to client-state manipulation.

signature when the form data is returned. To prevent against replay attacks and
impersonation attacks, a timestamp and a client ID can be included in the encryp-
tion or signature generation. A drawback of this approach is that extra work is
needed when producing and receiving the client state.

2) The client state entirely consists of large random values that are practically impos-
sible to predict by attackers. A typical example is the use of session IDs: in many
web applications, all session state is stored on the server, and the only client state
being used consists of session IDs, that is, references to the session state on the
server. A drawback of this approach is that it requires extra space on the server to
store the session state.

3) An indirection is used. The client state consists of, for example, only numbers be-
tween 1 and some small constant, and these numbers are then mapped to the
actual application state on the server. This approach is particularly useful for se-
lect menus, radio buttons, and checkboxes. In this way, client-state manipulation
cannot provide access to data beyond what is accessible from this map. A drawback
of this approach is the burden involved in maintaining the indirection map.

4) The client-state parameter is treated as untrusted input, no different from other
kinds of parameters, and any access to application state involving the given client-
state value is guarded by an authorization check.

5) Finally, a sufficient condition for safety according to the preceding definition is that
all the shared application state that can be accessed through client-state manipu-
lation is already available by other means, that is, the information should not be
considered sensitive.

We see uses of several of these techniques in the web applications Hipergate,
Pebble, and JWMA that we study in Section 7. OWASP’s ESAPI4 library con-
tains support for implementing techniques 1–4. As an example, to apply the
ESAPI encryption approach to the JSPChat web application from Figure 1, the
programmer would wrap the expression chatter.getName() on line 21 into a
call to ESAPI.httpUtilities().encryptHiddenField(. . .) and insert a matching call
to decryptHiddenField on line 39. The decryptHiddenField method throws an
IntrusionException if tampering is detected. In .NET, the LosFormatter5 class pro-

4https://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API
5http://msdn.microsoft.com/en-us/library/system.web.ui.losformatter.aspx
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vides support for MAC protection of client state (or view state, as it is called in .NET).
The use of encryption and signatures to prevent manipulation of hidden form fields
was originally suggested by MSC [Brussin 1998] and Advosys [Advosys Consulting
2000]. Thus, the countermeasures are well known; the goal of our analysis is to detect
when they are applied inadequately.

3. OUTLINE OF THE ANALYSIS

We adapt the well-known approach to static information flow analysis for identify-
ing the possible dataflow from sources to sinks that does not pass through sanitiz-
ers [Huang et al. 2004; Livshits and Lam 2005; Tripp et al. 2009; Wassermann and Su
2008; Xie and Aiken 2006; Jovanovic et al. 2010].

—The sources in our setting are the locations in the code where client-state param-
eters are read. With common web application frameworks, such as Java Servlets,
JSP, and Struts, it is not explicit in the application source code which parameters
contain client state, so we need a static analysis to infer this information.

—The sinks are the operations in the source code that involve shared application state.
We conservatively assume that this application state is not accessed by other means
(cf. condition 5 in Section 2). This assumption may lead to false positives, which we
consider experimentally in Section 7. As is it not explicit in the source code which
operations involve shared application state (compared to session state or transient
state), we need another static analysis component to extract this information.

—The sanitizers correspond to the various kinds of protection described in Section 2.
For example, decrypting an encrypted client-state value is one kind of sanitization.

Our analysis tool has built in mechanisms for identifying sinks and sanitizers, inde-
pendently of the applications. The user can customize the analysis by providing addi-
tional application specific patterns.
We propose the following procedure for analyzing a given web application: (1) Run

the analysis on the application, with only the default sink and sanitizer patterns; (2)
study the warnings being produced and add customization rules to those that are con-
sidered false positives to enable the analysis to reason more precisely about the rele-
vant parts of the application; (3) run the analysis again, using the new customization.
Provided that the analysis is sufficiently precise, most warnings now indicate actual
exploitable vulnerabilities.
It is, in principle, possible for a programmer to specify incorrect customization rules,

which may affect soundness of the analysis output. However, we trust that the cus-
tomization rules are correct. The purpose of our analysis is to alert the programmer
to potential vulnerabilities, not to formally verify correctness of, for example, low-level
operations for digital encryption or MAC checking. Moreover, the customization mech-
anism is easy to use, as we shall see in Sections 6 and 7.
One approach to remedy vulnerabilities detected by the analysis is that the pro-

grammer manually incorporates appropriate countermeasures into the web applica-
tion source code, as discussed in Section 2. Another option is to feed the vulnerability
report to a security filter, which we describe in Section 8.2, for automatic protection.
Our experiments (Section 7) indicate that the burden of the customization step is man-
ageable. However, we note that a fully automatic approach to protect against client-
state manipulation can be obtained by omitting customization entirely and applying
the security filter without having eliminated false positives. Compared to the more
manual approach involving customization, the price is a modest runtime overhead in-
curred by the security filter, since it may protect some client state unnecessarily.
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Fig. 4. Structure of the analysis.

The following sections explain how we identify client-state parameters and applica-
tion state and perform the information flow analysis. The structure of the combined
analysis is illustrated in Figure 4.

4. IDENTIFYING CLIENT STATE

When a page p reads an HTTP parameter, for example, on lines 39 and 41 in Figure 1,
the only way we can find out whether that is a client-state parameter is to analyze
every page q of the application that dynamically constructs HTML documents with
links or forms referring to p. Specifically, we need to recognize the construction of the
hidden field named nickname on line 20 in editInfo.jsp, and via the action attribute
of the <form> element in editInfo.jsp, establish the connection from editInfo.jsp to
line 39 in the servlet SaveInfo.java.
The goal of this phase is to analyze every page in the application to find out which

client-state parameters appear in the generated HTML documents and which refer-
ences exist to other pages. For each page q in the web application, we first generate
a context-free grammar Gq that conservatively approximates the set of HTML doc-
uments that may be generated by q. This can be done as in our previous work on
analysis of dynamically generated HTML documents [Møller and Schwarz 2011]. To
find the client-state parameters in the HTML documents generated by q, we iden-
tify all elements that define hidden fields, select boxes, radio buttons, and links
in Gq and collect the corresponding parameter names. Since these names may be
generated dynamically in the program, we approximate them conservatively by a
regular language Cout (q). In the JSPChat example from Figure 1, this step identi-
fies nickname as the only client-state parameter originating from editInfo.jsp, thus
Cout (editInfo.jsp) = {nickname}. We also infer the references between the pages by
identifying href attributes in <a> elements and action attributes in <form> elements
in Gq. This results in a map S that holds the set of possible successor pages for each
page. For example, SaveInfo.java ∈ S(editInfo.jsp). Section 4.1 explains in more
detail how to infer this information from the web application code.
Combined with information extracted from the deployment descriptors (web.xml in

Servlets and struts.xml in Struts), this results in a page graph in which nodes cor-
respond to pages and edges correspond to S, describing the possible links and form
actions. In the example in Figure 1, this step identifies the edge from editInfo.jsp
to SaveInfo.java. Figure 5 shows the page graph for the six pages in JSPChat that
involve flow of client state.
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editInfo.jsp SaveInfo.java
{nickname}

listrooms.jsp

logout.jsp

find.jsp

{submitted}

sendMessage.jsp

{n, nickname}

{n, nickname}

{n, nickname}

Fig. 5. The automatically constructed page graph for the parts of JSPChat that involve client state.

The names of the incoming client-state parameters to a page p can now be expressed
as Cin(p) = ∪qiCout (qi) for each page qi where p ∈ S(qi). For the example, we get
Cin(SaveInfo.java) = {nickname}. This tells us that when SaveInfo.java reads the
nickname parameter, as in request.getParameter("nickname") on line 39 in Figure 1,
that should be treated as a source in the subsequent information flow analysis, in
contrast to the email parameter that is read on line 41. Section 4.2 explains more
generally how to use Cin for locating operations in the application code that read client-
state parameters.
The result of these steps is a set of method calls in the application code that will

serve as sources of client-state values in the information flow analysis in Section 6.
All of the steps can be done soundly in the sense that every call to getParameter and
related operations that may return client state is always included in the statically
inferred set of client-state value sources. In our experiments, we never observe any
imprecision of this phase.

4.1. Analyzing HTML Output

As previously outlined, we analyze the source code of the web application to find the
hidden fields, URL parameters, links, and form actions that may appear in the gen-
erated HTML pages. With Java Servlets, output is generated by printing string frag-
ments to an output stream. JSP and Struts compile to Servlets, so we can handle each
of these frameworks by focusing on Servlets. We assume that the HTML documents
being generated do not use JavaScript code in ways that interfere with forms and links.
Starting from the Java bytecode of the web application, the first step is to construct
an output stream flow graph, which is a representation of the program that abstracts
away everything not directly relevant for generating output to the output stream. The
notion of output stream flow graphs originates from previous work [Kirkegaard and
Møller 2006; Møller and Schwarz 2011]; here we give a more formal description, in-
cluding a precise description of the connection to context-free grammars.
An output stream flow graph F is a directed graph given as a tuple (N,E,C, L).

— N is a finite set of nodes, divided into three disjoint subsets.
— Nappend are append nodes representing instructions that print strings to the out-

put stream.
— Ninvoke are invoke nodes corresponding to method calls.
— Nreturn are return nodes corresponding to method returns.

— E ⊆ (Nappend ∪Ninvoke)×N is a set of intra-procedural edges.
— C ⊆ Ninvoke ×N is a set of call edges.
— L : Nappend → R gives a regular string language (represented by a regular expres-

sion or a finite-state automaton over the Unicode alphabet) for every append node.
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Fig. 6. Excerpt from the output stream flow graph for editInfo.jsp. Dashed edges indicate places where
additional nodes exist in the full graph.

Output stream flow graphs are abstract machines. Intuitively, the nodes correspond
to primitive instructions in the program being analyzed, and edges correspond to con-
trol flow between those instructions. An append node abstractly writes to the output
stream and then continues execution nondeterministically at a successor node. An in-
voke node pushes a successor node to the call stack and then enters one of its target
methods. A return node exits the current method, pops a node from the call stack, and
continues execution from that node. We define the language LF (n0) of F relative to an
entry node n0 ∈ N as the set of strings that may appear as output when F is executed
starting from n0 with an empty stack and ending at a return node with an empty stack.
Our implementation constructs output stream flow graphs from Java bytecode using

the Soot program analysis framework [Vallee-Rai et al. 1999] and the JSA string anal-
ysis tool [Christensen et al. 2003; Feldthaus and Møller 2009]. From Soot, we use the
Jimple intermediate representation, the built-in class-hierarchy analysis for obtain-
ing call graphs, and the Spark points-to analysis to find the operations that affect the
HTTP output stream. JSA gives us the regular string languages for the invoke nodes.
The resulting output stream flow graph has one entry node in F for each page in the
web application.
Figure 6 shows a part of the output stream flow graph for editInfo.jsp. Since there

are no control-flow structures in the source code of the page, the graph becomes linear
and contains an append node for each operation that may emit output to the client. The
hidden field nickname is generated by the append node n4. Also notice that the analysis
approximates the possible value of chatter.getName() from line 8 in Figure 1 as any
string, Σ∗. In the subsequent analysis, we choose to ignore the fact that this may in
principle alter the syntactic structure of the HTML document, which may cause invalid
HTML as well as other kinds of vulnerabilities.
A context-free grammar G is a tuple (V,Σ, s, P ) where the following hold.

— V is a set of nonterminals.
— Σ is the terminal alphabet where V ∩ Σ = ∅.
— s ∈ V is a start nonterminal.
— P is a finite set of productions of the form v → θ where v ∈ V and θ ∈ (V ∪ Σ)∗.
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v0 → <html><head><meta http-equiv="pragma" content="no-cache">

<title> Edit your (v1
v1 → Σ∗v2
v2 → ’s) Information </title>

<link rel="stylesheet" type="text/css" href=" . . . v3
v3 → Σ∗v4
v4 → ></td>

<input type="hidden" name="nickname" value=" . . . v5
v5 → ǫ

Fig. 7. Excerpt of the context-free grammar for editInfo.jsp corresponding to the output stream flow
graph from Figure 6.

For convenience, we also allow right-hand sides of productions in P to be symbols that
denote regular string languages over Σ. (In principle, these can always be reduced to
regular grammars.) We define the language LG(v0) of G relative to a nonterminal v0 as
the set of strings over Σ that can be derived starting from v0 using the productions in
P . In particular we are interested in the language relative to the start nonterminal s,
written L(G) = LG(s).
We now construct a family of context-free grammars {Gq1 , . . . , Gqk}, one for each

page in the web application, from the output stream flow graph F . All the grammars
have the same nonterminals, terminals, and productions; only the start nonterminal
differs. The nonterminals are the nodes from F , that is, V = N , and Σ is the Unicode
alphabet. The start nonterminal forGq is the entry node of the page q. The productions
are constructed such that LGq

(n) = LF (n) for all n ∈ N . Although output stream
flow graphs have an operational flavor and context-free grammars are a declarative
formalism, this construction of the productions is straightforward:

— for each n ∈ Nappend and (n,m) ∈ E, add a production n → rn m to P where the
symbol rn denotes L(n),

— for each n ∈ Ninvoke, (n,m) ∈ E and (n, p) ∈ C, add a production n → p m to P , and
— for each n ∈ Nreturn, add a production n → ǫ to P .

The correctness of this translation from output stream flow graphs to context-free
grammars follows from the observation that the semantics of both formalisms can
be expressed as the smallest solution to the following constraints where L assigns a
language over the Unicode alphabet to each node or nonterminal:

∀n ∈ Nappend, (n,m) ∈ E : L(n)L(m) ⊆ L(n)
∀n ∈ Ninvoke, (n,m) ∈ E, (n, p) ∈ C : L(p)L(m) ⊆ L(n)
∀n ∈ Nreturn : ǫ ∈ L(n)

We now have a family of context-free grammars where L(Gq) is an over-
approximation of the set of strings that the web application page q may possibly pro-
duce as output. As an example, Figure 7 shows an excerpt of the context-free grammar
for editInfo.jsp.
Recall that the goal of this phase is to identify specific elements and attributes that

hold client state, in particular, names of hidden fields, and URLs that point to other
application pages. As the context-free grammars we have produced work at the level of
individual characters, we need to analyze each Gq to produce an annotated grammar
G′

q that shows how the characters group into HTML elements and attributes.
To see how this can be done, consider the way an HTML parser performs a left-

to-right scan through the characters of an ordinary HTML document. The parser is
initially in a state contents. When it encounters a < character, it switches to another
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state tagname, meaning that it now expects to see a tag name. It stays in this state
until it encounters, for example, a whitespace character, which causes a switch to the
state attname meaning that it is now prepared to see an attribute name. Similarly, it
recognizes the different kinds of attribute value syntax, entity references, comments,
etc., as different parse states. LetH denote the set of all parse states that are necessary
for parsing HTML documents, H = {contents, tagname, . . . }, and let δ : H × Σ → H
denote the transition function that determines the next state after each character is
read. An actual HTML parser also maintains a stack to keep track of the nesting of
elements; for our purposes, only the δ function is relevant. We now generalize this pro-
cess to operate on a context-free grammarGq, which defines a set of HTML documents,
rather than on individual HTML documents. The result is a function ρ : P ×N → P(H)
that assigns a set of HTML parse states to each position in the productions of Gq. As
an example, for a production p3 = v7 → v8 < u l > v9 < / u l >, where v7, v8, v9 are
nonterminals, we may have ρ(p3, 0) = ρ(p3, 1) = {contents} and ρ(p3, 2) = {tagname},
where the numbers 0, 1, and 2 correspond to the position at the beginning of the right-
hand-side of the production, the position immediately after v8, and the position after
the first < character, respectively. We construct the function ρ as the least solution to
the following constraints:

— for each production p = v → θ where v is the start nonterminal: contents ∈ ρ(p, 0)
—for each production p = v → θ and each i = 1, . . . , |θ|, let ai be the ith terminal or

nonterminal in θ,
— if ai is a terminal: h ∈ ρ(p, i− 1) ⇒ δ(h, ai) ∈ ρ(p, i)
—if ai is a nonterminal and p′ = ai → θ′ is a production:

ρ(p, i− 1) ∈ ρ(p′, 0) ∧ ρ(p′, |θ′|) ∈ ρ(p, i)

The least solution can be computed using a simple fixpoint algorithm. Intuitively, the
first constraint ensures that generated strings start in the contents state, and the
other constraints apply the transition function δ from left to right on the characters in
the strings to find the possible parse states at the different positions.
We now define the annotated grammar G′

q = (Gq, ρ). Each set ρ(p, i) is usually a
singleton, meaning that the parse context has been determined uniquely, however,
in situations where a piece of program code generates output that may result, for
example, either in contents between HTML tags or in attribute values, the sets may
contain multiple parse states.
The last step of the static analysis of the dynamically generated HTML output con-

sists of a simple traversal through the annotated grammar G′

q, looking for specific ele-
ments and attributes. To construct Cout , that is, the required information about names
of hidden fields and URL parameters, we look for the name attributes in <input> el-
ements that have a type attribute with value hidden and for href attributes in <a>
elements. To construct the page graph edges S we look for the action attributes in
<form> elements and for href attributes in <a> elements.
After annotating the grammar from Figure 7, we can determine that the produc-

tion on v4 can generate an element named input with attributes type="hidden" and
name="nickname", so Cout (editInfo.jsp) contains nickname.

4.2. Analyzing Input Parameters

Parameter values in the Java Servlet framework are read using the getParameter
method of the HttpServletRequest object. We conservatively assume that all objects
of type HttpServletRequest are relevant. The Servlet framework instantiates all re-
quest objects and provides no implementation of the HttpServletRequest interface to
the programmer, so this assumption is unlikely to result in false positives in practice.
Since the request parameter name that is given as an argument to this method may
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not be a constant in the source code, we approximate for each call to getParameter
the possible values as a regular language. We obtain this information using the JSA
string analysis tool as in Section 4.1. If the language overlaps with Cin(p), we mark
the method call as a client-state value source. This step will mark the method call on
line 39 in Figure 1 as such a source. The call on line 41 will not be marked, since email
is not in Cin(SaveInfo.java).
Most JSP pages that read request parameters use the underlying mechanism from

Servlets, although the expression language (EL) and the JSTL tag library may also be
involved. In the Struts framework, parameters are read in a different manner. Rather
than retrieving the values from a request object, Struts populates a Java bean object
with the parameter values. In each case, we can identify parameter read operations in
the code using simple pattern matching on Soot’s Jimple code.

5. IDENTIFYING SHARED APPLICATION STATE

To find the operations in the code that affect shared application state, that is, state that
is shared between all requests, we first identify the application state that is stored in
memory, which we call the internal application state. This includes:
(1) all HttpServlet objects (and hence the value of this inside servlet classes) and
ServletContext objects, and all values of static fields,

(2) all values of fields of objects that have been classified as internal application state,
and conversely, all objects that have non-static fields containing internal applica-
tion state, and

(3) all values returned from static methods or from methods on internal application
state objects.

Notice that in situations where session state or transient state points to shared ap-
plication state or vice versa, the second rule may conservatively classify such state as
application state.
Finding all expressions in the code that may yield internal application state accord-

ing to these rules can be done with a simple iterative fixpoint algorithm combined with
an alias analysis, such as the points-to analysis provided by the Soot tool that we also
used in Section 4.1. We first define a set of abstract locations K = Field ∪ Local ,
where Field and Local denote the fields in classes and the local variables and method
parameters, respectively, in the application code. For a field f ∈ Field , the abstract
location f corresponds to the set of fields named f in objects at runtime. Similarly, a
local variable or method parameter x ∈ Local corresponds to all occurrences of x at
runtime. Every name in Field and Local is implicitly qualified by the signature of the
surrounding class and method, respectively, to distinguish between variables of the
same name in different contexts. We assume that nested expressions have been lin-
earized by Soot using extra local variables, and the keyword this is treated as a local
variable. The points-to analysis gives us a may-alias equivalence relation ∼ ⊆ K ×K
such that k1 ∼ k2 if k1 and k2 may point to the same object at runtime. We now find
the internal application state by computing a subset of the abstract locations A ⊆ K
as the least solution to the following constraints, where x, y ∈ Local , f ∈ Field , c is a
class, and m is a method:

— for every abstract location k that has type HttpServlet or ServletContext or is a
static field: k ∈ A,

— for every field read operation x = y.f : y ∈ A ⇒ x ∈ A,
— for every field write operation x.f = y: y ∈ A ⇒ x ∈ A,
— for every static method call operation x = c.m(. . .): x ∈ A,
— for every non-static method call operation x = y.m(. . .): y ∈ A ⇒ x ∈ A,
— for every pair of abstract locations, k1 and k2, where k1 ∼ k2: k1 ∈ A ⇔ k2 ∈ A.
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this ∈ A
t1 ∈ A

t1 ∈ A ⇒ roomList ∈ A
roomList ∈ A ⇒ chatRoom ∈ A
chatRoom ∈ A ⇒ chatter ∈ A

Fig. 8. Constraints for computing the internal application state for the class SaveInfo. The local variable
t1 corresponds to the sub-expression getServletContext() on line 44 in Figure 1.

The first condition corresponds to rule (1) from before, the next two correspond to rule
(2), and the two after those correspond to rule (3). The last condition takes aliasing
into account. This computation of A captures all internal application state, although
obviously as an approximation. As already mentioned, we may conservatively classify
some session state or transient state as application state. The coarse heap abstraction
and alias analysis, as well as the lack of, for example, flow- and context-sensitivity may
also contribute to imprecision. Nevertheless, the experiments described in Section 7
indicate that this simple analysis is sufficient.
Continuing the JSPChat example from Figure 1, the variables nickname, email,
session, and contextPath in SaveInfo.java are fields in the servlet class, so their
values are correctly classified as internal application state. (That is, however, presum-
ably not intended by the programmer, which we return to in Section 7.) The roomList
variable gets its value from an attribute in the servlet context object using the method
calls getServletContext().getAttribute(. . .), so its value is also classified as inter-
nal application state. In contrast, the variables request and response are not included
as internal application state. The constraints being generated are shown in Figure 8.
The alias analysis is not needed in this simple example.
We also find the external application state stored in files and databases. Such state

is read and written using special API functions. The analysis treats all parameters to
all methods from the standard Java libraries as sinks, except for a built-in collection of
method parameters that have a special meaning for the information flow. We describe
these exceptions and a customization mechanism in Section 6.
Web applications often rely on libraries, such as Hibernate or Apache Commons,

which are typically provided in separate jar files. We allow libraries to be omitted from
the analysis for analysis performance reasons. This will simply cause the analysis
to treat all method calls to those libraries conservatively as operations on external
application state.
The result of this analysis component is an over-approximation of the set of expres-

sions in the code that yield internal application state and of the set of method calls that
involve external application state. We use this information in the following section.

6. INFORMATION FLOW FROM CLIENT STATE TO SHARED APPLICATION STATE

As outlined in Section 3, we use an information flow analysis to identify flow of the
client-state values in the program to the shared application state. In general, informa-
tion flow analysis considers two kinds of flow: explicit and implicit flow [Denning and
Denning 1977]. Explicit flow is caused by assignments and parameter passing. Other
forms of explicit flow may be described using customized derivation rules, as described
next. Implicit flow arises when the value of a variable depends on a branch condition
involving another variable. Other work involving information flow in web applications
typically disregards implicit flow [Livshits et al. 2009; Tripp et al. 2009]. According to
Tripp et al. [2009], “experience shows that attacks based on control dependence are
rare and complex, and thus less important than direct vulnerabilities.” To simplify our
analysis, we also choose to consider only the explicit flow.
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Information flow analysis requires a characterization of sources, sinks, and sanitiz-
ers. The sources in our analysis are the client-state value sources that were identified
in Section 4. The sinks are operations in the code where the application writes to fields
of internal application state objects or invokes methods that involve external applica-
tion state, which we found in Section 5.
Sanitizers can be methods that determine whether a given client-state value is safe,

for example, by performing access control or MAC checking, and methods that convert
unsafe values to safe ones, for example, by decrypting the values. An example is the
ESAPI method decryptHiddenFieldmentioned in Section 2. As sanitizers are highly
application specific, they are provided through customization, and none are built into
the analysis.
The information flow analysis we use is a simple whole-program dataflow analysis.

It is flow sensitive, meaning that different information is obtained at different pro-
gram points. It is context sensitive using one level of call-site sensitivity. The state
abstraction uses the same definition of abstract locations, K, as the analysis in Sec-
tion 5. Each abstract state provides a set of client-state parameter names for each
abstract location. For example, at the program point after the assignment on line 39
in Figure 1, the abstract state maps the email field of the servlet class to the singleton
set {nickname}, and all other locations are mapped to the empty set. Our implemen-
tation uses Soot, as in the other analysis components, with class-hierarchy analysis
for call-graph construction. The analysis scales well since it only tracks client-state
parameters, and relatively few fields and variables involve client state in typical web
applications. Another important factor is that the analysis skips library code.
The information flow analysis can be customized to improve precision for sanitizers

and sinks. As already mentioned, calls to library methods are treated as sinks by de-
fault. This behavior can be changed by specifying derivation rules, each consisting of
a method signature and a description of the relevant information flow between argu-
ments, the base object, and the return value. Such derivation rules can also be provided
for methods in application code to override the ordinary analysis of information flow
between calls to those methods and their bodies, typically for describing sanitizers
that convert unsafe values to safe ones. Another variant of customization rules allow
description of sanitizers that return a boolean indicating whether the given value is
safe or not. When this boolean is used as a branch condition, the analysis will consider
the sanitized value as safe in the true branch.
The customization rules can be given either as annotations in the code or in a sepa-

rate file. Application-specific rules can be added by the user of the analysis. Examples
of such customizations are presented in Section 7. Additionally, we provide a collec-
tion of predefined rules for the Java standard library. Figure 9 shows some examples.
The first four rules involve operations on strings that propagate client-state informa-
tion from parameters to return values or to the base value. For the add method on a
List object, the List object is marked as client-state if the object being added to the
list has that status. All Iterator objects being produced from such List objects also
become marked as client state, and similarly for objects that are returned from the
next method on these Iterator objects. This accounts for the common pattern of in-
formation flow to and from List containers. Other containers, such as HashMap objects,
are treated similarly. The last rule shown in the list tells the analysis that creating a
File object is harmless—in fact, such objects are often used in authentication checks
(cf. condition 4 in Section 2)—so the File constructor should not be treated as a sink.
However, we specify information flow from the parameter to the constructed object,
since that object may later be used for constructing, for example, FileWriter objects,
which are treated as sinks.
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java.lang.String.replace(java.lang.CharSequence,java.lang.CharSequence):

Flow from parameters 1 and 2 to return value
java.lang.StringBuffer.append(java.lang.String):

Flow from parameter 1 to base and return value
java.lang.Integer.parseInt(java.lang.String):

Flow from parameter 1 to return value
java.io.Writer.write(java.lang.String):

Flow from parameter 1 to base value
java.util.List<E>.add(E):

Flow from parameter 1 to base value
java.util.List<E>.iterator():

Flow from base value to return value
java.util.Iterator<E>.next():

Flow from base value to return value
java.util.HashMap<K,V>.put(K,V):

Flow from parameters 1 and 2 to base value
java.util.HashMap<K,V>.get(java.lang.Object):

Flow from base value to return value
java.io.File(java.lang.String):

Flow from parameter 1 to return value

Fig. 9. Examples of predefined derivation rules for the information flow analysis.

For the example in Figure 1, the information flow analysis finds out how the hidden
field values appearing at the source on line 39 may affect the application state, which
triggers a vulnerability warning. This is explained in more detail in Section 7.1.

7. EVALUATION

Our prototype implementation, WARLORD6, reads in a Java web archive (.war) file
containing a web application built with Java Servlets, JSP, or Struts, together with an
analysis customization file, and performs the analysis described in Sections 3–6. As
mentioned in previous sections, the implementation is based on the Soot analysis in-
frastructure [Vallee-Rai et al. 1999], the JSP compiler from Tomcat7, and our tools for
HTML grammar analysis [Møller and Schwarz 2011] and string analysis [Christensen
et al. 2003; Feldthaus and Møller 2009]. With this implementation, we aim to answer
the following research questions:

Q1: Is the analysis precise enough to detect client-state vulnerabilities with a low num-
ber of false positives? Specifically, can it identify the common uses of client state,
and is it capable of distinguishing between safe and unsafe uses of client state in
the sense described in Section 2?

Q2: Are the warning messages produced by the tool useful to the programmer for de-
ciding whether they are false positives or indicate exploitable vulnerabilities?

Q3: In situations where the programmer decides that a vulnerability warning is a false
positive, is it practically feasible to exploit the customization mechanism to elimi-
nate the false positive?

Q4: Is the analysis fast enough to be practically useful during web application devel-
opment?

6http://www.brics.dk/WARlord/
7http://tomcat.apache.org/tomcat-7.0-doc/jasper-howto.html
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JSPChat Servlets, JSP 16 19 3
Hipergate JSP 760 2,680 264
Takatu JSP, Struts 558 1,840 31
Pebble Servlets, JSP 122 22 11
Roller JSP, Struts 53 86 27
JWMA Servlets, JSP 26 40 10
JsForum Servlets, JSP 10 14 8
JavaLibrary JSP 20 92 35
BodgeIt Servlets, JSP 9 6 6
WebGoat Servlets 1 1 1

Fig. 10. List of benchmarks. The ‘Frameworks’ column shows which web frameworks are used in each
benchmark; ‘Pages’ is the total number of JSP pages, servlet classes, and Structs action classes; ‘Client-
state parameters’ is the number of client-state parameters inferred by the analysis, and ’Unique names’ is
the number of distinct names of such parameters.

To answer these questions, we experiment with a collection of web applications. For
each application, we go through the process suggested in Section 3: We first run the
WARLORD tool on the application with no customization. After a manual study of the
warnings being produced, appropriate customization is added, if possible, to address
the false positives.
If any exploitable vulnerabilities are found after running the analysis again, this

time with the new customization, we fix them manually using one of the techniques
mentioned in Section 2.
Our experiments are based on 10 open-source web applications found on the web:

JSPChat1 (the small chat application mentioned in Section 1), Hipergate8 (a customer
resourcemanagement application written entirely in JSP), Takatu9 (a large tax admin-
istration system), Pebble10 (a widely used blogging application), Roller11 (another blog-
ging application), JWMA12 (a web mail application), JsForum13 (a forum application),
JavaLibrary14 (a book library management application), BodgeIt15 (a web shop writ-
ten to demonstrate common security problems in web applications), and WebGoat16

(another web application that has been made to demonstrate typical security prob-
lems, written by OWASP). The benchmarks were selected as the first 10 applications
we encountered that use some form of client state and are based on Java Servlets, JSP,
or Struts. Our prototype supports Struts 2 but not version 1, so we do not include the
full list of benchmarks from Stanford SecuriBench [Livshits 2005]. The benchmarks on

8http://hipergate.sourceforge.net/
9http://takatu.sourceforge.net/
10http://pebble.sourceforge.net/
11http://roller.apache.org/
12http://jwma.sourceforge.net/
13http://sourceforge.net/projects/jsforum/
14http://sourceforge.net/projects/javalibrary/
15http://code.google.com/p/bodgeit/
16https://www.owasp.org/index.php/Category:OWASP_WebGoat_Project
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Write of client-state value ’nickname’ to application state

on line 23 of sukhwinder.chat.servlet.SaveInfoServlet

Trace:

sukhwinder.chat.servlet.SaveInfoServlet:

void doGet(HttpServletRequest,HttpServletResponse)

Fig. 11. Output from the WARLORD tool for the JSPChat benchmark.

our list cover a variety of application kinds of different size, they are written by differ-
ent programmers, and they use different web frameworks. The Takatu and JsForum
projects do not appear to be active but represent interesting snapshots of incomplete
web applications. Some characteristics of the benchmarks are listed in Figure 10. The
column ’Client-state parameters’ shows the total number of client-state parameters
computed as

∑
p |Cin (p)| for all pages p. Although Cin (p) may in principle be infinite,

each of the sets is finite and usually small. Note that client-state values appear in all
the benchmarks. The number of distinct names of the parameters, |

⋃
p Cin(p)|, shown

in the last column gives an indication of how many different kinds of client state that
occur.

7.1. Experiments

JSPChat. The analysis identifies uses of 19 client-state parameters, and only 1 warn-
ing is produced about potential client-state manipulation vulnerability. The single
warning is shown in Figure 11: as hinted in Section 1, the application is prone to a tim-
ing attack since the values of the request variables are stored in fields on the servlet
object, which the analysis reveals. Since this is indeed shared application state, such
a vulnerability falls within our characterization of client-state manipulation vulnera-
bilities. Notice that the analysis output includes a trace from the source to the sink,
which can make it easier to confirm or dismiss the error by manual inspection. If we
manually correct this error by changing the field into a local variable, the analysis
finds another error: the application is also prone to a classical client-state manipula-
tion attack, since a malicious user may change the nickname request parameter and
consequently change the information for another user. This error can be corrected by
fetching the nickname from the session instead of a client-state parameter. After also
correcting this error, WARLORD gives no more warnings. A manual inspection con-
firms that the remaining occurrences of client-state parameters are indeed safe. No
customization is necessary for this application.

Hipergate. Client-state parameters are used massively in this web application; in
fact, all client-specific values are passed around using hidden fields. Running the anal-
ysis yields 197 warnings. With 14 customizations, this number is brought down to 132
warnings, almost all of which are caused by client-state parameter values that flow
into parameterized database queries without any checks. We have inspected all of the
warnings, and many of them correspond to code that is vulnerable to attacks, as ex-
plained in the following. The main source of false positives originates from a use of
randomly generated ID strings for database rows. Such strings are hard to guess and
we do not consider this as vulnerable. If we exclude warnings involving these random
strings, 71 warnings remain.
All in all, 40 of the warnings reveal exploitable client-state manipulation vulner-

abilities. One of the warnings reveals that a file can be read from the disk using a
file name originating from a client-state parameter in wb_style_persist.jsp. This pa-
rameter can be exploited to change files on the disk. Although the programmer has
carefully inserted authorization checks to ensure that the user should be granted ac-
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cess to the page in question, no checks are made for any of the client-state parameters,
and they can therefore be manipulated by the client. The tool also gives a warning on
the page docrename_store.jsp, which can be exploited to rename files. The program-
mer has inserted a check to ensure that the user has rights to rename the files, but this
is performed on another parameter than the one holding the file name, and an attacker
can therefore create an exploit that changes only the file name. Furthermore, the tool
emits 4 warnings for the page reference.jsp where parameters can be injected into
an SQL string. 1 warning on the page catusrs_store.jsp reveals that a client-state
parameter can give access to update permissions for any user, and 2 warnings reveal
a similar problem for catgrps_store.jsp. Similarly, 31 warnings in 18 other pages re-
veal places where client-state values give direct access to the database. In all cases,
data is queried or changed in the database using a client-state parameter.
For the remaining 31 warnings, we found that they could not be exploited. In three

cases, the parameters control settings for querying the database without affecting the
result, for example, the number of rows queried at a time. In additional three cases, the
values are references to objects that are owned by the user and changing these values
does not give access to new information. In the remaining cases, values flow to the
database API, but the queries are only used for logging client actions or for retrieving
data that is used for access control. The current customization mechanism is not able
to express the precise behavior of SQL expressions that are executed through calls
to the JDBC API, and therefore the analysis considers all such calls as sinks. The
analysis is able to classify 2,548 out of 2,680 uses of client-state parameters as safe.

Takatu. The analysis identifies 1,840 client-state parameters. 184 warnings are is-
sued, all but 14 are caused by reading from the database using IDs that come from
hidden fields. These IDs are used for querying objects from the database. After manu-
ally inspecting the warnings, we can see that 162 of them can be exploited to change or
read data on the server. Other 8 warnings indicate places where values are read from
the database in ways that are not vulnerable, for example, for searching for values in
the database. The remaining 14 warnings indicate places where a client-state param-
eter holds the value of a log flag that is used to query the database but none of them
can be exploited. No customization is required for this application.
Interestingly, this web application at multiple places asks the user to confirm the

deletion of an object. The ID of the object is stored in a hidden field that is not pro-
tected, so the client can delete any object of the same type by modifying the ID used as
object reference. The errors are easily corrected, for example, by signing the vulnerable
parameters and checking the signature when the parameter is sent back to the server.

Pebble. WARLORD identifies 22 uses of client-state parameters and initially pro-
duces 4 warnings. This web application uses a dispatcher, so all requests except those
to JSP pages go through a single servlet. The number of client-state parameters seems
small because of this structure, but the classes being dispatched to make heavy use of
the client-state parameters.
The web application stores files on the disk such that each blog has its own directory,

and it uses the value of a parameter from a hidden field to determine the name of
the file to save to, which is the cause of 2 warnings. However, each value used this
way is verified to be a child of the blog folder, so the folder structure ensures that
users cannot overwrite each other’s files. The two first customization rules shown in
Figure 12 handle this check of the parent folder.
Only 1 warning is produced after the customization. It is caused by the page where

a new blog is added. This page uses an id parameter originating from a hidden field
to set the database ID of the newly created blog and to create a directory for the files
belonging to the blog. The id parameter is verified to only contain letters, and another

19



net.sourceforge.pebble.util.FileUtils.underneathRoot(File,File):

Sanitizer for arg 2
net.sourceforge.pebble.domain.FileManager.isUnderneathRootDirectory(File):

Sanitizer for arg 1
net.sf.ehcache.Element.get(Serializable):

Not a sink
net.sourceforge.pebble.index.StaticPageIndex.getStaticPage(String):

Not a sink
net.sourceforge.pebble.util.FileUtils.getContentType(String):

Not a sink

Fig. 12. Customization rules for the Pebble benchmark.

check ensures that the ID is not already in use. Together, these two checks mean that
there are no exploitable vulnerabilities related to the 4 warnings. The safety depends
on a subtle invariant about the directory structure where files are stored on the disk.
While this invariant is beyond what we can express with the customization mecha-
nism, extracting the relevant code into a separate method would make the code easier
to read, less prone to become vulnerable as a result of future changes, and it would
become expressible as a sanitizer using the customization mechanism.

Roller. The developers of this web application have systematically reviewed the code
for the class of vulnerabilities we are trying to detect. All client-state parameters are
protected with authorization checks that are well documented in the code. Running
WARLORD initially results in 53 warnings on the 53 pages. We added 14 customization
rules, which mainly describe information flow for a few string manipulation functions
and information about queries of public information such as blog comments. Those
functions are part of the Apache Commons API, so these rules are generally useful in
all applications that use this API.
Only 1 warning remains after adding these rules. That warning refers to a page

that allows blog comments to be deleted using a client-state parameter to identify
the blog comments. All comments belong to a blog, and user rights are defined for
each blog. The page checks whether each comment belongs to the blog and refuses
any attempt to delete comments on other blogs in a way that cannot be modeled with
our customization mechanism. However, if the code were rewritten slightly to use a
separate method to check the ownership directly, this method could be marked as a
sanitizer. That would also make it possible to check that future changes to this code
would not create vulnerabilities, and it would make the code more readable.

JWMA. This web application acts as a frontend for an email server using the Java
Mail API, and it stores almost all data in the session state. It has little shared appli-
cation state, but it does use client state.
The HTML view is generated through JSP pages and form data is handled using

servlets. The behavior of the receiving servlet is determined by one of two hidden fields,
acton and todo. The behavior depends only on implicit information flow from these two
parameters, and no warnings are issued in relation to them. Inspecting the use of the
parameter values manually does not reveal any vulnerabilities either.
With no customizations, WARLORD produces 3 warnings. Two of them are spurious

warnings related to reading and using the values of the client-state parameters paths
and contact.id in the servlet JwmaController. Request parameters are read using a
method on the class JwmaSession and WARLORD is unable to analyze this precisely
enough to determine that these two parameters are not read by JwmaController.
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The third warning relates to the client-state parameter numbers, which is used for
moving and deleting messages in JwmaController. Through manual inspection we
have found that this parameter is not vulnerable, since it only allows manipulation
of data in the client’s own folder.

JsForum. This web application uses a combination of JSP pages for generating the
HTML view and Servlets for updating data in the database. The database connection
uses the standard JDBC API for accessing a MySQL database.
Client-state parameters are primarily used for storing database identifiers. WAR-

LORD reveals that the programmers have not protected the application against client-
state manipulation attacks. Without customization, WARLORD produces 12 warnings,
all of which relate to the use of database identifiers. In the servlet AddThread, the anal-
ysis warns that the client-state parameters lastThread_id and forum_id are stored in
an application state object. This happens because the servlet generates an SQL query
based on these parameters and stores the query string in a field reachable from the
servlet class. The methods are not synchronized and another request might therefore
override the value before it is sent to the database. Other warnings reveal that clients
can change the values of forum_id and lastThread_id to post to a different forum
and to manipulate the identifier of a newly created thread. Furthermore, the servlet
AddThread allows the client to post as a different user by changing the value of the
hidden field named user.
Further inspection of the other pages reveals similar vulnerabilities in the servlets
ChangeMessage,AddReply, and AddForum. In DeleteForum, however, the application code
checks that the client is an administrator before deleting a forum. We therefore do not
consider that servlet to be vulnerable. The customization mechanism is not able to
express such a property. Of the 12 warnings, 11 corresponded to actual client-state
manipulation vulnerabilities. No customization was used.

JavaLibrary. This is a small JSP application for managing book reservations and lists
of users with varying levels of privileges. WARLORD detects 92 client-state parameters
in the application and deems 65 of them safe. Of the remaining 27 parameters, 22 are
read by the servlet FormProcess.
JavaLibrary uses a bean for representing all values related to users. This bean

is updated from client-state values when a user is added or edited. The JSP page
user_form.jsp is used for creating and editing users. Depending on the rights of the
user, the page prefills the HTML form with hidden fields. The FormProcess does not
check for client-state manipulation, and it is therefore possible to modify many of these
parameters to gain privileges similar to that of an administrator when creating or edit-
ing users. This accounts for 7 of the 22 warnings. Furthermore, client-state manipula-
tion through other forms can be exploited to change reservation dates and due dates
for borrowed books and to borrow books for other users. All of the 22 parameters can
be exploited for attacks.
The remaining 5 warnings that are not related to FormProcess result from client-

state in JSP pages. According to comments in the code, state is saved in these fields to
allow the client to return to the page later and complete the data entry. Similarly to
JSPChat, this creates a possibility of a timing attack, and in this application, it also
allows clients to read values entered by other clients.
No customization was necessary for this web application.

BodgeIt. This web application was written as a benchmark for penetration testing
tools. It contains what the authors call “hidden (but unprotected) content” and “inse-
cure object references”, which are within our definition of client-state vulnerability. It
therefore serves well as a test for our static analysis.
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home.jsp product.jsp
{prodid}

{prodid}

basket.jsp
{price}

{prodid}

contact.jsp

{anticsrf, Guest user, (Any name)}

advanced.jsp

{q}

Fig. 13. An excerpt of the page graph for BodgeIt showing the nodes and edges that involve client state.

com.thebodgeitstore.util.AES.hexStringToByteArray(java.lang.String):

Flow from parameter 1 to return value
com.thebodgeitstore.util.AES.decryptCrt(java.lang.String):

Not a sink (the method returns a safe value)

Fig. 14. Customization rules for the BodgeIt benchmark.

Figure 13 shows the part of the page graph for BodgeIt that involves client state.
Before customization, WARLORD reports 5 warnings. We added the two customization
rules shown in Figure 14. They relate to the use of an encrypted token in contact.jsp
for protecting against cross-site request forgery. One warning refers to a parameter
named prodid in the JSP page product.jsp. The value originates from a URL parame-
ter and is used to query the database for a product with the corresponding database ID.
While this page demonstrates the possibility for client-state manipulation, changing
the parameter does not give the client access to additional information. Consequently,
there is in fact no vulnerability in this case. Another warning, which originates from
the URL parameter typeid, is also used for a database query. Manipulating this pa-
rameter does not give access to new information either.
In the JSP page contact.jsp, WARLORD detects a hidden field. Rather unusually,

the name of this hidden field can be arbitrary, because it is set to the name of the
current user. This causes WARLORD to consider all parameters in the successor page,
which is contact.jsp itself, as client-state parameters, which results in a false positive
when storing the value of the comments parameter. Although this warning does not
indicate a possible client-state manipulation vulnerability, it reveals the possibility of
a name clash if a user is registered with the name “comments”.
The JSP page basket.jsp page places an item in a shopping basket along with the

price of the item. WARLORD gives a warning for the productid parameter. The client
is able to arbitrarily change this parameter to add any item to the basket, however,
we classify this as another false positive because the client is already able to add any
item to the basket without client-state manipulation. The item price is stored in a
hidden field called price, but this field is never read, so the user cannot gain any extra
privileges by changing its value, and WARLORD correctly yields no warning in this
case.
In conclusion, we find that there are, surprisingly, no exploitable client-state manip-

ulation vulnerabilities in this web application.
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WebGoat. We have analyzed a single servlet in this web application. The purpose of
the servlet, which uses a single hidden field, is to demonstrate vulnerabilities of exactly
the kind we want to detect. Unlike the other benchmarks, this application generates
output using a custom DOM-like framework and we decided to manually create the
set of parameters that may hold client-state values.
Perhaps surprisingly, our tool reports 0 warnings for this application. The reason

is that the servlet does not use the input variable for anything else than selecting a
message to send back to the client. This usage does not violate any of the safe usages
presented in Section 2 and we therefore conclude that while the illustrative servlet
of course mimics the behavior of a vulnerable piece of server code, it is actually not
vulnerable to any attack. A manual inspection of the code confirms that the client is
indeed not able to change the shared application state in any way by changing the
value of the hidden field.

As an additional experiment related to Q1, we test whether the client-state analy-
sis component (Section 4) is really necessary. If we disable that component and run
WARLORD in a mode where all parameters are conservatively assumed to contain
client state, we observe a drastic increase in the number of false positives, even with
all customization enabled. As an example, in JSPChat from Figure 1, this will treat
the email parameter as client state, such that line 41 becomes a source for the infor-
mation flow analysis and a spurious vulnerability warning is triggered on line 50 (in
the version where the timing vulnerability has been fixed by changing the fields into
local variables, as discussed in Section 7.1). For the other benchmarks, hundreds of ad-
ditional warnings appear without revealing any new actual client-state manipulation
vulnerabilities, which demonstrates that the client state analysis component is useful.

7.2. Summary of Results

Figure 15 summarizes the benchmark results from the previous section. The first col-
umn, ’Client-state parameters’, is the same as in Figure 10. The next columns show the
number of warnings before customization, the number of customization rules, and the
number of warnings after customization. The tool produces at most one warning for
each of the client-state parameters from the first column (however, each warning may
contain multiple traces from sources to sinks). The next column, ’Exploitable’, shows
how many of the warnings we could manually verify to be exploitable by malicious
clients performing client-state manipulation attacks. The column ’Safe client-state pa-
rameters’ shows the number of client-state parameters that the analysis after cus-
tomization determines not to be vulnerable. The final column shows the time spent for
the full analysis. The numbers in parentheses show the results after grouping together
data that involve parameters of the same name, which indicates that the warnings and
vulnerabilities involve many different uses of client state.
The tests have been performed on a 2.4GHz Core i5 laptop running OS X. The JVM

was given 1GB of heap space for each benchmark. The time and memory was primarily
used by the Soot framework for loading classes and performing the pointer analysis.
With this, we are able to answer the research questions:

Q1: A manual inspection of the application code confirms that the client-state anal-
ysis succeeds in finding all client-state value sources. This amounts to a total of
4,802 client-state parameters. The analysis determines that 4,437 (92%) of those
parameters are safe, that is, they are not present in any warnings. Moreover, after
customization, 241 (66%) of the 365 warnings that are produced in total reveal ex-
ploitable vulnerabilities. The false positives are not evenly distributed among the
benchmarks, and they are concentrated on a small number of different parameter
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JSPChat 19 1 0 1 1 18 30 s
(3) (1) (0) (1) (1) (2)

Hipergate 2,680 197 14 132 40 2,548 116 m
(264) (99) (14) (75) (30) (189)

Takatu 1,840 184 0 184 162 1,656 20 m
(31) (10) (0) (9) (9) (22)

Pebble 22 4 5 1 0 21 10 m
(11) (4) (5) (1) (0) (10)

Roller 86 53 14 1 0 85 4 m
(27) (1) (14) (1) (0) (26)

JWMA 40 3 0 3 0 37 3 m
(10) (3) (0) (3) (0) (7)

JsForum 14 12 0 12 11 2 1 m
(8) (7) (0) (7) (7) (1)

JavaLibrary 92 27 0 27 27 65 2 m
(35) (22) (0) (22) (22) (13)

BodgeIt 8 5 2 4 0 4 2 m
(8) (5) (2) (4) (0) (4)

WebGoat 1 0 0 0 0 1 30 s
(1) (0) (0) (0) (0) (1)

Fig. 15. Summary of experimental results.

names. The experiments also demonstrate that the client state analysis component
is critical for the analysis precision.

Q2: Based on the warnings given by the tool, especially the trace information, it was in
each case possible for us to quickly determine whether it indicated a vulnerability
or not. The entire process of classifying the warnings and adding customization
rules for all 10 benchmarks took one person less than a day, despite having no
prior knowledge of the benchmark code.

Q3: Adding customization rules in many cases reduced the number of spurious warn-
ings considerably. As discussed for the individual benchmarks, the remaining cases
typically involve subtle, undocumented invariants. Moreover, if allowing simple
refactorings, such as extracting a safety check to a separate method, most of these
cases could be captured within the existing customization framework. In the case
of Hipergate, however, some uses of client state are safe for reasons that go beyond
the current capabilities of customization. The decision mentioned in Section 3 that
the analysis ignores condition 5 from Section 2 results in a few false positives in
BodgeIt, Hipergate, and Takatu.

Q4: The tool analyzes between 10 and 200 pages per minute. Pages can be analyzed
individually, so when a programmer is modifying the application, it is possible to
run the tool only on pages that have changed.
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8. RELATED WORK

Client-state manipulation vulnerabilities, in particular the kind involving hidden
fields, have been known for many years, as described in Sections 1 and 2. Likewise,
automated techniques for protecting against security vulnerabilities in web applica-
tions have a long history. Here we explain the connections between our approach and
the most closely related alternatives that have been proposed.

8.1. Static Analysis of Web Applications

The first phase of our analysis that identifies the client-state parameters applies tech-
niques from our earlier work on static analysis of HTML output of Java-based web ap-
plications [Kirkegaard and Møller 2006; Møller and Schwarz 2011]. The analysis tools
WAM,WAM-SE, WAIVE, and ASCEND by Halfond et al. [2009; 2008; 2012] check that
the names and possible values of HTTP request parameters in dynamically generated
HTML documents are consistent with the program code that receives the parameters.
As in WARLORD, this involves static analysis of the dynamically generated HTML
documents and of the dataflow of HTTP request parameters in the server code; how-
ever, those tools do not identify which parameters contain client state, for example,
originating from hidden fields.
An essential constituent of our approach is the observation that client-state manipu-

lation vulnerabilities are correlated to information flow from client state to application
state. Together with automatic inference of client state (Section 4) and shared applica-
tion state (Section 5), this allows us to detect likely errors largely without requiring the
programmers to provide any specifications. Some application specific customization is
required though, as seen in Section 7. For future work, it may be interesting to apply
probabilistic specification inference [Livshits et al. 2009] to automate this phase.
The WebSSARI tool by Huang et al. [2004] pioneered the use of static information

flow analysis to enforce web application security, and numerous researchers have since
followed that path, as discussed in the following.WebSSARI was designed for intrapro-
cedural taint analysis of PHP programs without considering client-state manipulation
vulnerabilities specifically. Related techniques for detecting injection vulnerabilities in
PHP programs include the bottom-up analysis by Xie and Aiken [2006] and the top-
down flow-sensitive dataflow analysis used in the Pixy tool by Jovanovic et al. [2010].
The PQL language by Martin et al. [2005] has been designed to support succinct

specification of information flow queries. Their notion of derivation descriptors corre-
sponds to our use of customization rules. Their static analysis is based on a context-
sensitive but flow-insensitive pointer alias analysis using Datalog. In principle, the
information flow that we consider is expressible within PQL, but we found it easier
for our proof-of-concept implementation to use the simple information flow analysis
described in Section 6. Livshits and Lam [2005] have used PQL for specifying and im-
plementing a range of vulnerability analyses. Hidden field manipulation is among the
list of vulnerabilities they consider. However, their techniques does not perform any
client state analysis (Section 4) or shared application state analysis (Section 5); in-
stead they use a fixed set of source and sink descriptors that cannot precisely identify
the hidden fields or the operations that involve shared application state. PQL has also
been combined with explicit state model checking using Java PathFinder for detect-
ing injection vulnerabilities [Martin and Lam 2008; Lam et al. 2008]. The TAJ tool by
Tripp et al. [2009] has similar goals as that of Livshits and Lam, but uses an alterna-
tive technique called hybrid thin slicing for obtaining a precise and scalable analysis.
Other related work uses string analysis for detecting web application injection vul-

nerabilities. The AMNESIA tool by Halfond and Orso [2005] applies string analysis to
build models of legitimate SQL queries and then uses these models for runtime mon-
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itoring. Wassermann and Su [2007] similarly use string analysis to reason about dy-
namically constructed SQL queries with fragments that originate from HTTP request
parameters and then check whether those fragments may alter the syntactic struc-
ture of the queries, all using static analysis. In later work, Wassermann and Su [2008]
use the same string analysis technique to detect whether untrusted input from HTTP
request parameters may flow to the generated HTML documents and thereby inject
JavaScript code. In comparison, our primary use of string analysis is for approximat-
ing the HTML output to be able to locate client-state parameters, whereas we track the
HTTP request parameters with a simple information flow analysis without modeling
their possible values.
Balzarotti et al. [2007] propose a pragmatic approach for finding stored SQL in-

jection and XSS vulnerabilities that arise when a page stores user input in applica-
tion state and another page later reads and uses this data. Application state is recog-
nized using signatures of database API methods without considering potential alias-
ing. Their tool performs a simple scan of the application source code to detect links
between pages and tracks the flow of user input values using a model-checking ap-
proach with a limited search space.
Detection of access control vulnerabilities with static analysis has been studied by

Sun et al. [2011], among others. Their approach uses string analysis to statically con-
struct sitemaps for different user roles, which are then compared to look for inconsis-
tent access control. These sitemaps are reminiscent of our page graphs (Section 4) but
do not consider client-state parameters.
Providing comprehensive support for diverse web application frameworks, such as

Java Servlets, JSP, and Struts, is a challenging endeavor. A general framework, F4F,
has been proposed by Sridharan et al. [2011]; however, we have found that it is not suf-
ficiently flexible for our setting, in particular for the client-state identification phase.
Still, the ideas in F4F may be adapted in future work to enable support for additional
web application frameworks.

8.2. Dynamic Techniques for Vulnerability Detection

The approach of using MACs to protect against client-state manipulation attacks that
we discussed in Section 2 can be implemented with a generic servlet filter that in-
tercepts all HTML documents generated by the application at runtime and all HTTP
requests that are sent by the clients, without modifying the web application code. For
every use of client state in the HTML documents, an additional hidden field or query
parameter containing the MAC is automatically inserted. Whenever an HTTP request
is received from a client, the MAC check is performed on the appropriate request pa-
rameters. Scott and Sharp [2002] exemplified this as part of a more general security
gateway. Given a manually constructed security policy, their gateway can, for example,
automatically attach MACs to hidden fields. Using such a security filter can be viewed
as an alternative or supplement to manually eliminating the vulnerabilities by appro-
priately patching the application source code. In contrast, the idea in our approach is
to inform the programmer—using static analysis of the application source code—that
protection may be inadequate.
It is possible to combine the filter and analysis approaches: A security filter needs

to be configured with information about which fields and parameters contain client
state that should not be manipulated, and this information is precisely what our static
analysis can provide. It is of course important that the client-state analysis is precise
enough to correctly distinguish between parameters that carry client state and ones
that do not. It is less critical that the information flow analysis is able to correctly dis-
tinguish between safe and unsafe uses of client state. However, to avoid the overhead
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of generating and checking MACs for parameters that are already safe by other means,
it is nevertheless useful that also this analysis component is as precise as possible.
Numerous other techniques have been developed for preventing web application vul-

nerabilities at runtime, in some cases leveraging static analysis to increase precision,
although without focusing on client-state manipulation vulnerabilities in particular.
Dynamic taint analysis has been used for detecting various kinds of attacks, includ-

ing hidden field tampering, for example, by Haldar et al. [2005]. The WASP tool by
Halfond et al. [2008] uses a more fine-grained taint analysis to track strings that origi-
nate from client input and may be injected in SQL queries. This has been used together
with the static analysis tool WAM that infers web application inferfaces to automate
penetration testing [Halfond et al. 2011].
Another variant of attacks involving tampering of form parameters is to bypass

client-side input validation or manipulate client state, which is the focus of several
tools including NoTamper, WAPTEC, and TamperProof [Bisht et al. 2010; Bisht et al.
2011; Skrupsky et al. 2013]. NoTamper andWAPTEC dynamically infer constraints on
HTTP parameters from the HTML and JavaScript code. Parameter values that violate
these constraints are then submitted to the server, and the server-side input validation
is then tested by comparing server response pages that are generated by submitting
the tampered parameters to response pages that originate from benign input. Tamper-
Proof is a filter-based variant similar to Scott and Sharp’s.
The black-box vulnerability scanning technique by Doupé et al. [2012] uses fuzzing

based on dynamically inferred state machines, which resemble our use of page graphs.
This approach can in principle also detect client-state manipulation vulnerabilities,
although that is not explicitly the target of their work. The Waler tool by Felmetsger et
al. [2010] uses dynamic execution to infer likely specifications of the intended program
behavior followed by symbolic execution to detect violations of those specifications.
Among their examples is a client-state manipulation vulnerability, which is found as
a violation of a proposed invariant about the value of a hidden field. In comparison,
we propose a fully static approach that directly considers the flow of client state in the
application code.
Finally, we note that several commercial tools are capable of detecting security vul-

nerabilities in web applications. According to a 2007 IBM white paper [IBM 2007], the
AppScan tool is capable of detecting vulnerabilities involving hidden field manipula-
tion and parameter tampering. The latest version uses techniques from TAJ [Tripp
et al. 2009]; however, we have been unable to perform a proper comparison and obtain
further information about the techniques applied by AppScan. Microsoft’s CAT.NET17

also uses static information flow analysis, but it cannot detect client-state manipula-
tion vulnerabilities without detailed specifications provided by the user. Other com-
mercial tools include NTOSpider18 from NT OBJECTives, WebInspect19 from Forti-
fy/HP, and CodeSecure20 and HackAlert21 from Armorize. To our knowledge, most of
these tools (with the exception of CodeSecure, which is developed from WebSSARI)
employ crawling [Doupé et al. 2010; Bau et al. 2010], not static analysis. We believe
static analysis can be a promising supplement to dynamic approaches, as it may pro-
vide better coverage of the web application source code.

17http://blogs.msdn.com/b/securitytools/archive/2010/02/04/cat-net-2-0-beta.aspx
18http://www.ntobjectives.com/ntospider
19https://www.fortify.com/products/web_inspect.html
20http://armorize.com/index.php?link_id=codesecure
21http://armorize.com/index.php?link_id=hackalert
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9. CONCLUSION

We have demonstrated that it is possible to provide tool support that can effectively
help programmers prevent client-state manipulation vulnerabilities in web application
code. The static analysis we have presented is capable of precisely identifying client
state, in particular, state stored in hidden fields, and help distinguishing between safe
and unsafe use of such state. With WARLORD, our prototype implementation of the
analysis, we quickly discovered 241 exploitable weaknesses in 10 web applications.
The analysis has high precision: after customization, 66% of the warnings revealed
vulnerabilities.
Our experiments also indicate potential for improvements. Specifically, although an-

alyzing the Hipergate benchmark revealed a large number of weaknesses, it also re-
sulted in some false positives, which originate from a small group of client-state pa-
rameters. It appears that many of these false positives can be avoided if the analysis is
extended to also infer the provenance of the client-state values, which can be a subject
for future work. It may also be worthwhile to extend the technique to reason about
client state stored in cookies.
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