
Polymorphic Type Inference

Michael I. Schwartzbach

http://www.daimi.au.dk/~mis

March 1995

Preface

In this lecture we will present a tiny functional language and gradually

enrich its type system. We shall cover the basic Curry-Hindley system

and Wand's constraint-based algorithm for monomorphic type inference;

brie
y observe the Curry-Howard isomorphism and notice that logical for-

malism may serve as the inspiration for new type rules; present the poly-

morphic Milner system and the Damas-Milner algorithm for polymorphic

type inference; see the Milner-Mycroft system for polymorphic recursion;

and sketch the development of higher type systems. We will touch upon

the relationship between types and logic and show how rules from logic

may give inspiration for new type rules. En route we shall encounter the

curious discovery that two algorithmic problems for type systems, which

have been implemented in popular programming languages, have turned

out to be respectively complete for exponential time and undecidable.

1

1 Type Checking and Type Inference

Two main reasons for introducing types into a programming language are

safety and readability.

Let us �rst consider the safety aspect. Not all expressions in an untyped

language are thought to be sensible. For example, computing the quotient

of a text and a function or the square root of a banana is plain nonsense.

Let us agree upon the existence of a subset of bad expressions, the run-

time behaviors of which are undesirable or unde�ned. Any non-trivial

choice of badness leads to an uncomputable subset. Thus, the compiler

cannot distinguish the good from the bad.

To ensure safety of programs we introduce a type system and reluctantly

sacri�ce some good expressions. This happens because we require our type

system to ensure that only good expressions are typable. However, since

type checking must be decidable, it is clear that some good expressions are

not typable. The following diagram illustrates this situation.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
..
..
..
..
..
..
..
..
..
..
..
.

��...........................
..
...
...
...
..
...
..

QQ
TT̀̀
��...

.

.

.

.

.

.

...
..
..
.
..
.
..
.
..
..
.
............................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.((..............
.
.
.
.
.
.PP

 cc
..
..
..
..
..
..
..
..
..
..
..
..
.SS
��
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
..
..
..
..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.,,

���
���

���
�:

��
�� XXX

XXX
XXy

slack
XXX

XXX
Xytypable expressions

bad expressions

The slack in a type system is the set of good expressions that it unfairly

rejects. The desire to minimize this slack is a driving force in the develop-

ment of type systems, which leads towards ever more complex type rules.

This trend is curbed by the fact that the type discipline should not en-

cumber the actual programming too much. This last concern is the reason

why arithmetical errors such as index out of range and division by zero are

not prevented by most type systems.

The issue of readability wishes for the types to be succinct hints to

the semantics of expressions. For example, when trying to understand the

workings of a function, it is quite nice to know in advance that it computes

booleans from lists of integers. This leads towards more expressive and

intuitive types|limited by the need for decidability of type checking.

The ideal situation seems to arise when our type system admits au-

tomatic inference of types. Then we obtain all the advantages described

above, without the need to bother with the type rules ourselves.

2

In the following sections we study the basic development of type systems

for functional languages.

2 A Tiny Functional Language

We de�ne a tiny vanilla-
avored functional language to serve as the basis

for this presentation. It is designed to resemble the core of languages such

as Scheme, Miranda, or ML.

Exp ::= 0 j true j false j x j

pred(Exp) j succ(Exp) j iszero(Exp) j

cons(Exp,Exp) j car(Exp) j cdr(Exp) j nil j null(Exp) j

if Exp then Exp else Exp � j

fun(x) Exp end j Exp(Exp) j

let f = Exp in Exp end

Thus, we have integers, booleans, lists and functions. The let-construct de-

�nes a local scope and at the same time permits us to give simple recursive

de�nitions.

The semantics of this language is entirely standard and will not be

formalized. Note, though, that there are various expressions that we intu-

itively recognize as meaningless, such as: succ(true), false(0), and car(fun(x)

x end). These are the bad expressions that our type system must exclude.

Exercise 2.1 Program a length function on lists. 2

3 A Simple Type System

We choose a language of types that describes the di�erent values of our

expressions: integers, booleans, lists and functions.

Type ::= Int j Bool j list(Type) j Type ! Type

We must now decide on the rules for assigning types to expressions. Some

are very easy; for example, true is of type Bool and fun(x) succ(x) end is of

type Int! Int. Bad expressions are excluded by imposing type restrictions;

for example, cdr only works on lists, the two branches of an if-expression

must have the same type, and in function calls the formal and actual

arguments types must be equal.

3

It would not be hard to write down a few manual pages describing this

type system. However, we choose an extremely compact notation that is

inspired by a connection between types and logic that we shall explore

further in a later section. A type judgment is of the form:

A ` e : �

Here A is a symbol table, i.e., a mapping from identi�ers to types; e is an

expression; and � is a type. Its meaning is simply: relatively to the symbol

table A, the expression e has type � . Type judgments are combined into

type rules of the form:
J1; J2; . . . ; Jn

J

Its meaning is: if the judgments Ji all hold, then so does the judgment J .

Using these notational conventions, we can express all aspects of our type

system in the following manner.

A ` 0 : Int A ` true : Bool

A ` false : Bool

A ` e : Int

A ` pred(e) : Int

A ` e : Int

A ` succ(e) : Int

A ` e : Int

A ` iszero(e) : Bool

A ` e1 : � ; A ` e2 : list(�)

A ` cons(e1,e2) : list(�)

A ` e : list(�)

A ` car(e) : �

A ` e : list(�)

A ` cdr(e) : list(�) A ` nil : list(�)

A ` e : list(�)

A ` null(e) : Bool

A ` e1 : Bool; A ` e2 : � ; A ` e3 : �

A ` if e1 then e2 else e3 � : �

A,x : � ` e : �

A ` fun(x) e end : � ! �

A ` e1 : � ! � ; A ` e2 : �

A ` e1(e2) : �

. . . , x : �, . . .` x : �

A,f : � ` e1 : �; A,f : � ` e2 : �

A ` let f = e1 in e2 end : �

4

This is the Curry-Hindley type system dating back to the 1960s.

Exercise 3.1 What is the rôle of the rule in the lower left-hand corner?

2

Exercise 3.2 How can we tell that the let-construct allows recursive de�-

nitions? 2

The claim that a given expression has a particular type can be veri�ed

by a systematic (and seemingly pedantic) application of the above rules.

Consider for example the function:

fun(g)

fun(x)

succ(g(x))

end

end

We wish to show that it has type (Bool ! Int) ! (Bool ! Int). A formal

derivation looks as follows.

g : Bool ! Int, x : Bool ` g : Bool ! Int g : Bool ! Int, x : Bool ` x : Bool

g : Bool ! Int, x : Bool ` g(x) : Int

g : Bool ! Int, x : Bool ` succ(g(x)) : Int

g : Bool ! Int ` fun(x) succ(g(x)) end : Bool ! Int

` fun(g) fun(x) succ(g(x)) end end : (Bool ! Int) ! (Bool ! Int)

Exercise 3.3 Go through the above derivation bottom-up and explain which

type rules are used. 2

It is quite easy to implement a top-down type checker based on such deriva-

tions, since the outermost type constructor and expression operator always

determine the type rule that must be applied.

At this point we should pause to consider whether our type system

is sound, in the sense that only good expressions are typable. To say

anything about this, we would need a formal semantics of our language

and a speci�cation of goodness. The usual strategy is then to show a

property called subject reduction: an expression of type � can only evaluate

to a value of type � . Soundness then follows, since bad expressions do not

evaluate to values of any type.

5

4 Simple Type Inference

As explained, we do not want to provide the types explicitly. Rather, we

wish for the compiler to �nd appropriate typings of our expressions or

to inform us if none exists. This spares us the trouble of writing down

complicated type expression that often only clutter up our nice programs.

Another often cited advantage is the hope that a clever type inference

algorithm may come up with more general types than we ourselves could,

thus keeping the slack to an absolute minimum.

An obvious idea is to use a bottom-up procedure that traverses the

parse tree and computes the type of every subexpression. But this only

works for constant expressions without variables. As a trivial counter-

example consider the term: succ(x). In a strict bottom-up procedure we

must �rst choose a type for x. But unless we happen to select Int, we will

mistakenly conclude that the expression is not typable.

We can still use a bottom-up procedure, but we should collect all types,

rather than just a single specimen. However, we must somehow deal with

the possibility that expressions may have in�nitely many types. For exam-

ple, the function:

fun(g)

fun(x)

succ(g(x))

end

end

for which we earlier derived the type (Bool ! Int) ! (Bool ! Int), has in

fact every possible type of the form (� ! Int) ! (� ! Int). But by this

example we have already given the solution to our problem: an in�nite set

of types sometimes has a �nite symbolic representation.

We de�ne a type scheme to be a type that may contain occurrences of

type variables. Formally, the syntax is as follows.

Types ::= Int j Bool j list(Types) j Types!Types j Var

Var ::= � j � j . . .

A type scheme de�nes a set of types: those that can be obtained by sub-

stituting types for variables in a consistent manner. For example, the type

6

scheme (�! �)! list(�) de�nes the following in�nite set:

(Int!Int) ! list(Int)

(Bool!Int) ! list(Bool)

(Bool!Bool) ! list(Bool)

(Int!Bool) ! list(Int)
...

((Int!Bool)!list(Bool)) ! list(Int!Bool)
...

The only requirement is that both occurrences of � must be substituted

with the same type. If we also allow variables to be substituted with other

type schemes, then we obtain a preorder � � � on type schemes, which

holds exactly when � is obtained from � through a substitution.

Exercise 4.1 What is a preorder? 2

Exercise 4.2 Which pairs among the following type schemes are ordered?

�

�

�! �

�! �

(�! �)! list(�)

2

Exercise 4.3 Argue that when � � � , then the set of types determined by

� is a superset of that determined by � . 2

The key to an e�cient type inference algorithm is the following fundamen-

tal observation: for every typable expression e there is a type scheme � that

exactly de�nes all possible types of e. We call � the principal type scheme

for e. The task of type inference is then to construct the principal type

scheme (for every subexpression) or to fail if the expression is untypable.

We present the algorithm in the style of Wand [11] from 1987. For every

parse tree node n we introduce a type variable [[n]] which denotes the (as

yet) unknown type scheme for the subexpression rooted in n. To capture

scope rules correctly, we require that all parse tree nodes corresponding

to occurrences of the same identi�er in a scope must share the same type

variable. In examples below, we use the slightly ambiguous notation [[e]]

7

for the type variable corresponding to the subexpression e.

Exercise 4.4 Why is this notation ambiguous? 2

Every kind of expression imposes its own kind of constraints on type vari-

ables. Consider the case of a function application e1(e2). We know from

the type rule for application that the following equation must hold.

[[e1]] = [[e2]]! [[e1(e2)]]

That is, e1 must be a function that accepts arguments of the same type as

e2. The full collection of constraints is as follows.

0 : [[0]] = Int

true : [[true]] = Bool

false : [[false]] = Bool

pred(e) : [[pred(e)]] = [[e]] = Int

succ(e) : [[succ(e)]] = [[e]] = Int

iszero(e) : [[iszero(e)]] = Bool; [[e]] = Int

cons(e1,e2) : [[cons(e1,e2)]] = [[e2]] = list([[e1]])

car(e) : [[e]] = list([[car(e)]])

cdr(e) : [[cdr(e)]] = [[e]] = list(�)

nil : [[nil]] = list(�)

null(e) : [[null(e)]] = Bool; [[e]] = list(�)

if e1 then e2 else e3 � : [[if e1 then e2 else e3 �]] = [[e2]] = [[e3]]; [[e1]] = Bool

fun(x) e end : [[fun(x) e end]] = [[x]]! [[e]]

e1(e2) : [[e1]] = [[e2]]! [[e1(e2)]]

let f = e1 in e2 end : [[let f = e1 in e2 end]] = [[e2]]; [[f]] = [[e1]]

In the above, we assume that each � is a fresh variable distinct from all

others. We now know how to generate the constraints for any expression.

For example, the expression:

fun(g)

fun(x)

succ(g(x))

end

end

8

yields the following constraints.

[[fun(g) fun(x) succ(g(x)) end end]] = [[g]]! [[fun(x) succ(g(x)) end]]

[[fun(x) succ(g(x)) end]] = [[x]]! [[succ(g(x))]]

[[succ(g(x))]] = [[g(x)]] = Int

[[g]] = [[x]]! [[g(x)]]

Exercise 4.5 Explain the origin of each of the above constraints. 2

We are then left with the problem of solving these constraints. We must

assign to each type variable a type scheme such that all constraints are

satis�ed. Fortunately, this is exactly the well-known uni�cation problem.

It has an e�cient linear-time algorithm that even computes a solution

consisting of unique principal type schemes. The above example has the

following solution.

[[fun(g) fun(x) succ(g(x)) end end]] = ([[x]]! Int)! ([[x]]! Int)

[[fun(x) succ(g(x)) end]] = [[x]]! Int

[[succ(g(x))]] = Int

[[g(x)]] = Int

[[g]] = [[x]]! Int

[[x]] = [[x]]

Exercise 4.6 Verify that the above is indeed a solution. 2

We now present a simple algorithm for solving constraints. The constraint

system is given as xi = �i. The solution S is a function from type variables

to type schemes. We use the notation S(�) to indicate the type scheme

obtained from � by substituting every type variable with its value in S. If

� and � are type schemes, then �(�,�) is the set of two subtrees on which

they �rst di�er in a preorder traversal.

let S(xi) = xi;

while S is not a solution do

let fs,tg = �(S(xi),S(�i)), where S(xi)6=S(�i);

if s and t are both type constructors then fail �;

Assume s=xj;

if xj occurs in t then fail �;

let S(xi) = fxj 7! tg(S(xi))

end

9

This algorithm, which was presented by Robinson [10] in 1965, runs in

exponential time. The linear time algorithm is from 1978 by Paterson and

Wegman [9].

Exercise 4.7 Generate and solve the type constraints for the following

expression.

fun(x)

fun(y)

x((car(y))(x))

end

end

2

When an expression is untypable, then we obtain an unsolvable collection

of constraints. Consider the suspect expression: cons(succ(x),car(x)). It

generates these constraints.

[[cons(succ(x),car(x))]] = list([[succ(x)]])

[[car(x)]] = list([[succ(x)]])

[[x]] = list([[car(x)]])

[[succ(x)]] = Int

[[x]] = Int

Exercise 4.8 Argue that the above constraints are unsolvable. 2

5 Types and Logic

Earlier, the peculiar notation for type rules was blamed on their connection

with logic. For very pure type systems, this connection is known as the

Curry-Howard isomorphism. It is so famous that we shall frame it.

Types are formulas, and expressions are proofs.

The isomorphism between types and formulas is simply syntactic: Int and

Bool correspond to facts, and the type constructor ! corresponds to the

logical connective). The relationship between expressions and proofs is a

10

bit more subtle, but we only need to know its main consequence: a formula

is valid if and only if the corresponding type is not empty.

Furthermore, our type rules mirror exactly the inference rules from

logic. For example, there are two rules involving the function type:

A,x : � ` e : �

A ` fun(x) e end : � ! �

A ` e1 : � ! � ; A ` e2 : �

A ` e1(e2) : �

If we ignore the expressions and apply the isomorphism, then we immedi-

ately recognize two familiar rules from logic:

A,� ` �

A ` �) �

A ` �) � ; A ` �

A ` �

These are respectively deduction and modus ponens. For example, consider

the formula (A) B)) ((C) A)) (C) B)). Is this a tautology? Yes,

because the expression:

fun(x)

fun(y)

fun(z)

x(y(z))

end

end

end

has the principal type scheme (�! �)! ((
 ! �)! (
 ! �)).

Exercise 5.1 Why must a type scheme inferred for an expression neces-

sarily be a tautology? 2

Exercise 5.2 Complete the proof that (A)B)) ((C)A)) (C)B))

is a tautology. 2

In contrast, common sense tells us that the formula (A) B)) (B) A)

is not a tautology, which means that no expression has principal type

scheme (�! �)! (� ! �).

Exercise 5.3 Argue that no expression has the principal type scheme

(� ! �) ! (� ! �). Reconcile this with the fact that e.g. the expres-

sion:

11

fun(x)

fun(y)

0

end

end

has type (Int ! Bool) ! (Bool ! Int). 2

Notice that, from a logical perspective, type inference is a rather bizarre

activity: we have a proof and are looking for the corresponding formula.

Our tiny functional language so far excludes product and sum types.

Using the Curry-Howard isomorphism, we can easily �gure out how to

add them. The usual rules from logic for conjunction give us the rules for

products:

A ` e1 : �1; A ` e2 : �2
A ` pair(e1,e2) : �1 � �2

A ` e : �1 � �2

A ` fst(e) : �1; A ` snd(e) : �2

There are certainly no surprises here. Similarly, we have an isomorphism

between sums and disjunction:

A ` e1 : �1
A ` left(e1) : �1 + �2

A ` e2 : �2
A ` right(e2) : �1 + �2

A ` e : �1 + �2; A ` e1 : �1 ! �; A ` e2 : �2 ! �

A ` decide(e,e1,e2) : �

This should be rather familiar from a programming language point of view.

However, closer scrutiny reveals that we have obtained some unusual logi-

cal rules: a proof of a disjunction must necessarily disclose which disjunct

is being proved. This is not true for standard logic, which allows proofs

to be considerably more indirect. The somewhat weaker logic that corre-

sponds exactly to type theory is known as intuitionistic logic and has in

fact been proposed by logicians for purely philosophical reasons.

Exercise 5.4 What are the type inference constraints for these new ex-

pressions? 2

Exercise 5.5 Find a type whose translation into logic is a classical tau-

tology but which do not have any expressions and thus does not yield an

intuitionistic tautology. 2

It is harder to see how the type rules for lists resemble logic in any way. But

12

this is only because we have chosen the wrong operators. In the following

version we see clearly the logical origins of lists.

A ` e1 : � ; A ` e2 : list(�)

A ` cons(e1,e2) : list(�)

A ` base : �; A ` step : � � � ! �

A ` induct(base,step) : list(�)! �

Thus, lists are all about counting and induction. The induct operator is

vastly more general than car and cdr. For example, the length operator is

easily de�ned as: induct(0,fun(x) succ(fst(x)) end).

Exercise 5.6 Use induct to de�ne the operators car and cdr. 2

Still, the practical advantage of the connection between types and logic

is that we have a source of inspiration for missing type rules. Consider

a novel type constructor stream(�) which de�nes in�nite lists of � -values.

Such streams are in a certain formal sense the dual concept of lists. Cor-

respondingly, the dual concept of induction is called coinduction. Looking

up its de�nition, we magically get the following type rules for streams.

A ` base : �; A ` step : � ! � � �

A ` coinduct(base,step) : stream(�)

A ` e : stream(�)

A ` car(e) : � ; A ` cdr(e) : stream(�)

The coinduct operator constructs streams|not inductively, but coinduc-

tively. And we might as well use the term cocounting to describe the actions

of car and cdr.

Similar (co)induction principles are de�ned for arbitrary (monotone)

recursive types.

Exercise 5.7 Use coinduct to construct the stream (0,1,2,3,4,. . .). 2

Exercise 5.8 De�ne the type rules for �nite and in�nite binary trees. 2

6 Polymorphic Types

The expression below seems at a �rst glance quite reasonable, but it is not

typable. It is in fact an example of slack in our type system.

13

let f = fun(x)

cons(x,nil)

end

in pair(f(0),f(true))

The problem is of course that we must assign a single type to the function

f. We need instead the usual notion of polymorphism. For this purpose we

extend our type schemes as follows.

Types ::= Int j Bool j list(Types) j Types ! Types j Var

Var ::= � j � j . . .

Poly ::= 8 Var.Poly j Types

The polymorphic type 8�:�! list(�) describes a function that will accept

an argument of any type and yield as result a list of values of that given

type. This is exactly the type we want for the function f above. We will

only allow polymorphism in connection with let-de�nitions.

The use of a universal quanti�er hints at another connection with logic.

Indeed, the types rules for polymorphic functions are those from logic,

except that the layer of syntax is rather thicker this time.

A,f : � ` e1 : �; A,f : 8��:� ` e2 : �

A ` let f = e1 in e2 end : �
�� 62 A

A ` f : 8��:�

A ` f : �
� � �

Here �� indicates several type variables. The requirement �� 62 Ameans that

A must not contain any assumptions about ��. The requirement � � �

means that � is a specialization of �, as described in Section 4 (except

that only variables from �� may be substituted). This type system was

introduced by Milner [7] in 1978.

Exercise 6.1 What is the connection with logic? 2

Here is a formal derivation showing that the earlier example expression is

typable. Unfortunately it is so large that we must cut it into several pieces.

14

A
f:�!list(�) ` fun(x). . . end : �!list(�)

B
f:8�.�!list(�) ` pair(. . .) : list(Int)�list(Bool)

` let f = fun(x) cons(x,nil) end in pair(f(0),f(true)) : list(Int) � list(Bool)

The A -piece is concerned with typing the function f.

f : �!list(�), x : � ` x : � f : �!list(�), x : � ` nil : list(�)

f : �!list(�), x : � ` cons(x,nil) : list(�)

The B -piece is concerned with typing the pair-expression.

f : 8�.�!list(�) ` f : 8�.�!list(�)

f : 8�.�!list(�) ` f : Int!list(Int) f : 8�.�!list(�) ` 0:Int

f : 8�.�!list(�) ` f(0) : list(Int)
C

Exercise 6.2 Complete the C -piece and verify each step in the above

derivation. 2

Why is the requirement �� 62 A necessary? If we remove it, the function:

fun(x)

let f = x in f

end

can be shown to have type scheme � ! Int. This is manifestly false, since

the function acts as the identity. The purported derivation is as follows.

x : �, f : � ` x : �

x : �, f : 8�:� ` f : 8�:�

x : �, f : 8�:� ` f : Int

x : � ` let f = x in f : Int

` fun(x) let f = x in f end : � ! Int

Exercise 6.3 Catch the error in the above derivation. 2

Exercise 6.4 What is the corresponding logical fallacy? 2

15

7 Polymorphic Type Inference

The task of type inference seems to become vastly more complex with the

introduction of the polymorphic let-construct. However, there is certainly a

very na��ve idea that we can fall back on. Using a simple syntactic transfor-

mation that unfolds let-de�nitions, we can expand a polymorphic program

into an equivalent monomorphic version. For the expression:

let f = fun(x)

cons(x,nil)

end

in pair(f(0),f(true))

we obtain the equivalent version:

pair

0
BBBBBB@

let f = fun(x)

cons(x,nil)

end

in f(0)

;

let f = fun(x)

cons(x,nil)

end

in f(true)

1
CCCCCCA

which certainly is typable in the monomorphic type system. The only

disadvantage is that the expanded version of an expression may be expo-

nentially larger than the original.

Exercise 7.1 Find an example where a program of size O(n) expands to

one of size
(2n). 2

Exercise 7.2 Argue that the expanded version is typable in the monomor-

phic system if and only if the original version is typable in the polymorphic

system. 2

Can we do better than this exponential algorithm? An obvious idea is to

use a form of dynamic programming where the principal type schemes of

let-de�nitions are saved, so that they need only be computed once. This is

essentially the Damas-Milner [1] algorithm from 1982 which is implemented

in the ML system. For almost ten years it was folklore that this algorithm

had low polynomial time complexity. This also corresponded well with the

practical experiences of ML programmers.

This belief was thorougly shattered when Kfoury, Tiuryn, and Urzyczyn

[4] and Mairson [6] in 1989 simultaneously proved that the polymorphic

type inference problem is complete for exponential time. This means that

any correct implementation must use an exponential amount of time on

16

in�nitely many inputs. His proof is an awesome construction of an ML

program that directly simulates a given deterministic Turing machine run-

ning in exponential time, and where typability of the program coincides

with acceptance by the machine. PSPACE-hardness alone was proved by

Kanellakis and Mitchell [3] earlier in 1989.

In spite of this nasty result, implementations of the ML language seem

to be running very well in everyday life. But danger lurks beneath the

surface. As a concrete example, regard the following ML program.

fun pair x y = fn z => z x y;

let val x1=fn y => pair y y in

let val x2=fn y => x1(x1(y)) in

let val x3=fn y => x2(x2(y)) in

let val x4=fn y => x3(x3(y)) in

x4(fn z=>z)

end

end

end

end;

Its principal type scheme is:

(((((((((((((((('a -> 'a) -> ('a -> 'a) -> 'b) -> 'b) -> ((('a -> 'a) ->

('a -> 'a) -> 'b) -> 'b) -> 'c) -> 'c) -> ((((('a -> 'a) -> ('a -> 'a)

-> 'b) -> 'b) -> ((('a -> 'a) -> ('a -> 'a) -> 'b) -> 'b) -> 'c) -> 'c)

-> 'd) -> 'd) -> ((((((('a -> 'a) -> ('a -> 'a) -> 'b) -> 'b) -> ((('a

-> 'a) -> ('a -> 'a) -> 'b) -> 'b) -> 'c) -> 'c) -> ((((('a -> 'a) ->

('a -> 'a) -> 'b) -> 'b) -> ((('a -> 'a) -> ('a -> 'a) -> 'b) -> 'b) ->

'c) -> 'c) -> 'd) -> 'd) -> 'e) -> 'e) -> ((((((((('a -> 'a) -> ('a ->

'a) -> 'b) -> 'b) -> ((('a -> 'a) -> ('a -> 'a) -> 'b) -> 'b) -> 'c) ->

'c) -> ((((('a -> 'a) -> ('a -> 'a) -> 'b) -> 'b) -> ((('a -> 'a) -> ('a

-> 'a) -> 'b) -> 'b) -> 'c) -> 'c) -> 'd) -> 'd) -> ((((((('a -> 'a) ->

('a -> 'a) -> 'b) -> 'b) -> ((('a -> 'a) -> ('a -> 'a) -> 'b) -> 'b) ->

'c) -> 'c) -> ((((('a -> 'a) -> ('a -> 'a) -> 'b) -> 'b) -> ((('a -> 'a)

-> ('a -> 'a) -> 'b) -> 'b) -> 'c) -> 'c) -> 'd) -> 'd) -> 'e) -> 'e) ->

'f) -> 'f) -> ((((((((((('a -> 'a) -> ('a -> 'a) -> 'b) -> 'b) -> ((('a

-> 'a) -> ('a -> 'a) -> 'b) -> 'b) -> 'c) -> 'c) -> ((((('a -> 'a) ->

('a -> 'a) -> 'b) -> 'b) -> ((('a -> 'a) -> ('a -> 'a) -> 'b) -> 'b) ->

'c) -> 'c) -> 'd) -> 'd) -> ((((((('a -> 'a) -> ('a -> 'a) -> 'b) -> 'b)

-> ((('a -> 'a) -> ('a -> 'a) -> 'b) -> 'b) -> 'c) -> 'c) -> ((((('a ->

'a) -> ('a -> 'a) -> 'b) -> 'b) -> ((('a -> 'a) -> ('a -> 'a) -> 'b) ->

'b) -> 'c) -> 'c) -> 'd) -> 'd) -> 'e) -> 'e) -> ((((((((('a -> 'a) ->

('a -> 'a) -> 'b) -> 'b) -> ((('a -> 'a) -> ('a -> 'a) -> 'b) -> 'b) ->

17

'c) -> 'c) -> ((((('a -> 'a) -> ('a -> 'a) -> 'b) -> 'b) -> ((('a -> 'a)

-> ('a -> 'a) -> 'b) -> 'b) -> 'c) -> 'c) -> 'd) -> 'd) -> ((((((('a ->

'a) -> ('a -> 'a) -> 'b) -> 'b) -> ((('a -> 'a) -> ('a -> 'a) -> 'b) ->

'b) -> 'c) -> 'c) -> ((((('a -> 'a) -> ('a -> 'a) -> 'b) -> 'b) -> ((('a

-> 'a) -> ('a -> 'a) -> 'b) -> 'b) -> 'c) -> 'c) -> 'd) -> 'd) -> 'e) ->

'e) -> 'f) -> 'f) -> 'g) -> 'g) -> ((((((((((((('a -> 'a) -> ('a -> 'a)

-> 'b) -> 'b) -> ((('a -> 'a) -> ('a -> 'a) -> 'b) -> 'b) -> 'c) -> 'c)

-> ((((('a -> 'a) -> ('a -> 'a) -> 'b) -> 'b) -> ((('a -> 'a) -> ('a ->

'a) -> 'b) -> 'b) -> 'c) -> 'c) -> 'd) -> 'd) -> ((((((('a -> 'a) -> ('a

-> 'a) -> 'b) -> 'b) -> ((('a -> 'a) -> ('a -> 'a) -> 'b) -> 'b) -> 'c)

-> 'c) -> ((((('a -> 'a) -> ('a -> 'a) -> 'b) -> 'b) -> ((('a -> 'a) ->

('a -> 'a) -> 'b) -> 'b) -> 'c) -> 'c) -> 'd) -> 'd) -> 'e) -> 'e) ->

((((((((('a -> 'a) -> ('a -> 'a) -> 'b) -> 'b) -> ((('a -> 'a) -> ('a ->

'a) -> 'b) -> 'b) -> 'c) -> 'c) -> ((((('a -> 'a) -> ('a -> 'a) -> 'b)

-> 'b) -> ((('a -> 'a) -> ('a -> 'a) -> 'b) -> 'b) -> 'c) -> 'c) -> 'd)

-> 'd) -> ((((((('a -> 'a) -> ('a -> 'a) -> 'b) -> 'b) -> ((('a -> 'a)

-> ('a -> 'a) -> 'b) -> 'b) -> 'c) -> 'c) -> ((((('a -> 'a) -> ('a ->

'a) -> 'b) -> 'b) -> ((('a -> 'a) -> ('a -> 'a) -> 'b) -> 'b) -> 'c) ->

'c) -> 'd) -> 'd) -> 'e) -> 'e) -> 'f) -> 'f) -> ((((((((((('a -> 'a) ->

('a -> 'a) -> 'b) -> 'b) -> ((('a -> 'a) -> ('a -> 'a) -> 'b) -> 'b) ->

'c) -> 'c) -> ((((('a -> 'a) -> ('a -> 'a) -> 'b) -> 'b) -> ((('a -> 'a)

-> ('a -> 'a) -> 'b) -> 'b) -> 'c) -> 'c) -> 'd) -> 'd) -> ((((((('a ->

'a) -> ('a -> 'a) -> 'b) -> 'b) -> ((('a -> 'a) -> ('a -> 'a) -> 'b) ->

'b) -> 'c) -> 'c) -> ((((('a -> 'a) -> ('a -> 'a) -> 'b) -> 'b) -> ((('a

-> 'a) -> ('a -> 'a) -> 'b) -> 'b) -> 'c) -> 'c) -> 'd) -> 'd) -> 'e) ->

'e) -> ((((((((('a -> 'a) -> ('a -> 'a) -> 'b) -> 'b) -> ((('a -> 'a) ->

('a -> 'a) -> 'b) -> 'b) -> 'c) -> 'c) -> ((((('a -> 'a) -> ('a -> 'a)

-> 'b) -> 'b) -> ((('a -> 'a) -> ('a -> 'a) -> 'b) -> 'b) -> 'c) -> 'c)

-> 'd) -> 'd) -> ((((((('a -> 'a) -> ('a -> 'a) -> 'b) -> 'b) -> ((('a

-> 'a) -> ('a -> 'a) -> 'b) -> 'b) -> 'c) -> 'c) -> ((((('a -> 'a) ->

('a -> 'a) -> 'b) -> 'b) -> ((('a -> 'a) -> ('a -> 'a) -> 'b) -> 'b) ->

'c) -> 'c) -> 'd) -> 'd) -> 'e) -> 'e) -> 'f) -> 'f) -> 'g) -> 'g) ->

'h) -> 'h) -> ((((((((((((((('a -> 'a) -> ('a -> 'a) -> 'b) -> 'b) ->

((('a -> 'a) -> ('a -> 'a) -> 'b) -> 'b) -> 'c) -> 'c) -> ((((('a -> 'a)

-> ('a -> 'a) -> 'b) -> 'b) -> ((('a -> 'a) -> ('a -> 'a) -> 'b) -> 'b)

-> 'c) -> 'c) -> 'd) -> 'd) -> ((((((('a -> 'a) -> ('a -> 'a) -> 'b) ->

'b) -> ((('a -> 'a) -> ('a -> 'a) -> 'b) -> 'b) -> 'c) -> 'c) -> ((((('a

-> 'a) -> ('a -> 'a) -> 'b) -> 'b) -> ((('a -> 'a) -> ('a -> 'a) -> 'b)

-> 'b) -> 'c) -> 'c) -> 'd) -> 'd) -> 'e) -> 'e) -> ((((((((('a -> 'a)

-> ('a -> 'a) -> 'b) -> 'b) -> ((('a -> 'a) -> ('a -> 'a) -> 'b) -> 'b)

-> 'c) -> 'c) -> ((((('a -> 'a) -> ('a -> 'a) -> 'b) -> 'b) -> ((('a ->

'a) -> ('a -> 'a) -> 'b) -> 'b) -> 'c) -> 'c) -> 'd) -> 'd) -> ((((((('a

-> 'a) -> ('a -> 'a) -> 'b) -> 'b) -> ((('a -> 'a) -> ('a -> 'a) -> 'b)

-> 'b) -> 'c) -> 'c) -> ((((('a -> 'a) -> ('a -> 'a) -> 'b) -> 'b) ->

((('a -> 'a) -> ('a -> 'a) -> 'b) -> 'b) -> 'c) -> 'c) -> 'd) -> 'd) ->

18

'e) -> 'e) -> 'f) -> 'f) -> ((((((((((('a -> 'a) -> ('a -> 'a) -> 'b) ->

'b) -> ((('a -> 'a) -> ('a -> 'a) -> 'b) -> 'b) -> 'c) -> 'c) -> ((((('a

-> 'a) -> ('a -> 'a) -> 'b) -> 'b) -> ((('a -> 'a) -> ('a -> 'a) -> 'b)

-> 'b) -> 'c) -> 'c) -> 'd) -> 'd) -> ((((((('a -> 'a) -> ('a -> 'a) ->

'b) -> 'b) -> ((('a -> 'a) -> ('a -> 'a) -> 'b) -> 'b) -> 'c) -> 'c) ->

((((('a -> 'a) -> ('a -> 'a) -> 'b) -> 'b) -> ((('a -> 'a) -> ('a -> 'a)

-> 'b) -> 'b) -> 'c) -> 'c) -> 'd) -> 'd) -> 'e) -> 'e) -> ((((((((('a

-> 'a) -> ('a -> 'a) -> 'b) -> 'b) -> ((('a -> 'a) -> ('a -> 'a) -> 'b)

-> 'b) -> 'c) -> 'c) -> ((((('a -> 'a) -> ('a -> 'a) -> 'b) -> 'b) ->

((('a -> 'a) -> ('a -> 'a) -> 'b) -> 'b) -> 'c) -> 'c) -> 'd) -> 'd) ->

((((((('a -> 'a) -> ('a -> 'a) -> 'b) -> 'b) -> ((('a -> 'a) -> ('a ->

'a) -> 'b) -> 'b) -> 'c) -> 'c) -> ((((('a -> 'a) -> ('a -> 'a) -> 'b)

-> 'b) -> ((('a -> 'a) -> ('a -> 'a) -> 'b) -> 'b) -> 'c) -> 'c) -> 'd)

-> 'd) -> 'e) -> 'e) -> 'f) -> 'f) -> 'g) -> 'g) -> ((((((((((((('a ->

'a) -> ('a -> 'a) -> 'b) -> 'b) -> ((('a -> 'a) -> ('a -> 'a) -> 'b) ->

'b) -> 'c) -> 'c) -> ((((('a -> 'a) -> ('a -> 'a) -> 'b) -> 'b) -> ((('a

-> 'a) -> ('a -> 'a) -> 'b) -> 'b) -> 'c) -> 'c) -> 'd) -> 'd) ->

((((((('a -> 'a) -> ('a -> 'a) -> 'b) -> 'b) -> ((('a -> 'a) -> ('a ->

'a) -> 'b) -> 'b) -> 'c) -> 'c) -> ((((('a -> 'a) -> ('a -> 'a) -> 'b)

-> 'b) -> ((('a -> 'a) -> ('a -> 'a) -> 'b) -> 'b) -> 'c) -> 'c) -> 'd)

-> 'd) -> 'e) -> 'e) -> ((((((((('a -> 'a) -> ('a -> 'a) -> 'b) -> 'b)

-> ((('a -> 'a) -> ('a -> 'a) -> 'b) -> 'b) -> 'c) -> 'c) -> ((((('a ->

'a) -> ('a -> 'a) -> 'b) -> 'b) -> ((('a -> 'a) -> ('a -> 'a) -> 'b) ->

'b) -> 'c) -> 'c) -> 'd) -> 'd) -> ((((((('a -> 'a) -> ('a -> 'a) -> 'b)

-> 'b) -> ((('a -> 'a) -> ('a -> 'a) -> 'b) -> 'b) -> 'c) -> 'c) ->

((((('a -> 'a) -> ('a -> 'a) -> 'b) -> 'b) -> ((('a -> 'a) -> ('a -> 'a)

-> 'b) -> 'b) -> 'c) -> 'c) -> 'd) -> 'd) -> 'e) -> 'e) -> 'f) -> 'f) ->

((((((((((('a -> 'a) -> ('a -> 'a) -> 'b) -> 'b) -> ((('a -> 'a) -> ('a

-> 'a) -> 'b) -> 'b) -> 'c) -> 'c) -> ((((('a -> 'a) -> ('a -> 'a) ->

'b) -> 'b) -> ((('a -> 'a) -> ('a -> 'a) -> 'b) -> 'b) -> 'c) -> 'c) ->

'd) -> 'd) -> ((((((('a -> 'a) -> ('a -> 'a) -> 'b) -> 'b) -> ((('a ->

'a) -> ('a -> 'a) -> 'b) -> 'b) -> 'c) -> 'c) -> ((((('a -> 'a) -> ('a

-> 'a) -> 'b) -> 'b) -> ((('a -> 'a) -> ('a -> 'a) -> 'b) -> 'b) -> 'c)

-> 'c) -> 'd) -> 'd) -> 'e) -> 'e) -> ((((((((('a -> 'a) -> ('a -> 'a)

-> 'b) -> 'b) -> ((('a -> 'a) -> ('a -> 'a) -> 'b) -> 'b) -> 'c) -> 'c)

-> ((((('a -> 'a) -> ('a -> 'a) -> 'b) -> 'b) -> ((('a -> 'a) -> ('a ->

'a) -> 'b) -> 'b) -> 'c) -> 'c) -> 'd) -> 'd) -> ((((((('a -> 'a) -> ('a

-> 'a) -> 'b) -> 'b) -> ((('a -> 'a) -> ('a -> 'a) -> 'b) -> 'b) -> 'c)

-> 'c) -> ((((('a -> 'a) -> ('a -> 'a) -> 'b) -> 'b) -> ((('a -> 'a) ->

('a -> 'a) -> 'b) -> 'b) -> 'c) -> 'c) -> 'd) -> 'd) -> 'e) -> 'e) ->

'f) -> 'f) -> 'g) -> 'g) -> 'h) -> 'h) -> 'i) -> 'i

Note that by the analogy described in Section 5, the above is a gigantic

tautology in propositional logic.

19

8 Polymorphism and Recursion

We have only allowed polymorphism in let-de�nitions, and even there we

have some limitations. For example, the following reasonable expression is

not typable|we have some slack in the polymorphic type system.

let f = fun(i)

fun(x)

if iszero(i) then x

else f(pred(i))(pair(x,x))

�

end

end

in f(87)(true)

Exercise 8.1 Argue that the above expression is not typable in the poly-

morphic system. 2

Exercise 8.2 What is the result of the above expression? 2

There are also less contrived examples showing that this restriction is a

practical nuisance. The general problem is that a function is only poly-

morphic from the outside, so to speak. However, this can be remedied by

a minor change in our type rule.

A,f : 8��:� ` e1 : �; A,f : 8��:� ` e2 : �

A ` let f = e1 in e2 end : �
�� 62 A

Exercise 8.3 What has been changed in the type rule? 2

This is the Milner-Mycroft [8] type system from 1984. A corresponding

type inference algorithm must necessarily be more obscure than the earlier

one, since the na��ve expansion of let-de�nitions may now yield in�nite

monomorphic versions. Yet, implementations did exist for versions of the

ML language. Thus it caused some concern when Henglein [2] and Kfoury,

Tiuryn, and Urzyczyn [5] in 1990 simultaneously proved that the type

inference problem is in fact undecidable.

The problem seems to obey the laws of cartoon physics, since people

were perfectly happy with the proposed implementations before the unde-

cidability was known. The reason is that the semi-algorithm terminates for

20

all typable expressions and only fails to terminate for a very small fraction

of untypable expressions.

9 Higher Type Systems

By no means does the development of type systems stop here. There are

at least three good reasons to push on.

Firstly, there is always more slack to pick up. Many interesting type

rules have been motivated by annoying examples of unfairly rejected ex-

pressions. One example is the conjunctive type written ` e : � ^ � , which

means that e simultaneously has types � and � .

Exercise 9.1 Suggest rules for conjunctive types. How do they di�er from

products? 2

Polymorphism may also be included as an orthogonal feature in the type

system. Thus types may look like: 8�:� ! (8�:� ! � ! �) ! � This

is the system F2 studied by Girard and Reynolds. Such extensions are

naturally beyond the reach of type inference.

Exercise 9.2 Suggest an expression that could have the polymorphic type

8�:�! (8�:� ! � ! �)! �. 2

Secondly, we might stray from a purely functional language. Many e�orts

have been directed towards incorporating non-functional features into ML-

style type systems. For example, the mixture of polymorphism and pointers

is very complicated and often requires subtle type rules.

Exercise 9.3 What is wrong with these simple rules for pointers (assume

the obvious semantics for the expressions)?

A ` e : �

A ` ref(e) : pointer(�)

A ` e: pointer(�)

A ` deref(e) : �

A ` x : pointer(�); A ` e : pointer(�)

A ` x:=e : pointer(�)

2

Thirdly, it is possible to have types that capture more of the semantics

of expressions. This is done by emphasizing the logical connection and

building type systems so rich that one can de�ne e.g. a type whose values

are just the sorting functions on integer lists. At this point type checking

21

is equivalent to program veri�cation and, hence, undecidable. This means

that each programmust include a hand-written but compiler-checked proof

of its type-correctness.

References

[1] Luis Damas and Robin Milner. Principal type schemes for functional

programming. In 9th Symposium on Principles of Programming Lan-

guages, 1982.

[2] F. Henglein. Type inference with polymorphic recursion. ACM Trans-

actions on Programming Languages and Systems, 15, 1993.

[3] P. Kanellakis and J. Mitchell. Polymorphic uni�cation and ML typing.

In 16th Symposium on Principles of Programming Languages. ACM

Press, January 1989.

[4] A. J. Kfoury, J. Tiuryn, and P. Urzyczyn. Ml typability is

DEXPTIME-complete. In 15th Colloquium on Trees in Algebra and

Programming. Springer-Verlag, May 1990.

[5] A. J. Kfoury, J. Tiuryn, and P. Urzyczyn. Type reconstruction in the

presence of polymorphic recursion. ACM Transactions on Program-

ming Languages and Systems, 15, 1993.

[6] Harry G. Mairson. Decidability of ML typing is complete for de-

terministic exponential time. In 17th Symposium on Principles of

Programming Languages. ACM Press, January 1990.

[7] Robin Milner. A theory of type polymorphism in programming. Jour-

nal of Computer and System Sciences, 17, 1978.

[8] A. Mycroft. Polymorphic type schemes and recursive de�nitions. In

6th International Conference on Programming. Springer-Verlag, 1984.

[9] M. S. Paterson and M. N. Wegman. Linear uni�cation. Journal of

Computer and System Sciences, 16, 1978.

[10] J. A. Robinson. A machine-oriented logic based on the resolution

principle. Journal of the ACM, 12, 1965.

[11] M. Wand. A simple algorithm and proof for type inference. Funda-

mentae Informaticae, X, 1987.

22

10 Problems

Problem 10.1 Give a formal derivation showing that the expression:

let Double = fun(x)

if iszero(x) then 0

else succ(succ(Double(pred(x))))

�

end

in Double(succ(0))

has type Int.

Problem 10.2 Infer the principal type scheme for this expression:

fun(x)

fun(y)

cons(car(x),y(true))

end

end

Problem 10.3 List all constant expressions having these polymorphic

types.
8�:�

8�:list(�)

8�:�! �! �

8�:8�:(�! �)! (�! �)! �! �

Problem 10.4 Oyster of the week. Here are the rules for the existential

quanti�er in logic.

A ` �[� �]

A ` 9�:�

A ` 9�:�; A,� ` �

A ` �
� 62 A;� 62 �

The notation �[� �] means � with all occurrences of � substituted

with � . Explain the logical content of these rules. Introduce an existential

quanti�er into our type system, along with a reasonable set of expressions,

and recognize an important concept from programming languages.

23

A Selection of Solutions

Exercise 3.1 It allows the type checker to perform lookups in the symbol

table. 2

Exercise 3.2 In the judgment for the expression being let-de�ned, we

include f in the symbol table: A,f : � ` e1 : �. 2

Exercise 4.1 It is a relation that is re
exive and transitive, but fails to

be anti-symmetric, e.g. � � � and � � � but � 6= �. 2

Exercise 4.2

� � f�; �; �! �; �! �; (�! �)! list(�)g

� � f�; �; �! �; �! �; (�! �)! list(�)g

�! � � f�! �; �! �; (�! �)! list(�)g

2

Exercise 4.3 Simply compose the substitutions. 2

Exercise 4.4 Two subexpressions with identical syntax may yield di�erent

type variables, such as e.g. [[nil]]. However, from the context of each type

constraint it is clear to which subexpression a type variable corresponds.

2

Exercise 4.8 The two constraints [[x]] = Int and [[x]] = list([[car(x)]]) are

contradictory. 2

Exercise 5.1 The rules for inferring types correspond to valid inference

rules of logic. 2

Exercise 5.3 A function with type scheme (�! �)! (� ! �) must look

like:

fun(x)

fun(y)

e

end

end

where e has type �. An exhaustive search through the type rules convinces

us that we cannot �nd such an expression. The fact that an expression has

type (Int ! Bool) ! (Bool ! Int) is not a problem, since this is merely

one instance of the type scheme. 2

24

Exercise 5.4

pair(e1,e2) : [[pair(e1,e2)]] = [[e1]]� [[e2]]

fst(e) : [[e]] = [[fst(e)]]� �

snd(e) : [[e]] = � � [[snd(e)]]

left(e1) : [[left(e1)]] = [[e1]] + �

right(e2) : [[right(e2)]] = � + [[e2]]

decide(e,e1,e2) : [[ei]] = [[e]]! [[decide(e,e1,e2)]]

[[e]] = � + �

[[e1]] = �! [[decide(e,e1,e2)]]

[[e2]] = � ! [[decide(e,e1,e2)]]

2

Exercise 5.5 The formula ((A) B)) A)) A is a classical tautology

but translates into an empty type. 2

Exercise 5.6 We can only solve this problem, if we allow an expression

error that generates a run-time error. Then we have

car = induct(error,fun(x) snd(x) end)

cdr = induct(error,fun(x) fst(x) end)

2

Exercise 5.7 (0,1,2,3,4,. . .) = coinduct(0,fun(x) pair(succ(x),x) end. 2

Exercise 5.8 Let �nbin(�) be the type of �nite binary trees with � -values

at all nodes. We then have:

A ` e : � ; A ` e1 : �nbin(�); A ` e2 : �nbin(�)

A ` bin(e,e1,e2) : �nbin(�)

A ` base : �; step : � � � � � ! �

A ` induct(base,step) : �nbin(�) ! �

Let infbin(�) be the type of in�nite binary trees with � -values at all nodes.

We then have:

A ` base : �; step : � ! � � � � �

A ` coinduct(base,step) : infbin(�)

A ` e : infbin(�)

A ` root(e) : � ; A ` leftson(e) : infbin(�); A ` rightson(e) : infbin(�)

2

25

Exercise 6.1 The logical rules for universal quanti�cation are:

A ` �

A ` 8�:�
� 62 A

A ` 8�:�

A ` �[� �]

2

Exercise 6.3 It is not legal to make f polymorphic in � since we have the

assumption x : �. 2

Exercise 7.1 The ML program on page 17 is like this (with n = 4). 2

Exercise 7.2 In both approaches we are allowed to choose fresh type

variables for the types of the let-de�ned expressions. 2

Exercise 8.1 The type variable [[x]] must satisfy [[x]] = [[x]]� [[x]], which is

not possible. 2

Exercise 8.2 It computes a complete binary tree of height 87 with the

value true at each leaf. 2

Exercise 8.3 We have universally quanti�ed the type of f in the judgment

of e1. 2

Exercise 9.3 The type rules allow the typing of bad expressions, such as:

let r = ref(fun(x) x end)

in

let x = r:=ref(fun(x) succ(x) end)

in

deref(r)(true)

This is type correct, since r is given type 8�:pointer(�! �) and thus can

be instantiated to both pointer(Int!Int) and pointer(Bool!Bool). How-

ever, its computation leads to succ(true). 2

Problem 10.3 There are no constant expressions of type 8�:�; for 8�:list(�)

there is only nil; for 8�:� ! � ! � we have two functions: fun(x) fun(y)

x end end and fun(x) fun(y) y end end; �nally, for 8�:8�:(� ! �)! (� !

�)! �! � there are in�nitely many functions of the form: fun(f) fun(g)

fun(x) f(gi(x)) end end end for i > 0. 2

26

Problem 10.4 If we can prove � with any speci�c value � in place of the

variable �, then � is a witness to the truth of 9�:�. Conversely, if this

existential quanti�cation holds and we can prove � using � but without

any assumptions on �, then we can conclude � .

This corresponds to abstract data types, where the implementation

type is hidden. We only need to know that is exists! The type rules are as

follows:

A ` e : �[� �]

A ` abs(e) : 9�:�

A ` e1 : 9�:�; A,x : � ` e2 : �

A ` use x = e1 in e2 : �
� 62 A;� 62 �

The side conditions exactly state that the implementation type is hidden

during use. The type of an abstract implementation of a stack of booleans

could be:

9�:(Int! �)� (�! Bool)� (�� Bool! �)� (�! �� Bool)

corresponding to the stack operations Init, Empty, Push, and Pop. In a

concrete implementation the hidden type � could be list(Bool).

A polymorphic, abstract stack would then have the type:

8�:9�:(Int! �)� (�! Bool)� (� � � ! �)� (�! � � �)

2

27

