
Analyzing Ambiguity of Context-Free Grammars

Claus Brabrand1, Robert Giegerich2, and Anders Møller1

1 Department of Computer Science, University of Aarhus, Denmark
{brabrand,amoeller}@brics.dk

2 Practical Computer Science, Faculty of Technology, Bielefeld University, Germany
robert@techfak.uni-bielefeld.de

Abstract. It has been known since 1962 that the ambiguity problem for
context-free grammars is undecidable. Ambiguity in context-free gram-
mars is a recurring problem in language design and parser generation, as
well as in applications where grammars are used as models of real-world
physical structures.
We observe that there is a simple linguistic characterization of the gram-
mar ambiguity problem, and we show how to exploit this to conserva-
tively approximate the problem based on local regular approximations
and grammar unfoldings. As an application, we consider grammars that
occur in RNA analysis in bioinformatics, and we demonstrate that our
static analysis of context-free grammars is sufficiently precise and effi-
cient to be practically useful.

1 Introduction

When using context-free grammars to describe formal languages, one has to be
aware of potential ambiguity in the grammars, that is, the situation where a
string may be parsed in multiple ways, leading to different parse trees. We pro-
pose a technique for detecting ambiguities in a given grammar. As the problem
is in general undecidable [11] we resort to conservative approximation. This is
much like, for example, building an LR(k) parse table for the given grammar and
checking for conflicts. The analysis we propose has two significant advantages:

1. The LR(k) condition has since its discovery by Knuth in 1965 been known
as a powerful test for unambiguity [13]. An example of an even larger class of
unambiguous grammars is LR-Regular [12]. However, not even LR-Regular
is sufficient for a considerable class of grammars involving palindromic struc-
tures, which our technique can handle. Additionally, unlike LR(k), our ap-
proach works well without separating lexical descriptions from the grammars.

2. The ambiguity warnings that our approach can produce if a potential am-
biguity is detected are more human readable than those typically produced
by, for example, Bison [23]. (Any user of Bison or a similar tool will rec-
ognize the difficulty in finding the true cause of a conflict being reported.)
Our technique is in many cases able to produce shortest possible examples
of strings that may be parsed in multiple ways and precisely identify the
relevant location in the grammar, thereby pinpointing the cause of the am-
biguity.

An increasing number of parser generators, for example, Bison [23], SDF [25],
and Elkhound [16], support general context-free grammars rather than unam-
biguous subclasses, such as LL(k), LR(k), or LALR(k). Such tools usually handle
ambiguities by dynamically (that is, during parsing) disambiguating or merging
the resulting parse trees [24, 3]. In contrast, our approach is to statically analyze
the grammars for potential ambiguities. Also, we aim for a conservative algo-
rithm, unlike many existing ambiguity detection techniques (e.g. [10, 5]). The
recent approach by Schmitz is conservative; for a comparison with our approach
see the paper [22]. Another conservative approach, expressed in terms of push-
down acceptors, is described in an article by Kuich [15].

In bioinformatics, context-free grammars in various guises have important
applications, for example in sequence comparison, motif search, and RNA sec-
ondary structure analysis [7, 9]. Recently, ambiguity has gained attention in this
field, as several important algorithms (such as the Viterbi algorithm on stochastic
CFGs) have been shown to deliver incorrect results in the presence of ambigu-
ity [8, 6]. The ambiguity problem arises in biosequence analysis from the necessity
to check a static property of the dynamic programming algorithms employed –
the question whether or not an element of the search space may be evaluated
more than once. If so, probabilistic scoring schemes yield incorrect results, and
enumeration of near-optimal solutions drowns in redundancy. It may seem sur-
prising that the static analysis of this program property can be approached as
a question of language ambiguity on the formal language level. We will explain
this situation in some detail in Section 5.

Before we start presenting our method, we state two requirements on a prac-
tical ambiguity checker that result from the biosequence analysis domain and
must be kept in mind in the sequel: First, the grammars to be checked are ac-
tually abstractions from richer programming concepts. They may look strange
from a formal language design point of view – for example, they may contain
“redundant” nonterminal symbols generating the same language. However, dif-
ferent nonterminals model different physical structures with different semantics
that are essential for subsequent algorithmic processing. Hence, the grammar
must be checked as is, and cannot be transformed or simplified by, for instance,
coalescing such nonterminal symbols. Second, the domain experts are typically
molecular biologists with little programming expertise and no training in formal
language theory. Hence, when ambiguity is discovered, it must be reported in a
way that is meaningful to this category of users.

Besides the applications to biosequence analysis, our motivation behind the
work we present here has been analyzing reversibility of transformations between
XML and non-XML data [2]. This involves scannerless parsing, that is, lexical
descriptions are not separated from the grammars, so LR(k) is not applicable.

Contributions Despite decades of work on parsing techniques, which in many
cases involve the problem of grammar ambiguity, we have been unable to find
tools that are applicable to grammars in the areas mentioned above. This paper
contributes with the following results:

2

– We observe that there is a simple linguistic characterization of grammar
ambiguity. This allows us to shift from reasoning about grammar derivations
to reasoning about purely linguistic properties, such as, language inclusion.

– We show how Mohri and Nederhof’s regular approximation technique for
context-free grammars [17] can be adapted in a local manner to detect many
common sources of ambiguity, including ones that involve palindromic struc-
tures. Also, a simple grammar unfolding trick can be used to improve the
precision of the analysis.

– We demonstrate that our method can handle “real-world” grammars of vary-
ing complexity taken from the bioinformatics literature on RNA analysis,
acquitting the unambiguous grammars and pinpointing the sources of ambi-
guity (with shortest possible examples as witnesses) in two grammars that
are in fact ambiguous.

We here work with plain, context-free grammars. Generalizing our approach
to work with parsing techniques that involve interoperability with a lexical an-
alyzer, precedence/associativity declarations, or other disambiguation mecha-
nisms is left to future work.

Overview We begin in Section 2 by giving a characterization of grammar am-
biguity that allows us to reason about the language of the nonterminals in the
grammar rather than the structure of the grammar. In particular, we reformulate
the ambiguity problem in terms of language intersection and overlap operations.
Based on this characterization, we then in Section 3 formulate a general frame-
work for conservatively approximating the ambiguity problem. In Section 4 we
show how regular approximations can be used to obtain a particular decidable
approximation. Section 5 discusses applications in the area of biosequence anal-
ysis where context-free grammars are used to describe RNA structures. It also
summarizes a number of experiments that test the precision and performance of
the analysis. In the appendices, we show how the precision can be improved by
selectively unfolding parts of the given grammar, and we provide proofs of the
propositions.

2 A Characterization of Grammar Ambiguity

We begin by briefly recapitulating the basic terminology about context-free
grammars.

Definition 1 (Context-free grammar and ambiguity). A context-free gram-
mar (CFG) G is defined by G = (N , Σ, s, π) where N is a finite set of nonter-
minals, Σ is a finite set of alphabet symbols (or terminals), s ∈ N is the start
nonterminal, and π : N → P(E∗) is the production function where E = Σ ∪N .
We write αnω ⇒ αθω when θ ∈ π(n) and α, ω ∈ E∗, and ⇒∗ is the reflexive
transitive closure of ⇒. We assume that every nonterminal n ∈ N is reachable
from s and derives some string, that is, ∃α, φ, ω ∈ Σ∗ : s ⇒∗ αnω ⇒∗ αφω. The

3

language of a sentential form α ∈ E∗ is LG(α) = {x ∈ Σ∗ | α ⇒∗ x}, and the
language of G is L(G) = LG(s).

Assume that x ∈ L(G), that is, s = φ0 ⇒ φ1 ⇒ . . . ⇒ φn = x. Such a
derivation sequence gives rise to a derivation tree where each node is labeled
with a symbol from E, the root is labeled s, leaves are labeled from Σ, and the
labels of children of a node with label e are in π(e). G is ambiguous if there
exists a string x in L(G) with multiple derivation trees, and we then say that x

is ambiguous relative to G.

We now introduce the properties vertical and horizontal unambiguity and
show that they together characterize grammar unambiguity.

Definition 2 (Vertical and horizontal unambiguity). A grammar G is
vertically unambiguous iff

∀n ∈ N , α, α′ ∈ π(n), α 6= α′ : LG(α) ∩ LG(α′) = ∅

A grammar G is horizontally unambiguous iff

∀n ∈ N , α ∈ π(n), i ∈ {1, . . . , |α|−1} : LG(α0 · · ·αi−1) ∩
W

LG(αi · · ·α|α|−1) = ∅

where ∩
W

is the language overlap operator defined by

X ∩
W

Y = { xay | x, y ∈ Σ∗ ∧ a ∈ Σ+ ∧ x, xa ∈ X ∧ y, ay ∈ Y }

Intuitively, vertical unambiguity means that, during parsing of a string, there is
never a choice between two different productions of a nonterminal. The overlap
X ∩

W

Y is the set of strings in XY that can be split non-uniquely in an X part
and a Y part. For example, if X = {x, xa} and Y = {a, ay} then X ∩

W

Y = {xay}.
Horizontal unambiguity then means that, when parsing a string according to a
production, there is never any choice of how to split the string into substrings
corresponding to the entities in the production.

Proposition 3 (Characterization of Ambiguity).

G is vertically and horizontally unambiguous ⇔ G is unambiguous

Proof. Intuitively, any ambiguity must result from a choice between two produc-
tions of some nonterminal or from a choice of how to split a string according to
a single production. A detailed proof is given in Appendix B.

This proposition essentially means that we have transformed the problem of
context-free grammar ambiguity from a grammatical property to a linguistic
property dealing solely with the languages of the nonterminals in the grammar
rather than with derivation trees. As we shall see in the next section, this char-
acterization can be exploited to obtain a good conservative approximation for
the problem without violating the two requirements described in Section 1.

Note that this linguistic characterization of grammar ambiguity should not
be confused with the notion of inherently ambiguous languages [11]. (A language
is inherently ambiguous if all its grammars are ambiguous.)

We now give examples of vertical and horizontal ambiguities.

4

Example 4 (a vertically ambiguous grammar).

Z : A ’y’

l
| ’x’ B ;

A : ’x’ ’a’ ;

B : ’a’ ’y’ ;

The string xay can be parsed in two ways by choosing either the first or the
second production of Z. The name vertical ambiguity comes from the fact that
productions are often written on separate lines as in this example.

Example 5 (a horizontally ambiguous grammar).

Z : ’x’ A ↔ B ;

A : ’a’

| ε ;

B : ’a’ ’y’

| ’y’ ;

Also here, the string xay can be parsed in two ways, by parsing the a either in
’x’ A (using the first production of A and the second of B) or in B (using the

second production of A and the first of B). Here, the ambiguity is at a split-point
between entities on the right-hand side of a particular production, hence the
name horizontal ambiguity.

3 A Framework for Conservative Approximation

The characterization of ambiguity presented above can be used as a foundation
for a framework for obtaining decidable, conservative approximations of the am-
biguity problem. When the analysis says “unambiguous grammar!”, we know
that this is indeed the case. The key to this technique is that the linguistic char-
acterization allows us to reason about languages of nonterminals rather than
derivation trees.

Definition 6 (Grammar over-approximation). A grammar over-approxi-
mation relative to a CFG G is a function AG : E∗ → P(Σ∗) where LG(α) ⊆
AG(α) for every α ∈ E∗. An approximation strategy A is a function that returns
a grammar over-approximation AG given a CFG G.

Definition 7 (Approximated vertical and horizontal unambiguity). A
grammar G is vertically unambiguous relative to a grammar over-approximation
AG iff

∀n ∈ N , α, α′ ∈ π(n), α 6= α′ : AG(α) ∩ AG(α′) = ∅

Similarly, G is horizontally unambiguous relative to AG iff

∀n ∈ N , α ∈ π(n), i ∈ {1, . . . , |α|−1} : AG(α0 · · ·αi−1) ∩
W

AG(αi · · ·α|α|−1) = ∅

Finally, we say that an approximation strategy A is decidable if the following
problem is decidable: “Given a grammar G, is G vertically and horizontally un-
ambiguous relative to AG?”

5

Proposition 8 (Approximation soundness). If G is vertically and horizon-
tally unambiguous relative to AG then G is unambiguous.

Proof. The result follows straightforwardly from Definitions 2, 6, and 7 and
Proposition 3. For details, see Appendix C.

As an example of a decidable but not very useful approximation strategy, the one
which returns the constant Σ∗ approximation corresponds to the trivial analysis
that reports that every grammar may be (vertically and horizontally) ambiguous
at all possible locations. In the other end of the spectrum, the approximation
strategy which for every grammar G returns LG(α) for each α has full precision
but is undecidable (since it involves checking language disjointness for context-
free grammars).

Also note that two different approximations, AG and A′
G

, may be com-
bined: the function A′′

G
defined by A′′

G
(α) = AG(α) ∩ A′

G
(α) is a grammar

over-approximation that subsumes both AG and A′
G

. Such a pointwise combi-
nation is generally better than running the two analyses independently as one
of the approximations might be good in one part of the grammar, and the other
in a different part.

4 Regular Approximation

One approach for obtaining decidability is to consider regular approximations,
that is, ones where AG(α) is a regular language for each α: the family of reg-
ular languages is closed under both intersection and overlap, and emptiness on
regular languages is decidable (for an implementation, see [18]). Also, shortest
examples can easily be extracted from non-empty regular languages. As a con-
crete approximation strategy we propose using Mohri and Nederhof’s algorithm
for constructing regular approximations of context-free grammars [17].

We will not repeat their algorithm in detail, but some important properties
are worth mentioning. Given a CFG G, the approximation results in another
CFG G′ which is right linear (and hence its language is regular), L(G) ⊆ L(G′),
and G′ is at most twice the size of G. Whenever n ⇒∗ αnω and n ⇒∗ θ in
G for some α, ω, θ ∈ E and n ∈ N , the grammar G′ has the property that
n ⇒∗ αmθωk for any m, k. Intuitively, G′ keeps track of the order that alphabet
symbols may appear in, but it loses track of the fact that α and ω must appear
in balance.

Definition 9 (Mohri-Nederhof approximation strategy). Let MN be the
approximation strategy that given a CFG G = (N , Σ, s, π) returns the grammar
over-approximation MN G defined by MN G(α) = L(Gα) where Gα is the Mohri-
Nederhof approximation of the grammar (N∪{sα}, Σ, sα, π[sα 7→ {α}]) for some
sα 6∈ N .

In other words, whenever we need to compute AG(α) for some α ∈ E∗, we apply
Mohri and Nederhof’s approximation algorithm to the grammar G modified to
derive α as the first step.

6

Example 10 (palindromes). A classical example of an unambiguous grammar
that is not LR(k) (nor LR-Regular) is the following whose language consists of
all palindromes over the alphabet {a, b}:

P : ’a’ P ’a’ | ’b’ P ’b’ | ’a’ | ’b’ | ε ;

Running our analysis on this grammar immediately gives the result “unambiguous
grammar!”. It computes MN G for each of the five right-hand sides of productions
and all their prefixes and suffixes and then performs the checks described in Def-
inition 7. As an example, MN G(’a’ P ’a’) is the regular language a(a + b)∗a,
and MN G(’b’ P ’b’) is b(a+b)∗b. Since these two languages are disjoint, there
is no vertical ambiguity between the first two productions.

A variant of the grammar above is the following language, AntiPalindromes,
which our analysis also verifies to be unambiguous:

R : ’a’ R ’b’ | ’b’ R ’a’ | ’a’ | ’b’ | ε ;

As we shall see in Section 5, this grammar is closely related to grammars occur-
ring naturally in biosequence analysis.

Example 11 (ambiguous expressions). To demonstrate the capabilities of pro-
ducing useful warning messages, let us run the analysis on the following tiny
ambiguous grammar representing simple arithmetical expressions:

Exp[plus] : Exp ’+’ Exp

[mult] | Exp ’*’ Exp

[var] | ’x’ ;

(Notice that we allow productions to be labeled.) The analysis output is

*** vertical ambiguity: E[plus] <--> E[mult]

ambiguous string: "x*x+x"

*** horizontal ambiguity at E[plus]: Exp <--> ’+’ Exp

ambiguous string: "x+x+x"

*** horizontal ambiguity at E[plus]: Exp ’+’ <--> Exp

ambiguous string: "x+x+x"

*** horizontal ambiguity at E[mult]: Exp <--> ’*’ Exp

ambiguous string: "x*x*x"

*** horizontal ambiguity at E[mult]: Exp ’*’ <--> Exp

ambiguous string: "x*x*x"

Each source of ambiguity is clearly identified, even with example strings that
have been verified to be non-spurious (of course, it is easy to check with a CFG
parser whether a concrete string is ambiguous or not). Obviously, these messages
are more useful to a non-expert than, for example, the shift/reduce conflicts and
reduce/reduce conflicts being reported by Bison.

5 Application to Biosequence Analysis

The languages of biosequences are trivial from the formal language point of view.
The alphabet of DNA is ΣDNA = {A, C, G, T}, of RNA it is ΣRNA = {A, C, G, U},
and for proteins it is a 20 letter amino acid code. In each case, the language of
biosequences is Σ∗. Biosequence analysis relates two sequences to each other

7

(sequence alignment, similarity search) or one sequence to itself (folding). The
latter is our application domain – RNA structure analysis.

RNA is a chain molecule, built from the four bases adenine (A), cytosine
(C), guanine (G), and uracil (U), connected via a backbone of sugar and phos-
phate. Mathematically, it is a string over ΣRNA of moderate length (compared
to genomic DNA), ranging from 20 to 10,000 bases.

RNA forms structure by folding back on itself. Certain bases, located at
different positions in the backbone, may form hydrogen bonds. Such bonded
base pairs arise between complementary bases G − C, A − U , and G − U . By
forming these bonds, the two pairing bases are arranged in a plain, and this in
turn enables them to stack very densely onto adjacent bases also forming pairs.
Helical structures arise, which are energetically stable and mechanically rather
stiff. They enable RNA to perform its wide variety of functions.

Because of the backbone turning back on itself, RNA structures can be viewed
as palindromic languages. Starting from palindromes in the traditional sense (as
described in Example 10) we can characterize palindromic languages for RNA
structure via five generalizations: (1) a letter does not match to itself but to a
complementary base (cf. Example 12); (2) the two arms of a palindrome may
be separated by a non-palindromic string (of length at least 3) called a loop; (3)
the two arms of the palindrome may hold non-pairing bases called bulges ; (4) a
string may hold several adjacent palindromes separated by unpaired bases; and
(5) palindromes can be recursively nested, that is, a loop or a bulge may contain
further palindromes.

Example 12 (RNA “palindromes” – base pairs only).
R : ’C’ R ’G’ | ’G’ R ’C’

| ’A’ R ’U’ | ’U’ R ’A’

| ’G’ R ’U’ | ’U’ R ’G’ | ε ;

Context-free grammars are used to describe the structures that can be formed
by a given RNA sequence. (The grammars G1 through G8, which we describe
later, are different ways to achieve this.) All grammars generate the full lan-
guage Σ∗

RNA, the different derivations of a given RNA string corresponding to
its possible physical structures in different ways.

Figure 1 shows an RNA sequence and two of its possible structures, presented
in the graphical form commonly used in biology, and as a so-called Vienna (or
“dot-bracket”) string, where base pairs are represented as matching parentheses
and unpaired bases as dots.

The number of possible structures under the rules of base pairing is exponen-
tially related to the length of the molecule. In formal language terms, each string
has an exponential number of parse trees. This has been termed the “good” am-
biguity in a grammar describing RNA structure. The set of all structures is
the search space from which we want to extract the “true” structure. This is
achieved by evaluating structures under a variety of scoring schemes. A CYK-
style parser [1] constructs the search space and applies dynamic programming
along the way.

8

ր

AUCGUAACGCGAUACGUCGAAACGUACG

(good) syntactic
ambiguity

ց

(a) RNA sequence
(primary structure)

→

((((.....))))((((....))))...

ր

..(((.((((((....)))...))))))

(bad) semantic
ambiguity

ց

(b) Annotation seq.
(secondary structure)

S

S

C G

U A
S

UA
S

S

S

S

S

S

G C

A

ε

S
G

C

A

U

S

S

S

G

S

S

S

S

S

S

S

ε

A

C

G

U A

C

U

A

A

G

C

S

S

S

S

ε

A

C

G

S

T
1

T
2

(c) Parse trees
(rel. to G1) (d) Physical

structure

Fig. 1. Good and bad ambiguity in RNA folding

The problem at hand arises when different parse trees correspond to the same
physical structure. In Figure 1, parse trees T1 and T2 denote different parse trees
for the same physical structure, shown to their right. In this case, the scoring
schemes are misled. The number of structures is wrongly counted, and the most
likely parse does not find the most likely structure. We say that the algorithm
exhibits the “bad” kind of ambiguity. It makes no sense to check the grammar
for ambiguity as is, since (using a phrase from [21]) the bad ambiguity hides
within the good.

Fortunately, the grammar can be transformed such that the good ambiguity
is eliminated, while the bad persists and can now be checked by formal language
techniques such as ours. The grammar remains structurally unchanged in the
transformation, but is rewritten to no longer generate RNA sequences, but Vi-
enna strings. They represent structures uniquely, and if one of them has two
different parse trees, then the original grammar has the bad type of ambiguity.

We applied our ambiguity checker to several grammars that were obtained by
the above transformation from stochastic grammars used in the bioinformatics
literature [6, 21, 26]. Grammars G1 and G2 were studied as ambiguous grammars
in [6], and our algorithm nicely points out the sources of ambiguity by indicating
shortest ambiguous words. In [6], G2 was introduced as a refinement of G1, to
bring it closer to grammars used in practice. Our ambiguity checker detects an
extra vertical ambiguity in G2 (see Table 1) and clearly reports it by producing
the ambiguous word “()” for the productions P[aPa] and P[S]. Grammars

9

G3 through G8 are unambiguous grammars, taken from the same source. Our
approach demonstrates their unambiguity.

Grammars used for thermodynamic RNA folding are rather large in order to
accommodate the elaborate free energy model where the energy contribution of
a single base or base pair strongly depends on its context. Grammars with bad
ambiguity can still be used to find the minimum free energy structure, but not
for the enumeration of near-optimal structures, and not for Boltzmann statistics
scoring.

The grammar Voss from [26] has 28 nonterminals and 65 productions. This
grammar clearly asks for automatic support (even for experts in formal gram-
mars). We demonstrate this application in two steps. First, we study a grammar,
Voss-Light, which demonstrates an essential aspect of the Voss grammar: un-
paired bases in bulges and loops (the dots in the transformed grammar) must
be treated differently, and they hence are derived from different nonterminal
symbols even though they recognize the same language. This takes the grammar
Voss-Light (and consequently also Voss) beyond the capacities of, for example,
LR(k) parsing, whereas our technique succeeds in verifying unambiguity.

Example 13 (Voss-Light).

P : ’(’ P ’)’ | ’(’ O ’)’ ; // P: closed structure

O : L P | P R | S P S | H ; // O: open structure

L : ’.’ L | ’.’ ; // L: left bulge

R : ’.’ R | ’.’ ; // R: right bulge

S : ’.’ S | ’.’ ; // S: singlestrand

H : ’.’ H | ’.’ ’.’ ’.’ ; // H: hairpin 3+ loop

As the second step, we took the full grammar, which required four simple
unfolding transformations (see Appendix A) due to spurious ambiguities related
to multiloops. Our method succeeded to show unambiguity, which implies that
the Boltzmann statistics computed according to [26] are indeed correct.

Summary of Biosequence Analysis Experiments

Table 1 summarizes the results of running our ambiguity analysis and that of
LR(k) on the example grammars from biosequence analysis presented in this
paper. The first column lists the name of the grammar along with a source refer-
ence. The second column quantifies the size of a grammar (in bytes). The third
column elaborates this size measure where n is the total number of nontermi-
nals, v is the maximum number of productions for a nonterminal, and h is the
maximum number of entities on the right-hand-side of a production. The fourth
column shows the results of running automatic LR(k) and LALR(1) analyses: if
the grammar is ambiguous, we list the number of shift/reduce and reduce/reduce
conflicts as reported by LR(k) for increasing k, starting at k = 1. We have man-
ually inspected that the ones marked as non-LR(k) are in fact non-LR-Regular.
The last column shows the verdict from our analysis, reporting no false positives.

All example grammars, except Voss, take less than a second to analyze (in-
cluding two levels of unfolding, as explained in Appendix A, in the case of G7

10

Grammar Bytes (n, v, h) LR(k) Our

Palindromes (Ex. 10) 125 (1,5,3) non-LR(k) unamb.

AntiPalindromes (Ex. 10) 125 (1,5,3) non-LR(k) unamb.

Base pairs (Ex. 12) 144 (1,7,3) non-LR(k) unamb.

G1 [6] 91 (1,5,3) 24/12, 70/36, 195/99, ... 5V + 1H
G2 [6] 126 (2,5,3) 25/13, 59/37, 165/98, ... 6V + 1H
G3 [6] 154 (3,4,3) non-LR(k) unamb.

G4 [6] 115 (2,3,4) LALR(1) unamb.

G5 [6] 59 (1,3,4) LALR(1) unamb.

G6 [6] 116 (3,2,3) LALR(1) unamb.

G7 [6] 261 (5,4,3) non-LR(k) unamb.

G8 [6] 227 (4,3,4) LALR(1) unamb.

Voss-Light (Ex. 13) 243 (6,4,3) non-LR(k) unamb.

Voss [26] 2,601 (28,9,7) non-LR(k) unamb.

Table 1. Benchmark results

and G8). The larger Voss grammar takes about a minute on a standard PC.
Note that in 7 cases, our technique verifies unambiguity where LR(k) fails.

With the recent Locomotif system [20], users draw graphical representation
of physical structures (cf. Figure 1(d)), from which in a first step CFGs aug-
mented with scoring functions are generated, which are subsequently compiled
into dynamic programming algorithms coded in C. With this system, biologists
may generate specialized RNA folding algorithms for many RNA families. Today
more than 500 are known, with a different grammar implied by each – and all
have to be checked for unambiguity.

6 Conclusion

We have presented a technique for statically analyzing ambiguity of context-free
grammars. Based on a linguistic characterization, the technique allows the use
of grammar transformations, in particular regular approximation and unfolding,
without sacrificing soundness. Moreover, the analysis is often able to pinpoint
sources of ambiguity through concrete examples being automatically generated.
The analysis may be used when LR(k) and related techniques are inadequate,
for example in biosequence analysis, as our examples show. Our experiments
indicate that the precision, the speed, and the quality of warning messages are
sufficient to be practically useful.

References

1. Alfred V. Aho and Jeffrey D. Ullman. The Theory of Parsing, Translation and

Compiling, Volume 1: Parsing. Prentice Hall, 1972.
2. Claus Brabrand, Anders Møller, and Michael I. Schwartzbach. Dual syntax for

XML languages. Information Systems, 2007. To appear. Earlier version in Proc.
10th International Workshop on Database Programming Languages, DBPL ’05,
Springer-Verlag, LNCS vol. 3774.

11

3. Claus Brabrand, Michael I. Schwartzbach, and Mads Vanggaard. The metafront
system: Extensible parsing and transformation. In Proc. 3rd ACM SIGPLAN

Workshop on Language Descriptions, Tools and Applications, LDTA ’03, 2003.

4. Anne Brüggemann-Klein and Derick Wood. Balanced context-free grammars,
hedge grammars and pushdown caterpillar automata. In Proc. Extreme Markup

Languages, 2004.

5. Bruce S. N. Cheung and Robert C. Uzgalis. Ambiguity in context-free grammars.
In Proc. ACM Symposium on Applied Computing, SAC ’95, 1995.

6. Robin D. Dowell and Sean R. Eddy. Evaluation of several lightweight stochastic
context-free grammars for RNA secondary structure prediction. BMC Bioinfor-

matics, 5(71), 2004.

7. Richard Durbin, Sean R. Eddy, Anders Krogh, and Graeme Mitchison. Biological

Sequence Analysis. Cambridge University Press, 1998.

8. Robert Giegerich. Explaining and controlling ambiguity in dynamic programming.
In Proc. 11th Annual Symposium on Combinatorial Pattern Matching, volume 1848
of LNCS, pages 46–59. Springer-Verlag, 2000.

9. Robert Giegerich, Carsten Meyer, and Peter Steffen. A discipline of dynamic
programming over sequence data. Science of Computer Programming, 51(3):215–
263, 2004.

10. Saul Gorn. Detection of generative ambiguities in context-free mechanical lan-
guages. Journal of the ACM, 10(2):196–208, 1963.

11. John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Lan-

guages and Computation. Addison-Wesley, April 1979.

12. Karel Culik II and Rina S. Cohen. LR-regular grammars - an extension of LR(k)
grammars. Journal of Computer and System Sciences, 7(1):66–96, 1973.

13. Donald E. Knuth. On the translation of languages from left to right. Information

and Control, 8:607–639, 1965.

14. Donald E. Knuth. A characterization of parenthesis languages. Information and

Control, 11:269–289, 1967.

15. Werner Kuich. Systems of pushdown acceptors and context-free grammars. Elek-

tronische Informationsverarbeitung und Kybernetik, 6(2):95–114, 1970.

16. Scott McPeak and George C. Necula. Elkhound: A fast, practical GLR parser gen-
erator. In Proc. 13th International Conference on Compiler Construction, CC ’04,
2004.

17. Mehryar Mohri and Mark-Jan Nederhof. Robustness in Language and Speech Tech-

nology, chapter 9: Regular Approximation of Context-Free Grammars through
Transformation. Kluwer Academic Publishers, 2001.

18. Anders Møller. dk.brics.automaton – finite-state automata and regular expressions
for Java. http://www.brics.dk/automaton/.

19. Mark-Jan Nederhof. Practical experiments with regular approximation of context-
free languages. Computational Linguistics, 26(1):17–44, 2000.

20. Janina Reeder and Robert Giegerich. A graphical programming system for molecu-
lar motif search. In Proc. 5th International Conference on Generative Programming

and Component Engineering, GPCE ’06, pages 131–140. ACM, October 2006.

21. Janina Reeder, Peter Steffen, and Robert Giegerich. Effective ambiguity checking
in biosequence analysis. BMC Bioinformatics, 6(153), 2005.

22. Sylvain Schmitz. Conservative ambiguity detection in context-free grammars. In
Proc. 34th International Colloquium on Automata, Languages and Programming,

ICALP ’07, 2007.

12

23. Elizabeth Scott, Adrian Johnstone, and Shamsa Sadaf Hussein. Tomita style gen-
eralised parsers. Technical Report CSD-TR-00-A, Royal Holloway, University of
London, 2000.

24. Mark van den Brand, Jeroen Scheerder, Jurgen J. Vinju, and Eelco Visser. Disam-
biguation filters for scannerless generalized LR parsers. In Proc. 11th International

Conference on Compiler Construction, CC ’02, 2002.
25. Eelco Visser. Syntax Definition for Language Prototyping. PhD thesis, University

of Amsterdam, September 1997.
26. Bjorn Voss, Robert Giegerich, and Marc Rehmsmeier. Complete probabilistic anal-

ysis of RNA shapes. BMC Biology, 4(5), 2006.

A Improving Precision with Grammar Unfolding

We here demonstrate how precision can be improved by a simple grammar un-
folding technique. A related approach has been used by Nederhof [19] but not
in the context of analyzing ambiguity.

Example 14 (unambiguous expressions). Although the grammar in Example 11
is ambiguous, its language is not inherently ambiguous. By introducing paren-
theses and fixing precedence and associativity of the operators, ’+’ and ’*’, an
unambiguous grammar can easily be constructed:

Exp[plus] : Exp ’+’ Term

[term] | Term ;

Term[mult] : Term ’*’ Factor

[factor] | Factor ;

Factor[var] : ’x’

[par] | ’(’ Exp ’)’ ;

While even the LR(k) technique is perfectly capable of acquitting this grammar
as unambiguous, our analysis, as presented so far, reports the following spurious
errors:

*** potential vertical ambiguity: Exp[plus] <--> Exp[term]

*** potential horizontal ambiguity at Exp[plus]: Exp <--> ’+’ Term

*** potential horizontal ambiguity at Exp[plus]: Exp ’+’ <--> Term

*** potential horizontal ambiguity at Term[mult]: Term <--> ’*’ Factor

*** potential horizontal ambiguity at Term[mult]: Term ’*’ <--> Factor

Note that, in contrast to the output being generated in Example 11, there are
no example strings and the word “potential” has been added. For example,
MN G(Exp ’+’ Term) ∩ MN G(Term) is nonempty, but any example string in
this intersection turns out to be unambiguous (our implementation tests just a
single string in the intersection). This means that the analysis, as presented in
the previous sections, cannot say with certainty that this grammar is ambiguous,
nor that it is unambiguous.

By investigating the potential vertical ambiguity reported above, we see that
a string x = α+ω ∈ LG(Exp) must have free parentheses in α if and only if x

13

matches Exp[term] and not Exp[plus]. Hence, if we can distinguish between
operators that appear within parentheses from ones that appear outside, we can
eliminate this kind of spurious error.

Fortunately, the ambiguity characterization provided by Proposition 3 al-
lows us to employ language-preserving transformations on the grammar without
risking violations of the requirements set up in Section 1. A simple language
preserving grammar transformation is unfolding recursive nonterminals, and,
as explained in the following, this happens to be enough to eliminate all five
spurious errors in the example above.

More generally, for balanced grammars [4] where parentheses are balanced
in each production we can regain some precision that is lost by the Mohri-
Nederhof approximation by unfolding the grammar to distinguish between inside
and outside parentheses.

Definition 15 (Balanced grammar). A grammar G = (N , T, s, π) is bal-

anced if (1) the terminal alphabet has a decomposition T = Σ ∪ Γ ∪ Γ̂ where Γ

is a set of left parentheses and Γ̂ a complementary set of right parentheses, and
(2) all productions in are of the form α or αγφγ̂ω, where α, φ, ω ∈ (Σ∪N)∗, γ ∈

Γ, γ̂ ∈ Γ̂ (that is, γ is the complementary parenthesis of γ̂).

Definition 16 (Unfolded balanced grammar). Unfolding a balanced gram-

mar G = (N , Σ ∪ Γ ∪ Γ̂ , s, π) produces the grammar Gu = (N ∪ N , Σ ∪ Γ ∪

Γ̂ ∪ Σ ∪ Γ ∪ Γ̂ , s, πu) where N , Σ, Γ , and Γ̂ are copies of N , Σ, Γ , and Γ̂ ,
respectively, with all symbols underlined, and

πu(n) =

{
α if π(n) = α

αγφγ̂ω if π(n) = αγφγ̂ω where γ ∈ Γ and γ̂ ∈ Γ̂ match

πu(n) =

{
α if π(n) = α

αγφγ̂ω if π(n) = αγφγ̂ω where γ ∈ Γ and γ̂ ∈ Γ̂ match

where θ is θ with all symbols underlined.

Clearly, L(G) and L(Gu) are identical, except that in all strings in L(Gu)
a symbol is underlined if and only if it is enclosed by parentheses. Thus, when
checking vertical unambiguity of two productions in G it is sound to check the
corresponding productions in Gu instead, and similarly for horizontal unambigu-
ity. As the following example shows, this may improve precision of the analysis.

Example 17 (unambiguous expressions, unfolded). The grammar from Exam-

ple 14 is balanced with Γ = {(} and Γ̂ = {)}. Unfolding yields this grammar:

Exp : Exp ’+’ Term Exp : Exp ’+’ Term

| Term ; | Term ;

Term : Term ’*’ Factor Term : Term ’*’ Factor

| Factor ; | Factor ;

Factor : ’x’ Factor : ’x’

| ’(’ Exp ’)’ ; | ’(’ Exp ’)’ ;

14

A string parsed in the original grammar is parsed in exactly the same way in the
new unfolded grammar, except that everything enclosed by parentheses is now
underlined. For example, the string x+(x+(x)+x)+x from the original grammar
corresponds to x+(x+(x)+x)+x with the resulting grammar. Now, every string in
MN G(Exp ’+’ Term) contains the symbol ’+’ whereas no strings in MN G(Term)
have this property (all ’+’ symbols are here underlined), so the potential vertical
ambiguity warning is eliminated, and similarly for the other warnings.

The grammars G7, G8, and Voss-Light introduced in Section 5 need two
unfoldings in order to be rightfully acquitted as unambiguous, and Voss needs
four. However, these grammars all share the property of having many different
nonterminals producing the same pairs of balanced parentheses, which is pre-
cisely why the regular approximation needs a couple of unfoldings to be able to
discern these cases. We have not encountered grammars that need more than
four levels of unfolding.

Example 18 (A non-balanced grammar). Grammars that exhibit parenthesis-like

structures but are not balanced with any suitable choice of Γ and Γ̂ do not ap-
pear to be common in practice. An artificial example is the following:

S : A A ;

A : ’x’ A ’x’ | y ;

Our present technique is not able to detect that there is no horizontal ambi-
guity in the first production. The grammar is LR(1), however, so this example
along with Example 10 establish the incomparability of our approach and LR(k).
Still, our ambiguity characterization allows further language-preserving gram-
mar transformations to be applied beyond the unfolding technique described
above; we leave it to future work to discover other practically useful ones. In
this tiny example, a simple solution would be to apply a transformation that
underlines all symbols enclosed by x’s. In other cases one can use Knuth’s al-
gorithm for transforming a non-balanced grammar into an equivalent balanced
one [14]. An alternative approach would be to combine our technique with, for
example, LR(k). Of course, one can just run both techniques and see if one of
them returns “unambiguous grammar!”, but there may be a way to combine
them more locally (that is, for individual checks of vertical/horizontal unambi-
guity) to gain precision, which is also left to future work.

B Proof of Proposition 3

We use the notation ‖− G when a grammar G is vertically unambiguous accord-
ing to Definition 2, |= G when it is horizontally unambiguous, and ‖= G means
that it is both vertically and horizontally unambiguous.

To show
‖= G ⇔ G is unambiguous

we consider each direction in turn.

15

α

ω
i

i

ω ω
0 n

n
α α

n

0

T
0

T T
i n

α =

T :

α

ω
i

i

ω ω
0 n

n
α

n

0

=

T
0

T T
i n

1

h−1

α =

T:

’ ’ ’

’ ’ ’

’ ’ ’

’

1

h−1
max...

α

...

’

Fig. 2. Two derivation trees, T and T ′, both deriving ω from n.

x a y

’ω ω’

L
Rω ω

L
R

= ω

Fig. 3. Overlap: LG(α0..αk ∩
W

LG(αk+1..αn)) ⊇ {ω} 6= ∅.

We prove ‖= G ⇒ G is unambiguous by contrapositively establishing that if
G is ambiguous, then ‖−/ G∨|=/ G (that is, ‖=/ G). Assume that G is ambiguous;
that is, that there are two derivation trees for some string, ω. We now proceed
by induction in the maximum height h of the two derivation trees for ω (where
the height of a derivation tree is the maximum number of edges from the root
to a leaf).

Base case (h=1): The result holds vacuously since there cannot be two differ-
ent derivation trees of height one; a derivation tree of height one necessarily has
terminals as leaves meaning that two such trees would be the same.

Inductive case: We assume the property holds for all derivation trees of max-
imum height h − 1 and show that it also holds for height h. Assume that G

ambiguously has two derivation trees, T and T ′, the higher of which has height
h, as depicted in Figure 2 (assuming T is higher). There are now two cases de-
pending on whether or not the top-most production in the tree is the same:

[Case α 6= α′]: If the trees differ due to the different productions α and α′

ultimately producing the same string ω we have that: LG(α)∩LG(α′) ⊇ {ω} 6= ∅,
and hence ‖−/ G as required.

[Case α = α′]: This case again splits into two cases depending on whether
the difference in the two trees is at the top-level or further down the trees:

16

[Case ∃i : ωi 6= ω′
i
]: In this case, we let k = min{ i | ωi 6= ω′

i
} and,

depending on this k, let ωL = ω0 · · ·ωk, ω′
L

= ω′
0 · · ·ω

′
k
, ωR = ωk+1 · · ·ωn,

and ω′
R

= ω′
k+1

· · ·ω′
n′ . Since k was chosen as the minimum we must have that

ωL 6= ω′
L

and since ωLωR = ω = ω′
L
ω′

R
, the strings must be organized according

to Figure 3 (assuming without loss of generality that |ωL| < |ω′
L
| which means

that ωL is a prefix of ω′
L
) in that ω = ωLaω′

R
for some a ∈ Σ+. We thus

have a language overlap X ∩
W

Y ⊇ {ωLaω′
R
} 6= ∅ for the two languages X =

LG(α0 · · ·αk) and Y = LG(αk+1 · · ·αn), and hence |=/ G as required.
[Case ∀i : ωi = ω′

i
]: In this case, the difference between the two trees T

and T ′ must be further down. Pick any i such that the subtrees Ti and T ′
i

(where
Ti is the subtree corresponding to αi) are different (such an i must exist since
T and T ′ were different in the first place). The induction hypothesis applied to
these smaller trees, ambiguously deriving ωi from αi, gives us ‖=/ G as required.

We now consider the other direction, ‖= G ⇐ G is unambiguous. This is
shown by contrapositively establishing that if ‖−/ G ∨ |=/ G, then G is ambigu-
ous. We split into two cases; one for horizontal ambiguity and one for vertical
ambiguity.

[Case ‖−/ G]: Since ‖−/ G, we have that LG(α) ∩ LG(α′) 6= ∅ for some n

where α, α ∈ π(n) and α 6= α′. Let ω be an element of this intersection; meaning
that we have α⇒∗ω and α′⇒∗ω. Since n is reachable in G, we can construct two
different derivation trees starting at s, corresponding to the following derivations:

s ⇒∗ γL n γR ⇒ γL α γR ⇒∗ γL ω γR ⇒∗ ωL ω ωR

s ⇒∗ γL n γR ⇒ γL α′ γR ⇒∗ γL ω γR ⇒∗ ωL ω ωR

These derivations are possible since we assumed that all nonterminals are deriv-
able and all nonterminals derive something.

[Case |=/ G]: Since |=/ G, we have that x, xa ∈ LG(αL) and y, ay ∈ LG(αR)
for some production π(n) = α = αLαR. Similar to the case above, we make two
different derivation trees corresponding to the following two derivations:

s ⇒∗ γL n γR ⇒∗ γL αL αR γR ⇒∗ γL x αR γR ⇒∗ γL x ay γR ⇒∗ ωL x ay ωR

s ⇒∗ γL n γR ⇒∗ γL αL αR γR ⇒∗ γL xa αR γR ⇒∗ γL xa y γR ⇒∗ ωL xa y ωR

C Proof of Proposition 8

We use the notation ‖=AG
G when a grammar G is both vertically and horizon-

tally unambiguous relative to a grammar over-approximation AG according to
Definition 7.

It is enough to show that ‖=AG
G ⇒ ‖= G since the result then follows from

Proposition 3. However, this is immediate from Definitions 2, 6, and 7: since AG

is a conservative approximation, we have that for all α, β ∈ E∗:

AG(α) ∩ AG(β) = ∅ ⇒ LG(α) ∩ LG(β) = ∅
AG(α) ∩

W

AG(β) = ∅ ⇒ LG(α) ∩
W

LG(β) = ∅

17

