
Indirection-Bounded Call Graph Analysis
Madhurima Chakraborty #

University of California, Riverside, CA, USA

Aakash Gnanakumar #

University of California, Riverside, CA, USA

Manu Sridharan #

University of California, Riverside, CA, USA

Anders Møller #

Aarhus University, Denmark

Abstract
Call graphs play a crucial role in analyzing the structure and behavior of programs. For JavaScript and
other dynamically typed programming languages, static call graph analysis relies on approximating
the possible flow of functions and objects, and producing usable call graphs for large, real-world
programs remains challenging.

In this paper, we propose a simple but effective technique that addresses performance issues
encountered in call graph generation. We observe via a dynamic analysis that typical JavaScript
program code exhibits small levels of indirection of object pointers and higher-order functions. We
demonstrate that a widely used analysis algorithm, wave propagation, closely follows the levels of
indirections, so that call edges discovered early are more likely to be true positives. By bounding
the number of indirections covered by this analysis, in many cases it can find most true-positive call
edges in less time. We also show that indirection-bounded analysis can similarly be incorporated
into the field-based call graph analysis algorithm ACG.

We have experimentally evaluated the modified wave propagation algorithm on 25 large Node.js-
based JavaScript programs. Indirection-bounded analysis on average yields close to a 2X speed-up
with only 5% reduction in recall and almost identical precision relative to the baseline analysis, using
dynamically generated call graphs for the recall and precision measurements. To demonstrate the
robustness of the approach, we also evaluated the modified ACG algorithm on 10 web-based and 4
mobile-based medium sized benchmarks, with similar results.

2012 ACM Subject Classification Theory of computation → Program analysis

Keywords and phrases JavaScript, call graphs, points-to analysis

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2024.10

Supplementary Material Software: https://zenodo.org/doi/10.5281/zenodo.12720724

Funding This research was partially sponsored by the OUSD(R&E)/RT&L and was accomplished
under Cooperative Agreement Number W911NF-20-2-0267. The views and conclusions contained in
this document are those of the authors and should not be interpreted as representing the official
policies, either expressed or implied, of the ARL and OUSD(R&E)/RT&L or the U.S. Government.
The U.S. Government is authorized to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation herein.

1 Introduction

The construction of accurate call graphs is crucial for various static analysis tasks. Call
graphs provide a comprehensive representation of the calling relationships between functions,
enabling analysis techniques such as vulnerability and bug detection, program comprehension,
and refactorings [7, 20, 18, 3, 29]. Static call graph analyzers aim to over-approximate,
meaning that they may include false positives, i.e., unexecutable call edges. Analysis time

© Madhurima Chakraborty, Aakash Gnanakumar, Manu Sridharan, and Anders Møller;
licensed under Creative Commons License CC-BY 4.0

38th European Conference on Object-Oriented Programming (ECOOP 2024).
Editors: Jonathan Aldrich and Guido Salvaneschi; Article No. 10; pp. 10:1–10:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mchak009@ucr.edu
mailto:agnan001@ucr.edu
mailto:manu@cs.ucr.edu
https://orcid.org/0000-0001-7993-302X
mailto:amoeller@cs.au.dk
https://orcid.org/0000-0003-1333-2314
https://doi.org/10.4230/LIPIcs.ECOOP.2024.10
https://zenodo.org/doi/10.5281/zenodo.12720724
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 Indirection-Bounded Call Graph Analysis

tends to correlate with the number of call edges produced, so improving precision can
also improve analysis time. Although soundness is desirable, all existing practical whole-
program analyses by design sacrifice some amount of soundness to achieve useful precision
and scalability [15]. This perhaps makes them unsuitable for code optimization purposes,
but other use cases can tolerate false negatives (e.g., many bug finding and vulnerability
detection tools aim to expose issues but not to prove their absence). Nevertheless, achieving
high accuracy and low analysis time for large, real-world programs is challenging due to the
inherent complexity of call graph generation. Analysis time is often prohibitively large, so it
is important to explore new approaches that can substantially reduce analysis time even if
the price is slightly more false negatives.

As JavaScript has both objects and functions as first-class values, and it has no static type
system, constructing call graphs for JavaScript programs generally requires reasoning about
the possible flow of objects and functions through the program being analyzed. Functions
frequently appear both as arguments and return values of other functions and as values of
object fields. State-of-the-art call graph analyzers for JavaScript are based on subset-based
flow-insensitive analysis techniques [2]. Objects are typically modeled using allocation-site
abstraction [20, 6], or more coarsely using field-based analysis [7, 8]. Functions are tracked
using variations of control-flow analysis [17]. In general, the analyses can be expressed using
conditional subset constraint systems, which are solved using cubic-time algorithms [21, 25].

Such algorithms build a call graph for a given program iteratively until a fixpoint is
reached. Iteration is necessary because of indirections that may occur. For example, if a
higher-order function f contains a call g(. . .) to a function that is provided via a parameter g
of f, then the call edges for that call site cannot be resolved until the analysis has inferred the
calls to f. Similarly, the possible values at an object field read operation x.a generally cannot
be obtained until the analysis has inferred which objects x may reference. Different analysis
algorithms solve the analysis constraints in different orders, but there is one algorithm, the
wave propagation algorithm by Pereira and Berlin [21], that directly follows the levels of
indirections, as we explain in detail in Section 4. That algorithm was designed for points-to
analysis but is also well suited for call graph analysis.

Interestingly, in real-world code, we observe that function values typically do not flow
through many levels of indirection, which means that call graph analysis only needs few
iterations to infer most of the possible call edges. In Section 2 we show that creating call
graphs for higher-order functions (if not involving objects) requires only as many iterations as
the maximum order of the functions, and a similar property holds when objects are involved.
Therefore, when wave propagation-style analysis has reached a certain number of iterations,
all call edges that are discovered after that point must be false positives that arise only due to
analysis imprecision (assuming an idealized sound analysis). Thus, simply by terminating the
wave propagation algorithm after a fixed number of iterations, we can reduce analysis time
while only missing the relatively few call edges that involve high levels of indirection. This
also works when objects are involved; however, due to the asymmetric nature of field read
and field write operations (see Section 2) it is beneficial to leave analysis constraints for field
read operations and method calls unbounded. This is the first work to utilize observations
about low levels of indirection in data flows to achieve a more scalable static analysis.

Another program analysis technique that has proven effective for JavaScript programs is
the approximate call graphs (ACG) algorithm of Feldthaus et al. [7]. This algorithm applies
field-based analysis, meaning that objects are modeled more abstractly, which generally
leads to faster but also less accurate analysis compared to techniques that use allocation-site
abstraction of objects. We demonstrate that the ACG algorithm can also easily be adapted
to indirection-bounded analysis.

M. Chakraborty, A. Gnanakumar, M. Sridharan, and A. Møller 10:3

The proposed approach is inspired by the recent work of Mathiasen and Pavlogiannis [16]
on the complexity of Andersen’s pointer analysis. One of their key results is that a version of
pointer analysis where the number of store operations (corresponding to field write operations
in our setting) in witnesses of points-to relations is bounded can be solved in sub-cubic time.
They conjecture that the level of indirection of store operations is typically small in practice,
but they have left the practical realizations and an experimental evaluation for future work,
which we explore here in the context of call graph analysis for JavaScript.

Compared to ad hoc approaches to reduce analysis time, for example, stopping analysis
after a time-out, the proposed indirection-bounded approach gives more predictable and
interpretable outcomes because of the connection to the program semantics. That is, the
results of indirection bounding under a particular bound are deterministic, and one can give
a precise semantic characterization of the types of data flows that will be missed due to the
bound. Also, instead of tuning time-outs for individual programs, indirection-bound analysis
gives good results with a fixed bound applied uniformly for all programs.

In summary, the contributions of this paper are:
We propose the use of indirection-bounded analysis (Section 4) for achieving faster call
graph analysis while with little sacrifice in recall, which can be a useful compromise when
analyzing large, real-world programs.
We demonstrate via a dynamic analysis (Section 3) that typical JavaScript programs
tend to exhibit small levels of indirections of object pointers and higher-order functions,
thereby semantically justifying the use of indirection-bounded analysis.
By incorporating indirection-bounded analysis into an existing state-of-the-art call graph
analyzer for JavaScript that uses the wave propagation algorithm, we present experimental
results (Section 5) on 25 large open source programs, showing that the approach on
average (geometric mean) results in a 2X speed-up of the analysis with only 5% reduction
in recall (and nearly identical precision) relative to the baseline analysis when using
dynamically generated call graphs for measuring recall and precision. For many use cases,
this can be a valuable trade-off between analysis time and recall. Applying the technique
on 10 web-based and 4 mobile-based medium-sized benchmarks using the modified ACG
algorithm similarly resulted in an approximately 2X speed-up in analysis time, with only
a 1% reduction in recall (again with nearly identical precision).

2 Motivating Examples

In a call graph, call sites and functions are represented as nodes, and a directed edge from
node a to node b indicates that call site a may invoke function b at runtime. Sometimes,
individual call sites are abstracted by their enclosing function, so that the call edges are from
functions to functions.

The accuracy of a call graph construction technique can be measured by its precision and
recall relative to the (noncomputable) semantically correct call graph for a given program,
or using a call graph produced via one or more dynamic executions of the program as an
approximation. (A sound analysis will have perfect recall, but as noted in Section 1, practical
analyses are not fully sound.) Different use cases have motivated different metrics in the
literature [5]. With the call site targets metric [7], precision for a specific call site is computed
as the percentage of true (i.e., semantically possible) call targets among those predicted by
the static analysis, and recall is the percentage of predicted targets among the true targets.
The precision and recall for an entire program are then computed as the averages over all
call sites that are semantically reachable. A variant is the call edge sets metric [30], which
computes precision and recall by comparing the sets of call edges produced by the static

ECOOP 2024

10:4 Indirection-Bounded Call Graph Analysis

1 function f1() { }
2 function f2(p1) {
3 p1(); // #5a
4 }
5 function f3(p2) {
6 p2(f1); // #4a
7 }
8 function f4(p3) {
9 p3(f2); // #3a

10 }
11 function f5(p4) {
12 p4(f3); // #2a
13 }
14 f5(f4); // #1a

(a) Function arguments.

15 function g1() { }
16 function g2() { return g1; }
17 function g3() { return g2; }
18 function g4() { return g3; }
19 function g5() { return g4; }
20 var t5 = g5(); // #1b
21 var t4 = t5(); // #2b
22 var t3 = t4(); // #3b
23 var t2 = t3(); // #4b
24 t2(); // #5b

(b) Function return values.

Figure 1 Example programs that illustrate indirection levels for function calls.

25 var x = {
26 f: function() {}
27 };
28 x.a = x;
29 var f1 = x.f;
30 var f2 = x.a.f;
31 var f3 = x.a.a.f;
32 var f4 = x.a.a.a.f;
33 var f5 = x.a.a.a.a.f;
34 f1(); // #1c
35 f2(); // #2c
36 f3(); // #3c
37 f4(); // #4c
38 f5(); // #5c

(a) Field reads.

39 var x0 = {
40 f: function() {}
41 };
42 x0.f(); // #1d
43 x0.f1 = x0;
44 x0.f1.f(); // #2d
45 var x1 = x0.f1;
46 x1.f2 = x0;
47 x0.f2.f(); // #3d
48 var x2 = x1.f2;
49 x2.f3 = x0;
50 x0.f3.f(); // #4d
51 var x3 = x2.f3;
52 x3.f4 = x0;
53 x0.f4.f(); // #5d

(b) Field writes.

54 var x = {
55 m1: function() { return this; },
56 m2: function() { return this; },
57 m3: function() { return this; },
58 m4: function() { return this; },
59 m5: function() { return this; }
60 };
61 var t1 = x.m1(); // #1e
62 var t2 = t1.m2(); // #2e
63 var t3 = t2.m3(); // #3e
64 var t4 = t3.m4(); // #4e
65 t4.m5(); // #5e

(c) Method calls.

Figure 2 Example programs that illustrate indirection levels for object field accesses.

analysis and the dynamic analysis. The reachable functions metric [26] and the reachable
edges metric [10] instead compare the sets of functions or call edges, respectively, that are
reachable from the program entry points (e.g., application modules).

Figures 1 and 2 contain five small example JavaScript programs that illustrate the
indirections that can arise when computing call graphs. The red edges show the call edges,
pointing from call sites to functions. In Figure 1a, function f5 is a higher-order function,
which is called at line 14 with f4 as argument. The function f4 is itself a higher-order
function that is then called at line 12 with f3 as argument, etc., until finally line 3 calls f1.
In other words, f5 is a 5’th-order function, f4 is a 4’th-order function, etc. This means that
the call edge from the call site marked #1a must be discovered before the call edge for #2a,
etc., until after a total of 5 indirections have been resolved, the call edge for #5a can be found.
Figure 1b shows a similar example of a 5’th-order function where also 5 levels of indirections
arise, but this time due to return values rather than arguments. As we explain in Section 4,
analysis algorithms like wave propagation [21], ACG [7], or 0-CFA [24] can compute the call
graphs for these programs in 5 iterations. 5’th-order functions are not common in real-world
code, which we can exploit to terminate analysis early and save time without risking too
many missed call edges (i.e., false negatives).

M. Chakraborty, A. Gnanakumar, M. Sridharan, and A. Møller 10:5

A similar situation arises when objects and field access operations are involved. In
Figure 2a, lines 25–28 set up a simple object structure. The variables f1–f5 all refer to the
same function in this case, but via different levels of indirections. Specifically, discovering
the call edge for f5 at call site #5c requires 5 levels of indirection because of the chain of field
reads at line 33. Such long chains of field reads operations (sometimes split into smaller parts
with variables holding intermediate results) are not uncommon in real-world code, which is
why we give special treatment to these operations in the following sections.

On the other hand, it is perhaps less obvious how field write operations can lead to
high levels of indirections. Figure 2b shows an example where call site #5d has 5 levels of
indirection. That call site cannot be resolved until the analysis has discovered that x0.f4
is an alias of x0. This in turn requires discovering that the field write on the previous line
updates x0.f4, since x0 and x3 are aliases, and so on through each of the aliasing relations
established by the preceding lines.1

Finally, Figure 2c shows an example with chains of method calls, combining objects
and functions. Since each method call consists of a pair of a field read and a function call,
this example involves a total of 10 levels of indirection to resolve call site #5e. As with
chains of field reads, this pattern is also common in real code (e.g., with fluent interfaces [9]),
which suggests that method calls should be treated in the same way as field reads in
indirection-bounded analysis.

3 Dynamic Indirection Bound Estimation

To confirm the intuitions from Section 2 regarding the depth of indirections encountered
in real code, we designed a dynamic analysis to estimate the minimum indirection bound
required for a static analysis to discover each function call observed during execution. With
this dynamic analysis, we can observe the true bound under which function values flow to their
invocations in an execution, independent of any static analysis limitation or approximation.
If these minimum indirection bounds are observed to typically be low, that provides good
evidence that using low indirection bounds in a static analysis will preserve most analysis
recall. Here we present the design of the dynamic analysis and give results from a study
across a large set of benchmarks.

3.1 Language
The first column of Table 1 defines the types of canonical statements in a core language. (The
constraint rules in the second column will be explained in Section 4.1.) The statement types
are standard for a flow- and context-insensitive Andersen-style points-to analysis [2] for a
JavaScript-like language. A program is a set of functions, each of which contains statements
of the types shown in the table (more complex assignments and expressions can be normalized
to these forms via temporary variables). We elide details of standard language constructs like
conditionals, loops, etc., as they are not relevant given our focus on flow-insensitive static
analysis. We assume for simplicity that local variable names are unique across functions.

The values in the language are either object values, written {} (like a JavaScript object
literal) or (first-class) function values, written p => {. . .} (using JavaScript arrow syntax).
Without loss of generality we assume every function has one parameter and returns some

1 One might expect that nested object initialization would yield a high level of indirections via field writes,
e.g.: x = { f: ... }; y = {}; z = {}; y.b = x; z.a = y; z.a.b.f(); But, this code has only
one level of indirection due to field writes, as objects are copied to the base variables for all field writes
without indirection. The indirection level due to field reads is 3, due to the call.

ECOOP 2024

10:6 Indirection-Bounded Call Graph Analysis

Table 1 Statement types for our analysis and the corresponding static analysis constraint rules
(discussed in Section 4).

Statement Type Constraint Rule

x = {}i {oi} ⊆ pt(x)

x = p =>i { . . .} {fi} ⊆ pt(x)

x = y pt(y) ⊆ pt(x)

x = y.f
oi ∈ pt(y)

pt(oi.f) ⊆ pt(x)

x.f = y
oi ∈ pt(x)

pt(y) ⊆ pt(oi.f)

x = y(z)
fi ∈ pt(y)

pt(z) ⊆ pt(pi) pt(reti) ⊆ pt(x)

returni x pt(x) ⊆ pt(reti)

value. The first two statement types respectively allocate a new object or new function value
and assign it to a variable; each such statement has a unique label i. An x = y statement
copies between variables. For object fields, x = y.f loads field f and x.f = y stores to field
f. We assume a JavaScript-like semantics where writing to a non-existent object field f
creates f on the object (obviating the need for field declarations). Finally, we have x = y(z)
statements for calling functions, and return x statements for returning values. The label i

on each return statement identifies the containing function.

3.2 Dynamic Analysis
Here we present our dynamic analysis to estimate minimum indirection bounds. The analysis
does not provide an exact value for these bounds; it may under-estimate due to lack of
input coverage or unhandled language features, and it may over-estimate due to an imperfect
simulation of the static analysis. Still, we have found its results to be accurate in practice
(via manual inspection) and useful for understanding indirection levels in real programs.

Algorithm 1 gives pseudocode for our dynamic analysis. We assume the analysis is
implemented via an interface similar to that provided by frameworks like Jalangi [23], where
a callback provided by the analysis is invoked before and possibly after the execution of
each program statement. In Algorithm 1, the callback is the HandleStmt procedure. For
all statement types, we assume HandleStmt is invoked before the statement s executes,
except for calls x = y(z), where we require the callback both before and after (to respectively
handle parameter passing and returns).

The dynamic analysis relies on a function α that given an expression e, first evaluates e

to a value v and then returns the allocation site for v (i.e., the label of the statement that
allocated v). The dynamic analysis tracks bounds for allocation sites instead of individual
dynamic values to match the finite abstraction of values typically used by static call graph
builders. For readability, in the remainder of this section we refer to values and their
allocation sites interchangeably.

M. Chakraborty, A. Gnanakumar, M. Sridharan, and A. Møller 10:7

Algorithm 1 Dynamic bounds estimation.

1: selective: boolean
2: V : map from variable and value to indirection level bound
3: F : map from object field and value to indirection level bound
4: procedure HandleStmt(s)
5: match s

6: case x = {}i or x = p =>i {. . .}:
7: V [x, i]← 0
8: case x = y:
9: v ← α(y)

10: V [x, v]← min(V [x, v], V [y, v])
11: case returni x:
12: v ← α(x)
13: V [reti, v]← min(V [reti, v], V [x, v])
14: case before x = y(z):
15: fi ← α(y), v ← α(z)
16: t← max(V [y, fi] + 1, V [z, v])
17: V [pi, v]← min(V [pi, v], t)
18: case after x = y(z):
19: fi ← α(y), v ← α(reti)
20: t← max(V [y, fi] + 1, V [reti, v])
21: V [x, v]← min(V [x, v], t)
22: case x = y.f:
23: b← α(y), v ← α(y.f)
24: if selective then
25: t← max(V [y, b], F [b.f, v])
26: else
27: t← max(V [y, b] + 1, F [b.f, v])
28: V [x, v]← min(V [x, v], t)
29: case x.f = y:
30: b← α(x), v ← α(y)
31: t← max(V [x, b] + 1, V [y, v])
32: F [b.f, v]← min(F [b.f, v], t)
33: end match
34: end procedure

Algorithm 1 computes two maps, V and F . The V map records for each variable x and
value v the minimum observed indirection bound under which v flowed to x in the execution.
Retaining only the minimum bound for each variable x and value v makes sense for our use
case, as a sound static analysis models all possible data flows, and hence would discover the
flow of v to x under that minimum bound. F is similar but is keyed on object fields b.f,
where b is a value and f is a field name. After the analysis completes, the minimum observed
indirection bound for discovering that call x = y(z) invokes function f is simply V [y, f].

We now describe the handling of each type of statement in turn. For a creation of an
object or function at allocation site i (line 6), V [x, i] is set to 0, as the flow does not involve
any indirections. For an assignment x = y (line 8), where v is the value of y, V [x, v] is set to
be the minimum of its current value and V [y, v] (since we aim to find minimum observed
indirection bounds). Return statements (line 11) are handled just like assignments, updating
the bound for the synthetic reti variable for the enclosing function.

ECOOP 2024

10:8 Indirection-Bounded Call Graph Analysis

The next case (line 14), handling parameter passing, is the first involving an indirection,
here via a call. Here, fi is the function value being invoked, and v is the value of the
parameter. Recall from the discussion of Figure 1a in Section 2 that to discover data flow
into a formal parameter from a call site, the analysis must first discover the data flow of
the invoked function to the call; the parameter flow occurs at an increased indirection level.
Hence, to discover the parameter data flow from this call, the indirection bound must be at
least V [y, fi] + 1. Note that finding the flow also requires discovering that v flows to actual
parameter z, so the true bound for this flow is the maximum of these two flows (line 16).
Finally, line 17 updates the bound for formal parameter pi to be the minimum observed thus
far. Handling of the return value after a call completes (line 18) is analogous to handling of
parameters.

Handling of field reads (line 22) and field writes (line 29) is also similar to that for
parameter passing. Here, as discussed in Section 2, the increase in indirection level occurs
because the static analysis must first observe the data flow of the relevant object into the
base variable of the dereference. For both reads and writes, the base object is named b

in the pseudocode, and we add 1 to the bound for the flow of b to the statement in each
case (line 27 for reads, line 31 for writes). Recall from Figures 2a and 2b that writing code
with a high indirection level for field reads is more natural than doing the same for field
writes. Accordingly, the pseudocode has a flag selective to control whether reads should be
treated as bounded when computing estimates. If selective is true, reads are not treated
as bounded, and 1 is not added to the bound for the flow of b to the base variable y (see
line 25). In our implementation, selective also controls bounding of method calls; this
is not shown in Algorithm 1 since our core language (Table 1) contains only function calls
(with no receiver argument), not method calls.

Algorithm 1 may over-estimate the bounds required of a static analysis since it does not
propagate information from later assignments to previous calls. Consider this JavaScript
example:
1 x = function f1() { ... };
2 y = /* some flow with minimum bound 2 yielding f1 */
3 z = y;
4 z();
5 y = x;

After Algorithm 1 completes, V [z, f1] will be 2, since f1 was initially copied to y via a flow
of bound 2 (line 2) and then copied to z. However, due to line 5, there exists a flow of f1 to
y with bound 0. The algorithm updates V [y, f1] accordingly, but does not propagate this
update to V [z, f1]. This issue could be addressed by tracing the execution operations and
computing a fixed point over that trace; we used the single-pass approach as we did not
observe this over-estimation to occur in practice.

3.3 Study Results
Here we present results of applying our dynamic analysis to a suite of Node.js benchmarks
to measure minimum indirection bounds in practice.
Implementation. We implemented the analysis atop the NodeProf framework for Node.js
dynamic analysis [28]. For scalability, we separated the analysis into a trace generation phase
that runs during program execution, followed by a post-processing phase to compute the
bounds. For trace generation, NodeProf does not invoke a single callback for assignments,
but instead invokes separate callbacks for reads and writes of both variables and object fields.
To adapt Algorithm 1 to this structure, we maintain an additional map S from each value

M. Chakraborty, A. Gnanakumar, M. Sridharan, and A. Møller 10:9

Table 2 Number of call edges with each minimum bound across all benchmarks, for configurations
with selective enabled and disabled, respectively.

Configuration 0 1 2 3 4 5 6 7 8 9 10-19 20+
selective enabled 40,087 16,560 5,958 2,207 356 29 16 - - - - -
selective disabled 37,589 10,064 5,825 3,610 2,214 1,705 992 442 644 676 1,311 141

v to the bound t for v corresponding to the location (variable or field) from which it was
most recently read. Then, t is used when updating the bound at the next variable or field
write. So, for a statement x = y, the analysis first sees a read of v from y, and it sets S[v] to
V [y, v]. Then, when handling the subsequent write of v to x, it uses S[v] instead of V [y, v]
for the bound update (line 10 in Algorithm 1).

Benchmarks and methodology. We created a suite of 74 Node.js benchmarks for our study,
as no standard benchmark suite was available. These were randomly selected among the
top 1,000 highest ranked JavaScript projects on GitHub which both had unit tests available
and that worked correctly with our dynamic analysis infrastructure and implementation. We
exercised each benchmark by running its unit test suite. In total, these runs executed calls
at 60,601 distinct call sites.

Results. Table 2 gives the results from our study. We present results for two configurations.
The first is our preferred configuration, with selective enabled, so reads and method
calls are treated as unbounded. The second row gives results when all indirections are
bounded. Each column shows how many dynamic call graph edges (from call site to callee
function) could be discovered within that bound. The numbers are aggregated across all the
benchmarks, for a total of 65,213 call edges (greater than the number of distinct call sites,
since some sites invoke different functions on different execution paths).

The results show that in both configurations, most call graph edges can be found within a
small bound; more than 57% of edges are discoverable within a bound of 0, i.e., the function
data flow involves no indirections. Note, however, that with selective enabled, significantly
more edges are discoverable within bound 1 (6,496 more than with selective disabled),
and the long tail of call edges with minimum bound 7 or higher is eliminated. In fact, with
selective disabled, we discovered calls with a bound as high as 75. This result confirms the
intuition from Section 2 that long chains of field reads and method calls can occur regularly
in real-world programs, justifying special handling.

Overall, the data from our study provide promising evidence that an indirection-bounded
static analysis could discover most true call graph edges within a small bound. For the
selective configuration, roughly 96% (62,605 / 65,213) of calls are reached within bound 2.
These insights guided our static analysis design, described in Section 4.

Examples. For the configuration with selective enabled, below is an example of a call that
involves 4 levels of indirections, from the express-react-views benchmark (heavily simplified
for readability). Calls that require even higher indirection bounds are rare, as depicted in
Table 2, and are challenging to extract due to their complexity.

ECOOP 2024

10:10 Indirection-Bounded Call Graph Analysis

1 // in async.js library
2 function series(tasks) {
3 /*0*/_parallel(eachOfSeries, tasks);
4 }
5 function _parallel(eachfn, tasks) {
6 /*1*/eachfn(tasks, function cb1(task) {
7 /*3*/task(function cb2() {});
8 });
9 }

10 function eachOfSeries(tasks, task_cb) {
11 for (var task of tasks) { /*2*/task_cb(task); }
12 }
13 // in client code
14 /*0*/series([function f(next) { /*4*/next(); }]);

The async.js library provides a function series for running all task callbacks in a provided
array. Internally, this functionality is implemented using layers of higher-order functions,
leading to the high bound. The calls above are commented /*0*/ through /*4*/ to show
their bounds. The layered implementation inside async.js does enable code reuse within the
library, but it leads to convoluted and hard-to-understand control flow, as shown above. As
the data in Table 2 show, calls like these requiring bound 4 or greater are quite rare across
our benchmarks (only 0.6% of call edges).

In contrast, with selective disabled, natural code patterns can lead to high bounds, as
discussed in Section 2. For example, consider the following code from the express benchmark:
1 block.paragraph = edit(block._paragraph)
2 .replace(’hr’, block.hr) /*2*/
3 .replace(’heading’, ’ {0,3}#{1,6} +’) /*4*/
4 .replace(’|lheading’, ’’) /*6*/
5 .replace(’blockquote’, ’ {0,3}>’) /*8*/
6 .replace(’fences’, ’ {0,3}(?:‘{3,}|~{3,})[^‘\\n]*\\n’) /*10*/
7 .replace(’list’, ’ {0,3}(?:[*+-]|1[.)]) ’) /*12*/
8 .replace(’html’, ’</?(?:tag)(?: +|\\n|/?>)|<(?:script|pre|style|!--)’) /*14*/
9 .replace(’tag’, block._tag) /*16*/

10 .getRegex(); /*18*/

This code uses a fluent interface [9]: the edit and replace methods both return this, allowing
for chaining of method calls. Each step in the chain involves a field read (to access the
method) followed by a call, thereby adding 2 to the minimum bound for this configuration.
So, the final call to getRegex has 18 levels of indirection. We studied calls with higher bounds
and found that they involved a complex mix of field reads and method calls, often spread
across multiple functions and files.

4 Indirection-Bounded Call Graph Construction

In this section, we present static call graph construction algorithms that allow for indirection
bounding. We first describe a constraint-based formulation of the wave propagation algo-
rithm [21] (Section 4.1), and then present a simplified version for solving the constraints
(Section 4.2). In Section 4.3 we extend the algorithm with indirection bounding. Finally, in
Section 4.4 we show how further simplifications yield a bounded version of the ACG algorithm
of Feldthaus et al. [7]. The static analyses presented in this section work independently of the
dynamic analysis presented in Section 3. The purpose of the dynamic analysis was to provide
evidence and insights that support the static analysis design by showing how indirection
works in different scenarios. This semantic justification helps validate the conclusions drawn
from static analysis and ensures the bounding approach is reliable.

M. Chakraborty, A. Gnanakumar, M. Sridharan, and A. Møller 10:11

4.1 Analysis Formulation
The second column of Table 1 gives constraint rules for computing an Andersen-style points-
to analysis for our statement types. The rules are standard; see [25] for a more detailed
description. The constraints define what values (objects or functions) must be present in
the points-to set of each variable and object field. Given a solution to the constraints, a call
graph can be extracted by adding an edge from each call site x = y(z) (or from the function
containing the call site) to each function fi ∈ pt(y).

Concrete values are abstracted using allocation sites; we write oi or fi for an object or
function, respectively, allocated at site i. As in the dynamic analysis formulation (Section 3.2),
we assume a formal parameter variable pi and a return variable reti for each function fi.
The constraints for field read, field write, and call statements are conditional constraints [1] –
they each impose new subset constraints based on the contents of another points-to set. For
example, the constraint for x = y(z) checks if fi is present in pt(y), which indicates that y(z)
may invoke fi. In this case, new subset constraints are imposed to capture the data flow from
actual parameter z to formal pi and from the returned value reti to x. These conditional
constraints correspond directly to the notion of indirections discussed in Sections 2 and 3.
Our approach implements indirection bounds by bounding the handling of these conditional
constraints, leveraging the structure of the wave propagation algorithm, to be described next.

4.2 Simplified Wave Propagation
Algorithm 2 presents pseudocode for a simplified version of the wave propagation algo-
rithm [21], the basis of our bounding technique. The pseudocode eschews many optimizations
critical to the efficiency of the full wave propagation algorithm, including worklists, cycle
elimination, and topological sorting. We simplify the pseudocode to clearly expose the
two alternating phases of the algorithm, propagation and edge addition, the aspect of the
algorithm most critical to bounding.

Algorithm 2 computes the points-to relation pt using a flow graph G. Each node in
G represents a variable or an object field, and each edge n → n′ in G represents a subset
constraint pt(n) ⊆ pt(n′) from Table 1. The main entry point is the Analyze procedure at
line 4.

The algorithm begins with the Init procedure (line 12), which initializes pt and G

based on the simple (non-conditional) constraints for value creation, variable copy, and
return statements in Table 1. Then, at lines 6–11, the algorithm alternates between calls
to Propagate and AddEdges until pt and G reach a fixed point. Propagate (line 22)
uses a fixed-point loop to ensure that for each edge n → n′ currently in G, pt(n) ⊆ pt(n′).
Then, AddEdges (line 29) processes each field read, field write, and call statement and
updates G with new edges based on the current value of pt and the corresponding conditional
constraints in Table 1. The clean separation between propagation and edge addition is a key
characteristic of wave propagation; it leverages this structure to efficiently eliminate cycles in
the constraint graph and compute a topological ordering to minimize propagation work [21].

4.3 Adding Bounds
Given the structure of the wave propagation algorithm, adding bounding of all indirections is
straightforward. Algorithm 2 already separates its handling of conditional constraints, which
correspond to indirections, into the AddEdges procedure. So, bounding indirections simply
requires limiting the number of times that AddEdges runs to be less than the bound. We
have found that in real implementations that use the wave propagation structure, adding
bounding is similarly straightforward.

ECOOP 2024

10:12 Indirection-Bounded Call Graph Analysis

Algorithm 2 Simplified wave propagation algorithm.

1: P : program to analyze
2: pt: points-to relation, initially empty
3: G: flow graph, initially empty
4: procedure Analyze()
5: Init()
6: repeat
7: pt′ ← pt, G′ ← G

8: Propagate()
9: AddEdges()

10: until pt′ = pt ∧G′ = G

11: end procedure
12: procedure Init()
13: for each x = {}i ∈ P do
14: pt(x)← pt(x) ∪ {oi}
15: for each x = p =>i {. . .} ∈ P do
16: pt(x)← pt(x) ∪ {fi}
17: for each x = y ∈ P do
18: G← G ∪ {y→ x}
19: for each returni x ∈ P do
20: G← G ∪ {x→ reti}
21: end procedure
22: procedure Propagate()
23: repeat
24: pt′ ← pt

25: for each edge n→ n′ in G do
26: pt(n′)← pt(n′) ∪ pt(n)
27: until pt′ = pt

28: end procedure
29: procedure AddEdges()
30: for each x = y.f ∈ P , oi ∈ pt(y) do
31: G← G ∪ {oi.f → x}
32: for each x.f = y ∈ P , oi ∈ pt(x) do
33: G← G ∪ {y→ oi.f}
34: for each x = y(z) ∈ P , fi ∈ pt(y) do
35: G← G ∪ {z→ pi, reti → x}
36: end procedure

Recall that Section 3.3 showed that field reads often require higher bounds than other
indirections, matching the intuition of Section 2. Algorithm 3 is a variant that only bounds
indirections via field writes and calls, while leaving handling of field reads unbounded; the
changes compared to Algorithm 2 are emphasized with blue (lines 4, 7 and 12). Variables
bound and i are introduced, and only the AddEdges procedure of Algorithm 2 is modified.
The modified code first adds edges to G based on field reads without checking the bound
(lines 5–6). Then, field write and call statements are processed, but only if the field read
processing added no new edges to G (the G′ = G check on line 7). If handling of reads
adds new edges to G, then AddEdges returns without incrementing i, and another phase
of propagation is run (see line 8). Hence, the algorithm only handles stores and calls and
increments i (lines 8–12) once propagation and edge addition from field reads have iterated
to a fixed point.

M. Chakraborty, A. Gnanakumar, M. Sridharan, and A. Møller 10:13

Algorithm 3 Algorithm 2 modified to bound indirections except for field reads.

1: bound: bound on indirections
2: i: current iteration, initially 0
3: procedure AddEdges()
4: G′ ← G

5: for each x = y.f ∈ P , oi ∈ pt(y) do
6: G← G ∪ {oi.f → x}
7: if G′ = G ∧ i < bound then
8: for each x.f = y ∈ P , oi ∈ pt(x) do
9: G← G ∪ {y→ oi.f}

10: for each x = y(z) ∈ P , fi ∈ pt(y) do
11: G← G ∪ {z→ pi, reti → x}
12: i← i + 1
13: end procedure

The G′ = G check on line 7 is crucial for getting the full benefit of unbounded field reads.
Consider the following example:
1 var y = {...};
2 var x = y.a.b.c;
3 x.m = p => {...};
4 x.m(...);

We have three nested field reads at line 2 and one field write on the resulting object at line 3.
With unbounded field reads, one would expect the call at line 4 could be discovered with
an indirection bound of 1. But, without checking for G′ = G at line 7, the counter i for
writes and calls would still be incremented while handling the reads, exhausting the bound
before the relevant data flow from reads was discovered. Algorithm 3 discovers the call with
bound = 1, as desired. In our implementation, constraints from JavaScript method calls (see
Figure 2c in Section 2) are also handled in an unbounded manner, similar to handling of
field reads in Algorithm 3.

4.4 Bounded ACG
The ACG algorithm of Feldthaus et al. [7] is a well-known technique for building JavaScript
call graphs. ACG uses a field-based modeling of field accesses, unlike the field-sensitive
formulation of Table 1. In ACG, reads and writes of object fields are modeled as assignments
to and from global variables, and hence they do not introduce indirections for the analysis.
Algorithmically, both the original ACG analysis and an indirection-bounded variant can be
phrased as a simplified version of wave propagation. Pseudocode for indirection-bounded
ACG is given in Algorithm 4; code related to bounding is again shown in blue (lines 12 and 15).
The Analyze and Propagate procedures (elided) are identical to those in Algorithm 2.
Field reads and writes are now handled similarly to assignments in Init (line 6). AddEdges
is modified to remove all handling of field accesses. The only remaining indirections to
handle in AddEdges are calls, as in 0-CFA [24]. Bounding is also simplified compared to
Algorithm 3, as field reads do not require any special treatment.

5 Evaluation

We have implemented the techniques of Section 4 in two different analysis frameworks. The
first, Jelly [19, 12], implements a field-sensitive call graph analysis using an algorithm like
wave propagation [21], and is targeted at Node.js programs. The second, WALA [8], has

ECOOP 2024

10:14 Indirection-Bounded Call Graph Analysis

Algorithm 4 Bounded ACG algorithm [7], as a modified version of Algorithm 2.

1: bound: bound on indirections
2: i: current iteration, initially 0
3: procedure Init()
4: for each x = p =>i {. . .} ∈ P do
5: pt(x)← pt(x) ∪ {fi}
6: for each x = y, x = z.y, or z.x = y ∈ P do
7: G← G ∪ {y→ x}
8: for each returni x ∈ P do
9: G← G ∪ {x→ reti}

10: end procedure
11: procedure AddEdges()
12: if i < bound then
13: for each x = y(z) ∈ P , fi ∈ pt(y) do
14: G← G ∪ {z→ pi, reti → x}
15: i← i + 1
16: end procedure

an implementation of the ACG algorithm and is targeted at browser-based applications.
We modified these implementations to optionally use bounding as described in Sections 4.3
and 4.4.

With these implementations, we performed an experimental evaluation to assess the
effectiveness of indirection-bounded call graph construction. We designed our evaluation to
answer the following main research questions:
1. How are analysis running time, recall and precision impacted by different values of the

indirection bound?
2. How does bounding of field reads and method calls (disabling the selective flag of

Section 3.2) impact the overall effectiveness of the analysis?

5.1 Benchmarks
For Node.js benchmarks, we further filtered the benchmarks used in the dynamic study
(Section 3.3) based on the following three criteria. Initially, we required the dynamic call
graph to contain at least 50 call edges to provide a sufficient basis for comparing the precision
and recall of the static call graph. Then, we required Jelly could compute a static call
graph with a recall of at least 20% as compared to the dynamic call graph; this eliminated
some benchmarks where Jelly analyzed only a small portion of the code (typically due to
unsupported test frameworks). This criterion also eliminated cases where Jelly ran out of
memory. Second, we required that Jelly took at least 15 seconds to analyze the benchmark;
for benchmarks that can be analyzed quickly, there is no need for bounding.

This filtering led to a set of 25 benchmarks, whose details are given in Table 3. The
benchmarks are large, with thousands of functions and ranging up to more than 9.8MB of
code. For each benchmark, the table gives the numbers of packages, modules and functions,
the code size, and the analysis time, precision, and recall for Jelly when run without bounding.

For assessing WALA, we constructed a suite of 14 web and mobile benchmarks, shown
in Table 4. We included the 10 programs from the TodoMVC suite that were used by
Chakraborty et al. in their study [4], and we re-used their test harness to exercise the
programs. We also included four sample React Native applications, encompassing the starter

M. Chakraborty, A. Gnanakumar, M. Sridharan, and A. Møller 10:15

Table 3 Node.js benchmarks used for indirection-bounded static analysis experiments with Jelly.

Benchmark #Pkgs #Mods #Funs Code Size
(kB)

Analysis Time
(secs)

Precision
(%)

Recall
(%)

node-glob 42 186 2,621 1,103 22.38 88.01 90.14
kraken-js 130 303 3,192 1,416 19.62 96.85 37.95
tern 22 233 3,318 1,469 17.67 92.69 80.70
doctoc 96 322 3,212 1,515 15.25 93.97 74.18
js-yaml 59 479 4,440 1,900 28.86 96.42 95.38
react-loadable 55 138 3,192 1,952 405.44 99.35 81.50
babel-plugin-module-resolver 67 537 4,886 2,063 55.55 99.70 91.82
scrape-it 198 390 4,337 2,297 32.80 95.71 80.08
express-react-views 64 489 4,987 2,390 79.19 96.30 98.81
node-oauth2-server 36 262 4,588 2,448 461.66 75.43 95.53
lost 71 994 4,597 2,670 34.28 96.13 98.66
json2csv 112 428 6,743 2,692 29.99 97.24 81.45
homebridge 91 378 5,680 2,787 27.15 92.86 76.51
sharedb 37 266 5,630 3,164 47.64 76.54 65.95
big.js 1 26 1,718 3,306 15.88 96.02 100.00
normalizr 142 747 9,845 3,694 136.44 85.77 81.45
react-refetch 86 408 7,691 3,829 643.23 97.78 90.60
baobab 113 618 9,081 3,957 125.39 92.51 92.79
react-fontawesome 84 410 7,487 4,015 98.99 99.25 99.10
You-Dont-Need-Momentjs 63 742 8,024 5,404 48.10 85.91 84.43
eslint-plugin-compat 80 1,349 7,625 5,513 32.81 97.05 96.20
rewire 103 837 12,316 6,813 82.47 94.62 89.38
bootlint 110 741 10,022 6,835 57.96 96.85 80.46
webpacker 92 922 13,048 6,930 317.69 98.67 83.71
webpack-dashboard 122 1,182 17,783 9,823 834.18 96.31 76.44

app, a to-do app, a chat app, and a bidding app, all gathered from GitHub. We chose apps
we could run successfully in a simulator and that worked with our analysis infrastructure,
and we manually developed a test harness for each to exercise the code. For these apps, we
constructed call graphs for the final shipping version of the code, which is bundled as a single
file; hence, package and module counts are omitted in the table. The mobile benchmarks
are much larger and more complex than the web benchmarks, explaining the higher analysis
times and lower recall for those programs. While some of the smaller benchmarks in this
suite can be analyzed very quickly, we retained them in the suite due to the challenge of
manually exercising dynamic behaviors in web and mobile apps.

5.2 Experimental Configuration

In our experiments we measure precision and recall using the call site targets metric described
in Section 2, i.e., by comparing sets of possible call targets at call sites. We found that
this metric most robustly captured the data flows discovered by the static analysis. We
also experimented with the reachable functions and reachable edges metrics (see Section 2).
These metrics showed similar trends as for the call site targets metric, but are also more
fragile since discovery of one additional call graph edge sometimes dramatically impacts
overall reachability, making the results harder to interpret.

ECOOP 2024

10:16 Indirection-Bounded Call Graph Analysis

Table 4 Web and Mobile benchmarks used for experiments with WALA.

Benchmark #Pkgs #Mods #Funs Code Size
(kB)

Analysis Time
(secs)

Precision
(%)

Recall
(%)

Vanillajs 2 8 131 30 0.32 90.13 98.64
Mithril 3 8 136 57 0.35 82.77 90.83
Vue 4 6 623 247 0.68 88.70 95.64
Knockoutjs 4 4 586 308 0.69 89.65 97.31
Jquery 5 5 869 371 2.51 82.75 98.27
Backbone 6 11 950 387 3.93 78.93 97.77
Canjs 5 7 1,105 559 10.15 76.55 97.49
Knockback 8 11 1,798 764 29.25 80.49 96.35
Angularjs 5 9 1,488 1,093 17.08 83.53 95.87
React 5 10 1,876 1,168 45.73 67.67 97.65
Blank-app – – 5,203 2,030 309.77 62.33 67.45
Chat-app – – 7,119 3,185 1,537.29 55.12 64.85
Bidding-app – – 7,073 3,194 1,627.19 55.18 65.02
Todolist-app – – 11,678 5,704 8,340.14 57.98 68.28

We ran the Jelly experiments on a machine with an 8-core Intel Core i7-11700 processor
and 32GB of RAM, running Ubuntu 20.04.6 LTS. For the WALA experiments we used a
Google Cloud virtual machine with a 4-core Intel Broadwell Xeon CPU and 64GB RAM
running Ubuntu 20.04.6 LTS.

5.3 Results
Figure 3 presents our main results for the Jelly experiments. For these experiments, field
read and method call indirections were unbounded, the preferred configuration as discussed
in Sections 2 and 3.3. The box plots give analysis time and recall relative to the unbounded
Jelly analysis. The ideal for a bounded analysis would be to have recall as close to 1.0 as
possible, so no recall is lost compared to unbounded, with analysis time as close to 0.0 as
possible, maximizing performance. The analysis time data points sometimes extend above
1.0 primarily due to noise in the running time measurements. Additionally, the number of
cycle elimination runs in wave propagation [21] can be affected by the use of different types
of bounds in the analyzer. This variance can slightly increase or decrease overall analysis
running time, depending on the number of cycles in the constraint graph.

Studying Figures 3a and 3b, indirection bound 2 gives the best balance of analysis time
improvement and recall. The average analysis time speed-up is roughly 2X (ranging from
0.9X–23.9X), while the average relative recall is 95% (82%–100%) of the unbounded analysis.
The high relative recall matches the results of our dynamic study (Section 3.3), where we
observed that 96% of dynamic calls were discoverable within a bound of 2. At bound 1,
recall loss is significant at 17%, whereas bound 3 shows a minimal recall loss of only 1%,
although the analysis time increases significantly. At bound 2, the recall loss is moderate at
5%, offering a balance between recall and analysis time.

Figure 4 gives results for our WALA experiments. Here, we see that bound 1 yields a
good overall trade-off, with a roughly 2X average speed-up (1.1X–21.4X) with an average
relative recall of 99% (91%–100%). Bound 2 yields 99.99% relative recall on average with
a smaller average speedup of 1.6X. We believe the higher recall numbers at lower bounds
compared to Jelly are due to the fact that the ACG algorithm has fewer types of indirections

M. Chakraborty, A. Gnanakumar, M. Sridharan, and A. Møller 10:17

(a) Analysis time. (b) Recall.

Figure 3 Analysis time and recall for Jelly with different indirection bounds and selective
enabled, relative to Jelly’s unbounded analysis.

(a) Analysis time. (b) Recall.

Figure 4 Analysis time and recall for WALA with different indirection bounds, relative to
WALA’s unbounded analysis.

(a) Analysis time. (b) Recall.

Figure 5 Relative analysis time and recall for Jelly with reads and methods calls also bounded
(selective disabled).

to bound (see Section 4.4), and hence more data flow is discovered within a lower bound. For
the web benchmarks, the largest observed performance improvements were for the largest
benchmarks (e.g., for React we saw a 21X improvement). It would be useful future work
to evaluate bounding on a suite of larger web and mobile benchmarks, but exercising such
benchmarks to get good coverage of dynamic behaviors can be challenging (due to many
user interactions, server-side state, etc.).

ECOOP 2024

10:18 Indirection-Bounded Call Graph Analysis

Finally, Figure 5 gives data for our second research question, showing results for Jelly
with all indirections bounded, including field reads and method calls. Here, the bound with
the closest analysis time / recall trade-off to our main configuration is bound 5, with a relative
recall distribution fairly similar to bound 2 in Figure 3b. However, at this bound we see some
higher outliers in analysis time, ranging up to 89% of the unbounded analysis time. Further,
as shown in Section 3.3, with this configuration there is a long tail of calls that require
a much higher bound to discover; in Figure 5b, even at bound 5, there is one benchmark
with relative recall below 80% and five below 90%. Given these considerations, and the
naturalness of code patterns with high numbers of field read and method call indirections
(Sections 2 and 3.3), we believe analysis with selective bounding is the better choice for more
robust results.

Without indirection bounding, there were 31 benchmarks that could not be analyzed
because they caused the analyzer to run out of memory. With indirection bounding, 7 of
those benchmarks can be successfully analyzed without running into memory issues.

5.4 Threats to Validity
A threat to the external validity of our evaluation is our choice of benchmarks. For Node.js
we chose a large set of realistic benchmarks in a principled manner (see also Section 3.3).
For web and mobile we have smaller sets of benchmarks, due to challenges in exercising
such benchmarks to collect dynamic data. It is possible that on other types of benchmarks,
bounding will be less effective. Our results may also be internally invalid due to bugs in our
implementation. We have a variety of regression tests to check correctness of our results and
we have done extensive manual inspection of complex examples, reducing this threat. Finally,
our choice of call site targets as the precision/recall metric is another threat to external
validity. We chose this metric since it best measures the overall effectiveness of the static
analysis in capturing function data flows. But, there could be scenarios where a client relies
on certain critical edges being present in the static call graph, and those particular edges
require a bound greater than 2 to discover. In such cases, a higher indirection bound (or
other heuristics) would be required to produce a useful static call graph, leading to higher
analysis time.

6 Related Work

The most closely related work is the recent study by Mathiasen and Pavlogiannis [16] on the
complexity of different variants of Andersen’s classic pointer analysis. Most importantly, they
presented an algorithm for solving Andersen-style pointer analysis instances with bounded
numbers of store operations in witnesses of points-to relations, and proved that the algorithm
runs in almost quadratic time. In comparison, the indirection-bounded analysis that is
based on wave propagation or ACG remains cubic time for a fixed bound. As mentioned in
Section 1, Mathiasen and Pavlogiannis conjecture that the level of indirection is typically
small but without giving empirical evidence and without experimentally evaluating the
effects on analysis time, precision and recall. Furthermore, their work focuses on a C-like
language with field-insensitive analysis and without involving higher-order functions, whereas
we consider field-sensitive hybrid call graph and pointer analysis for JavaScript. It remains
an open problem whether their complexity results can be adapted to field-sensitive analysis.
The algorithm and theoretical complexity results by Mathiasen and Pavlogiannis are based
on Dyck reachability and matrix multiplications, whereas we base our approach on the wave
propagation algorithm that is known to work well in practice. For example, wave propagation
is used in the SVF analysis tool for LLVM [27] and also constitutes the core of the PUS
constraint solver [14].

M. Chakraborty, A. Gnanakumar, M. Sridharan, and A. Møller 10:19

Mathiasen and Pavlogiannis [16] additionally showed that their bounded analysis technique
is perfectly parallelizable, in contrast to ordinary Andersen pointer analysis. It will be
interesting in future work to investigate whether that theoretical property can be exploited
in practice to parallelize indirection-bounded call graph analysis.

Horwitz [11] studied a similar notion of levels of pointer indirection, but for reasoning
about the analysis precision loss that may occur when normalizing pointer operations, which
is not immediately related to bounded analysis techniques.

Utture and Palsberg [31] introduced a mechanism for analyzing library code only partially
to speed up whole-program static analysis of application code. Their technique retains
precision but, like indirection-bounded analysis, may lose some recall. We believe such
approaches could be combined with indirection-bounded analysis to speed up analysis even
further.

Utture et al. [30] (and follow-up work [13]) propose the notion of a call-graph pruner,
which aims to improve analysis precision by eliminating call edges that are likely to be false
positives. Like indirection-bounded analysis, that technique may negatively affect recall but
in practice often achieves a good balance between precision and recall. The technique works
as a post-processing phase and as such does not improve analysis time, and it relies on a
learning algorithm that does not provide semantics-based, predictable outcomes.

Bounds have often been used in configuring the abstraction used by a static analysis,
e.g., k-limiting for context sensitivity or access path length [25]. Indirection bounding is
fundamentally different, in that it heuristically terminates the core fixpoint computation
of the analysis before a fixed point is reached. Hence, unlike the aformentioned types of
k-limiting, indirection bounding impacts analysis soundness, trading off a small amount of
recall for improved scalability.

As pointed out in Section 1 it is well known that practically all whole-program static
analyzers have imperfect recall [15], but the analysis results are still useful for many use cases.
Reif et al. [22] and Sui et al. [26] investigated this phenomenon empirically for state-of-the-art
analyzers for Java, and Antal et al. [3] have made a similar study for JavaScript call graph
analysis tools. The more recent work by Chakraborty et al. [4] introduced a method for
quantifying the root causes of missing edges in call graphs produced by a field-based static
analysis for JavaScript [7]. The dynamic analysis used by Chakraborty et al. inspired the
technique presented in Section 3.

7 Conclusion

Indirection-bounded analysis is a simple but effective approach for speeding up call graph
analysis while missing relatively few call edges. The approach complements the theoretical
results of Mathiasen and Pavlogiannis by providing a practical algorithm and empirical
evidence, and it generalizes their bounded mechanism to a language with higher-order
functions and to field-sensitive analysis. The results of the dynamic analysis presented in
Section 3 indicate that real-world JavaScript code tends to have low levels of indirection
of function calls and field writes, which gives a semantic justification of the approach. We
have demonstrated that indirection-bounded analysis is straightforward to incorporate into
Pereira and Berlin’s wave propagation algorithm and also into the field-based ACG algorithm
by Feldthaus et al., and that it can be advantageous to choose a fixed bound independent of
the individual programs being analyzed.

For future work, it may be interesting to explore the potential of indirection-bounded
analysis for other programming languages, and to investigate whether the parallelizability
results of Mathiasen and Pavlogiannis also hold in presence of higher-order functions and
field-sensitive analysis.

ECOOP 2024

10:20 Indirection-Bounded Call Graph Analysis

Data Availability. The supplementary material at https://zenodo.org/doi/10.5281/
zenodo.12720724 contains the benchmarks used in the experimental evaluation and instruc-
tions for using indirection-bounded analysis with the open source analysis tools Jelly and
WALA.

References
1 Alexander Aiken. Introduction to set constraint-based program analysis. Science of Computer

Programming, 35(2-3):79–111, 1999.
2 Lars Ole Andersen. Program analysis and specialization for the C programming language. PhD

thesis, University of Copenhagen, 1994.
3 Gábor Antal, Péter Hegedüs, Zoltán Herczeg, Gábor Lóki, and Rudolf Ferenc. Is javascript

call graph extraction solved yet? A comparative study of static and dynamic tools. IEEE
Access, 11:25266–25284, 2023. doi:10.1109/ACCESS.2023.3255984.

4 Madhurima Chakraborty, Renzo Olivares, Manu Sridharan, and Behnaz Hassanshahi. Auto-
matic root cause quantification for missing edges in JavaScript call graphs. In 36th European
Conference on Object-Oriented Programming, ECOOP 2022, June 6-10, 2022, Berlin, Ger-
many, volume 222 of LIPIcs, pages 3:1–3:28. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2022. doi:10.4230/LIPIcs.ECOOP.2022.3.

5 Madhurima Chakraborty, Renzo Olivares, Manu Sridharan, and Behnaz Hassanshahi. Au-
tomatic Root Cause Quantification for Missing Edges in JavaScript Call Graphs (Extended
Version). 2022. URL: https://arxiv.org/abs/2205.06780.

6 David R. Chase, Mark N. Wegman, and F. Kenneth Zadeck. Analysis of pointers and structures.
In Proceedings of the ACM SIGPLAN’90 Conference on Programming Language Design and
Implementation (PLDI), White Plains, New York, USA, June 20-22, 1990, pages 296–310.
ACM, 1990. doi:10.1145/93542.93585.

7 Asger Feldthaus, Max Schäfer, Manu Sridharan, Julian Dolby, and Frank Tip. Efficient
construction of approximate call graphs for JavaScript IDE services. In 35th International
Conference on Software Engineering, ICSE ’13, San Francisco, CA, USA, May 18-26, 2013,
pages 752–761. IEEE Computer Society, 2013. doi:10.1109/ICSE.2013.6606621.

8 Stephen Fink et al. WALA. https://github.com/wala/WALA, 2024.
9 Martin Fowler. FluentInterface. https://www.martinfowler.com/bliki/FluentInterface.

html, 2005. Accessed: 2023-09-24.
10 Salvatore Guarnieri, Marco Pistoia, Omer Tripp, Julian Dolby, Stephen Teilhet, and Ryan Berg.

Saving the world wide web from vulnerable JavaScript. In Proceedings of the 20th International
Symposium on Software Testing and Analysis, ISSTA 2011, Toronto, ON, Canada, July 17-21,
2011, pages 177–187. ACM, 2011. doi:10.1145/2001420.2001442.

11 Susan Horwitz. Precise flow-insensitive may-alias analysis is NP-hard. ACM Trans. Program.
Lang. Syst., 19(1):1–6, 1997. doi:10.1145/239912.239913.

12 Mathias Rud Laursen, Wenyuan Xu, and Anders Møller. Reducing static analysis unsound-
ness with approximate interpretation. Proceedings of the ACM on Programming Languages
(PACMPL), 4(PLDI):194:1–194:24, 2024.

13 Thanh Le-Cong, Hong Jin Kang, Truong Giang Nguyen, Stefanus Agus Haryono, David Lo,
Xuan-Bach Dinh Le, and Huynh Quyet Thang. AutoPruner: transformer-based call graph
pruning. In Proceedings of the 30th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ESEC/FSE 2022, Singapore,
Singapore, November 14-18, 2022, pages 520–532. ACM, 2022. doi:10.1145/3540250.3549175.

14 Peiming Liu, Yanze Li, Bradley Swain, and Jeff Huang. PUS: A fast and highly efficient solver
for inclusion-based pointer analysis. In 44th IEEE/ACM 44th International Conference on
Software Engineering, ICSE 2022, Pittsburgh, PA, USA, May 25-27, 2022, pages 1781–1792.
ACM, 2022. doi:10.1145/3510003.3510075.

https://zenodo.org/doi/10.5281/zenodo.12720724
https://zenodo.org/doi/10.5281/zenodo.12720724
https://doi.org/10.1109/ACCESS.2023.3255984
https://doi.org/10.4230/LIPIcs.ECOOP.2022.3
https://arxiv.org/abs/2205.06780
https://doi.org/10.1145/93542.93585
https://doi.org/10.1109/ICSE.2013.6606621
https://github.com/wala/WALA
https://www.martinfowler.com/bliki/FluentInterface.html
https://www.martinfowler.com/bliki/FluentInterface.html
https://doi.org/10.1145/2001420.2001442
https://doi.org/10.1145/239912.239913
https://doi.org/10.1145/3540250.3549175
https://doi.org/10.1145/3510003.3510075

M. Chakraborty, A. Gnanakumar, M. Sridharan, and A. Møller 10:21

15 Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondrej Lhoták, José Nelson Amaral,
Bor-Yuh Evan Chang, Samuel Z. Guyer, Uday P. Khedker, Anders Møller, and Dimitrios
Vardoulakis. In defense of soundiness: a manifesto. Communications of the ACM, 58(2):44–46,
2015. doi:10.1145/2644805.

16 Anders Alnor Mathiasen and Andreas Pavlogiannis. The fine-grained and parallel complexity
of Andersen’s pointer analysis. Proc. ACM Program. Lang., 5(POPL):1–29, 2021. doi:
10.1145/3434315.

17 Jan Midtgaard. Control-flow analysis of functional programs. ACM Comput. Surv., 44(3):10:1–
10:33, 2012. doi:10.1145/2187671.2187672.

18 Anders Møller, Benjamin Barslev Nielsen, and Martin Toldam Torp. Detecting locations
in JavaScript programs affected by breaking library changes. Proc. ACM Program. Lang.,
4(OOPSLA):187:1–187:25, 2020. doi:10.1145/3428255.

19 Anders Møller and Oskar Haarklou Veileborg. Jelly. https://github.com/cs-au-dk/jelly,
2024.

20 Benjamin Barslev Nielsen, Martin Toldam Torp, and Anders Møller. Modular call graph
construction for security scanning of Node.js applications. In ISSTA ’21: 30th ACM SIGSOFT
International Symposium on Software Testing and Analysis, Virtual Event, Denmark, July
11-17, 2021, pages 29–41, 2021. doi:10.1145/3460319.3464836.

21 Fernando Magno Quintão Pereira and Daniel Berlin. Wave propagation and deep propagation
for pointer analysis. In Proceedings of the CGO 2009, The Seventh International Symposium
on Code Generation and Optimization, Seattle, Washington, USA, March 22-25, 2009, pages
126–135. IEEE Computer Society, 2009. doi:10.1109/CGO.2009.9.

22 Michael Reif, Florian Kübler, Michael Eichberg, Dominik Helm, and Mira Mezini. Judge:
identifying, understanding, and evaluating sources of unsoundness in call graphs. In Proceedings
of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis, ISSTA
2019, Beijing, China, July 15-19, 2019, pages 251–261. ACM, 2019. doi:10.1145/3293882.
3330555.

23 Koushik Sen, Swaroop Kalasapur, Tasneem G. Brutch, and Simon Gibbs. Jalangi: a selective
record-replay and dynamic analysis framework for JavaScript. In Joint Meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering, ESEC/FSE’13, Saint Petersburg, Russian Federation, August 18-26,
2013, pages 488–498. ACM, 2013. doi:10.1145/2491411.2491447.

24 Olin Shivers. Control-flow analysis of higher-order languages. PhD thesis, Carnegie Mellon
University, 1991.

25 Manu Sridharan, Satish Chandra, Julian Dolby, Stephen J. Fink, and Eran Yahav. Alias anal-
ysis for object-oriented programs. In David Clarke, Tobias Wrigstad, and James Noble, editors,
Aliasing in Object-Oriented Programming. Springer, 2013. doi:10.1007/978-3-642-36946-9_
8.

26 Li Sui, Jens Dietrich, Amjed Tahir, and George Fourtounis. On the recall of static call
graph construction in practice. In ICSE ’20: 42nd International Conference on Software
Engineering, Seoul, South Korea, 27 June - 19 July, 2020, pages 1049–1060. ACM, 2020.
doi:10.1145/3377811.3380441.

27 Yulei Sui and Jingling Xue. SVF: interprocedural static value-flow analysis in LLVM. In Pro-
ceedings of the 25th International Conference on Compiler Construction, CC 2016, Barcelona,
Spain, March 12-18, 2016, pages 265–266. ACM, 2016. doi:10.1145/2892208.2892235.

28 Haiyang Sun, Daniele Bonetta, Christian Humer, and Walter Binder. Efficient dynamic
analysis for Node.js. In Christophe Dubach and Jingling Xue, editors, Proceedings of the 27th
International Conference on Compiler Construction, CC 2018, February 24-25, 2018, Vienna,
Austria, pages 196–206. ACM, 2018. doi:10.1145/3178372.3179527.

29 Kwangwon Sun and Sukyoung Ryu. Analysis of JavaScript programs: Challenges and research
trends. ACM Comput. Surv., 50(4):59:1–59:34, 2017. doi:10.1145/3106741.

ECOOP 2024

https://doi.org/10.1145/2644805
https://doi.org/10.1145/3434315
https://doi.org/10.1145/3434315
https://doi.org/10.1145/2187671.2187672
https://doi.org/10.1145/3428255
https://github.com/cs-au-dk/jelly
https://doi.org/10.1145/3460319.3464836
https://doi.org/10.1109/CGO.2009.9
https://doi.org/10.1145/3293882.3330555
https://doi.org/10.1145/3293882.3330555
https://doi.org/10.1145/2491411.2491447
https://doi.org/10.1007/978-3-642-36946-9_8
https://doi.org/10.1007/978-3-642-36946-9_8
https://doi.org/10.1145/3377811.3380441
https://doi.org/10.1145/2892208.2892235
https://doi.org/10.1145/3178372.3179527
https://doi.org/10.1145/3106741

10:22 Indirection-Bounded Call Graph Analysis

30 Akshay Utture, Shuyang Liu, Christian Gram Kalhauge, and Jens Palsberg. Striking a
balance: Pruning false-positives from static call graphs. In 44th IEEE/ACM 44th International
Conference on Software Engineering, ICSE 2022, Pittsburgh, PA, USA, May 25-27, 2022,
pages 2043–2055. ACM, 2022. doi:10.1145/3510003.3510166.

31 Akshay Utture and Jens Palsberg. Fast and precise application code analysis using a partial
library. In 44th IEEE/ACM 44th International Conference on Software Engineering, ICSE
2022, Pittsburgh, PA, USA, May 25-27, 2022, pages 934–945. ACM, 2022. doi:10.1145/
3510003.3510046.

https://doi.org/10.1145/3510003.3510166
https://doi.org/10.1145/3510003.3510046
https://doi.org/10.1145/3510003.3510046

	1 Introduction
	2 Motivating Examples
	3 Dynamic Indirection Bound Estimation
	3.1 Language
	3.2 Dynamic Analysis
	3.3 Study Results

	4 Indirection-Bounded Call Graph Construction
	4.1 Analysis Formulation
	4.2 Simplified Wave Propagation
	4.3 Adding Bounds
	4.4 Bounded ACG

	5 Evaluation
	5.1 Benchmarks
	5.2 Experimental Configuration
	5.3 Results
	5.4 Threats to Validity

	6 Related Work
	7 Conclusion

