
Journal of Web Engineering, Vol. ?, No. ? (200?) ???–???
c© Rinton Press

CONTRACTS FOR COOPERATION BETWEEN

WEB SERVICE PROGRAMMERS AND HTML DESIGNERS

Henning Böttger, Anders Møllera, and Michael I. Schwartzbach

BRICSb, Department of Computer Science

University of Aarhus, Denmark

Interactive Web services consist of a mixture of HTML fragments and program code. The
fragments, which are maintained by designers, are combined to form HTML pages that
are shown to the clients. The code, which is maintained by programmers, is executed on
the server to handle the business logic. Current Web service frameworks provide little
help in separating these constituents, which complicates cooperation between program-
mers and HTML designers.

We propose a system based on XML templates and formalized contracts allowing a
flexible separation of concerns. The contracts act as interfaces between the programmers
and the HTML designers and permit tool support for statically checking that both parties
fulfill their obligations. This ensures that (1) programmers and HTML designers work
more independently focusing on their own expertises, (2) the Web service implementation
is better structured and thus easier to develop and maintain, (3) it is guaranteed that
only valid HTML is sent to the clients even though it is constructed dynamically, (4) the
programmer uses the XML templates consistently, and (5) the form input fields being
sent to the client always match the code receiving those values. Additionally, we describe
tools that aid in the construction and management of contracts and XML templates.

Keywords: Interactive Web services, HTML, XML templates, static analysis

1 Introduction

An interactive Web service contains both HTML markup and program code. Ideally, these

two constituents are maintained by different experts: HTML designers and programmers.

This would be a relatively simple task if the HTML pages shown to clients could be statically

defined and kept separate from the code. However, most pages are dynamically generated

and are typically composed of HTML fragments.

Consider for example a Webboard showing a list of current discussion threads. The length

and depth of these are not known before runtime, but the entire HTML page is built from

fragments that could be called Wrapper (containing the outermost html, head, and body

elements), Header (for the page header), Footer (with, for example, the email address of the

Web master), ThreadTitle (with the title of the current discussion thread and buttons for

posting new messages etc.), and ThreadItem (containing the information related to a single

posting). Other parts of the page could depend of the preferences of the current client and

aAnders Møller is the corresponding author (email: amoeller@brics.dk). He is supported by the Carlsberg
Foundation contract number ANS-1507/20.
bThis work is supported by Basic Research in Computer Science (www.brics.dk), funded by the Danish
National Research Foundation.

1

2 Contracts for Cooperation between Web Service Programmers and HTML Designers

be composed of MenuHeader, MenuItem, and so on, containing relevant links, form fields, and

buttons. If the Webboard allows clients to choose among different layouts that go beyond

the capabilities of CSS stylesheets [5], then each of the above fragments must even exist in

several versions.

Consequently, these HTML fragments are intertwined with the code. In a simple approach

using plain Servlets [27] or JSP [28], this means that the lines of the source file are alternating

Java code and HTML markup and, clearly, it is difficult to develop and maintain such a hybrid

document. In typical scenarios, the programmer and the HTML designer fight for control

across a spectrum of possible collaborations:

• the designer presents the desired layout as a series of graphical snapshot, which the

programmer tries to emulate;

• the programmer ends up designing the pages, with general guidelines from the designer;

or

• the programmer and designer work together in a form of extreme programming [4].

None of these models allow the programmers and designers to work independently of each

other. Hence, various techniques may be considered to decouple these activities.

In the Java world, it is possible to introduce custom tag libraries [24] containing all the

detailed HTML markup. The programmer would then use abstract markup tags such as

<Wrapper>, <Header> and <Footer>, whose actual contents may reside in separate files and be

independently determined by the designer. With such an approach, however, the decoupling

has become too complete and several new problems appear:

• since the designer does not know the flow of control, the concrete HTML fragments may

not fit together;

• the designer may inadvertently change the markup such that required form fields dis-

appear; and

• it is near impossible to determine at compile time if the service always generates syn-

tactically valid HTML pages.

Yet another approach is that the programs dynamically generate XML documents in some

intermediate XML language, and the designer then uses XSLT [11] to translate into HTML.

In contrast to our approach, this requires agreement on the intermediate XML language,

it requires programming skills of the designer, and there presently exist no techniques for

statically validating XSLT output.

We propose a solution that introduces a notion of contracts between programmers and

designers. This supports the principle of low coupling by allowing the two parties to work

independently of each other [18]. Intuitively, a contract defines the shapes of a collection of

jigsaw puzzle pieces. Independently of each other, the programmer may build pages from

copies of these pieces and the designer may decorate them with HTML markup.

Note that the the designer and the programmer correspond to two different roles in the

development process. In one extreme, the designer and the programmer is the same person,

in which case the contract mainly serves to make the design explicit and to ensure decoupling

in the implementation. In the other extreme, the designer has no programming skills at all,

Böttger, Møller, and Schwartzbach 3

in which case the contract serves to make explicit the degrees of freedom that the designer

can be allowed while preserving the integrity of the implementation.

In this presentation, we use HTML [23] and XHTML [22], the XML [7] variant of HTML,

interchangeably. The readers are presumably most familiar with HTML; the tools and tech-

niques we present use XHTML, but it is straightforward to convert in either direction. Al-

though HTML/XHTML is by far the most widely used document language for interactive Web

services, the main ideas of our techniques also apply to other languages, such as WML [30],

the markup language for WAP phones.

Contributions

The contributions of this paper are the following:

• A convenient formal language for specifying contracts between programmers and de-

signers;

• tool support for independently checking that both parties fulfill their obligations, which

implies that certain potential runtime errors related to the cooperation are detected at

compile time;

• tool support for automatically inferring a contract from a Web service, which is useful

as a starting point for applying our techniques on preexisting Web services;

• tool support for managing XHTML templates for the designer; and

• preliminary experiments indicating that the approach is practically useful in aiding the

cooperation between programmers and designers and thereby increasing their produc-

tivity.

We work in the context of the JWIG system, which is a Java-based language for developing

interactive Web services [9, 8]. JWIG has two special features: (1) a higher-order template

mechanism for XHTML page construction; and (2) static guarantees of validity of the dy-

namically generated pages and consistency of the use of form input fields, and of the control

flow through sessions of interactions. A central advantage of developing XHTML pages dy-

namically using the template-based approach is that—even without applying the contract

mechanism introduced in this article—the program code tends to be more well-structured

and maintainable than with other approaches. The static guarantees are provided using a

data-flow analysis that models the manipulation of XML values in the program. JWIG is

described in detail in the article [9] and the user manual [8].

The template mechanism can be incorporated into other frameworks, such as Servlets,

for example using the Xact system [15], which is a stand-alone Java package extending

the template mechanism from JWIG to cover general XML transformations. This makes it

possible to transfer the main contributions of the present article to other settings.

Overview

We first, in Section 2, discuss related work on the concepts of separation of concerns and

component-based Web application development, arguing that existing technologies are insuf-

ficient. Section 3 gives an overview of the XML template mechanism in JWIG. In Section 4,

we define our contract language and show examples of its use and the benefits it provides.

4 Contracts for Cooperation between Web Service Programmers and HTML Designers

Section 5 explains how to check automatically that both the programmer and the designer

fulfill a given contract. Section 6 describes how other tools can help developing and maintain-

ing Web services using contracts. Section 7 describes our implementation and preliminary

experiments indicating that our approach successfully allows collaboration and separation of

concerns. Section 8 contains our conclusions.

2 Related Work

There exist numerous technologies and methodologies for developing Web services; we will

focus on the most relevant ones that are also based on Java. A common theme is separation of

concerns : Web sites contain program code that interacts with the clients, accesses database

contents, controls sessions of interactions, and builds HTML pages from small HTML frag-

ments and the actual contents. By identifying the different components, different people

may focus on developing and maintaining different aspects of the site, which can increase

productivity and the stability of the site.

Model2 [25] is a variant of the model-view-controller (MVC) design pattern [16] tailored for

structuring Java-based Web applications. A controller Servlet [27] receives an HTTP request,

updates the model, which represents the underlying data, and then invokes the appropriate

view renderer, a JSP page [28] that produces the HTML page being sent back to the client.

In this paper, our main distinction is between the programming tasks and the designer tasks,

rather than the considering the individual programming tasks.

The Apache community is developing a number of popular projects that are related to ours.

Apache Struts [19] is a framework for building Web applications with Java based on a further

development of the MVC/Model2 approach, providing a generic controller component that can

be configured declaratively. The Tiles extension of Struts is a template mechanism reminiscent

of the one in JWIG, but without the static guarantees of validity of the dynamically generated

pages and consistency of the use of form fields.

Apache Cocoon is an XML-based development framework using a model of pipelined

components. It is “built around the concepts of separation of concerns (making sure people can

interact and collaborate on a project, without stepping on each other toes) and component-

based Web development” [3]. It considers four areas of concern: management, logic, content,

and style. Again, we focus on programming and design, roughly corresponding to logic and

style, respectively.

Apache Velocity is a Java-based template engine, which also follows the MVC approach and

aims for separating Java code from HTML templates. With Velocity, “Web page designers can

focus solely on creating a site that looks good, and programmers can focus solely on writing

top-notch code. Velocity separates Java code from the Web pages, making the web site

more maintainable over the long run” [29]. Its core is a specialization of Servlets combined

with Velocity Template Language (VTL), a scripting language used by the page designers

and content providers as a simple and more manageable alternative to JSP. Velocity’s design

concept is borrowed from the WebMacro system [31]. Yet another alternative to JSP is

FreeMarker [14], which uses a more expressive template language than VTL for constructing

HTML pages from templates and Java objects. As the previously mentioned systems, these

ones do not provide static guarantees that the separation of code and design is consistent, in

contrast to the system we propose.

Böttger, Møller, and Schwartzbach 5

Other related projects are the Barracuda [12] and Apache Turbine [26] Web application

frameworks, which also promise separation of HTML design and programming, but without

static guarantees of consistency.

When distinguishing between the programming and HTML design tasks, we apply a

slightly different viewpoint than some of these projects: We consider the program code that

deals with the construction of complete HTML pages from smaller templates as a part of the

programmer’s tasks; for example in Velocity, this is instead specified by the page designers

using the VTL language.

The template mechanism of JWIG that we build upon originates from

MAWL [2], which permitted a complete separation of HTML and code, but no contracts

or static guarantees of conformance.

Another approach for building Web sites is to use a Web-oriented content management

system (CMS). This is a tool that enables non-technical staff to manage and publish contents

on the Web, under the constraints of centralized rules that specify work-flows and Web site

appearance. A CMS typically supports a strict separation of contents and presentation. In

contrast, we focus on the development of more specialized Web services, which do not fit into

the CMS model of configuring a Web site by combining shrink-wrapped software components.

Although the general issue of separation of concerns in Web service development is being

considered extensively by developers of Web service frameworks, no existing technique solves

the problems that we are attacking in this paper: that programmers and designers should be

able to work independently and also to safely combine the results of their work.

3 Programming with XML Templates

Dynamic XHTML document are often generated by printing to an output stream, as exempli-

fied by Servlets. The MAWL project invented a more structured approach by defining XML

templates as primitive values in a Web programming language [17, 2]. A template in MAWL

is a wellformed XML fragment containing named gaps which at runtime may be plugged with

string values. The <bigwig> and JWIG projects [6, 9] extend this concept to higher-order

templates, in which gaps may also be plugged with other templates. The following is an

example of an XML template:

members/Outer.xml:
<html>

<head><title><[title]></title></head>

<body bgcolor=[color]>

<[body]>

</body>

</html>

It contains two gaps named title and body, and one attribute gap named color. Attribute

gaps may only be plugged with string values, while ordinary gaps may be plugged with both

strings and templates. The plug operation

x.plug(g,y)

creates a copy of x where all g gaps are replaced by copies of y. XML templates are im-

mutable—neither x nor y are modified by the operation. Note that a plug operation results

6 Contracts for Cooperation between Web Service Programmers and HTML Designers

in a new template: both x and y may contain other gaps that then appear in the resulting

template where other values can be plugged in later.

Template constants are stored in separate files in a directory structure, for example

members/Outer.xml as the above template. A given template constant is referenced in the

Java code using syntax such as

[members.Outer]

when the template is in the file named members/Outer.xml.

For later use, we define the outermost template constant of an XML template t as one

would expect: If t is one of the template constants, then the outermost template constant

of t is simply t itself; if t results from a plug operation, x.plug(g,y), then the outermost

template constant of t is that of x.

An XML template is presented to the client using the syntax

show x;

which removes all remaining gaps and produces a textual representation of the resulting

document. The current Java thread is suspended until the client submits the form that is

typically contained within the document. Subsequently, the string valued expression

receive f

returns the value of the field named f from the latest form that was shown to the client.

If the field has multiple occurrences, then the variant receive[] f is used to return the

corresponding array of strings.

The template operations may cause runtime exceptions: a TemplateException is thrown

whenever a referenced template is non-existing or not wellformed; a ShowException is thrown

whenever a document being shown is not valid XHTML 1.0; and a ReceiveException is

thrown whenever a form field value is not available when it is being received with receive.

Consider now the task of presenting a list of names stored as an array of strings:

String[] names = {"John Doe",

"Joe Blow",

"John Q. Citizen"};

For this, we need two further templates:

members/List.xml:

<[items]>

members/Item.xml:

<li type=[type]>

<[name]>

<[items]>

The code constructing the desired presentation looks as follows:

int i;

XML x = [members.Outer].plug(body,[members.List]);
x = x.plug(title,"Average Guys");

for (i=0; i<names.length; i++)

Böttger, Møller, and Schwartzbach 7

x = x.plug(items,[members.Item].plug(name,names[i]));
show x.plug(bgcolor,"silver").plug(type,"square");

This yields the result:

We here use an idiom for iteratively building list structures, here li items: As an invariant,

the x template has a gap named items where more items can be inserted. Initially, this gap

comes from the template members.List, and when an instance of the members.Item template

is plugged in, a new items gap appears after the newly inserted li item.

A naive implementation of templates would copy the involved templates during a plug

operation, which for the above tiny program would give a running time proportional to n2 if

the names array had size n. However, the data structure underlying the JWIG implementa-

tion [9] performs each plug operation in amortized constant time and each show operation

in linear time in the size of the resulting document. As an added benefit, XML documents

are constructed to internally share as many common parts as possible.

JWIG is implemented as a Java framework, an Apache module, and a desugarer which

transform the special syntax into ordinary Java method invocations.

4 A Contract Language

With the JWIG system, the programmers and the HTML designers can work independently

since the code and the HTML templates are completely separated and reside in distinct files.

However, without further support, the same problems may arise as with the custom tag library

approach and the related approaches mentioned in previous sections: the decoupling is too

complete. We need a simple mechanism that enforces the code and the HTML templates to

maintain coherency without being too rigid.

We now introduce a formal language for specifying contracts between the programmers

and the HTML designers. A contract is an interface between code and HTML templates

that specifies abstract properties of the HTML templates and their interrelationships. First,

we focus on the syntax of contracts and their intuitive meaning, then later we explain the

semantics in terms of obligations of the programmers and the HTML designers for fulfilling

a contract.

A contract is designed to specify the interface between the definition and use of a collection

of templates. This is similar to the manner in which types specify the allowed uses of functions

in programming languages. It follows that a contract must describe the available templates,

the gaps and fields they contain, and restrict the possible plug operations to which they may

be subjected. The contract language we propose is the simplest possible formalism that meets

these requirements, and our experiences suggest that this is sufficient for practical use.

Just like type systems, any contract language for which contracts may be checked auto-

matically will necessarily be incomplete. This means that there will always exist a collection

8 Contracts for Cooperation between Web Service Programmers and HTML Designers

contractfile → package? import* (template | regexp | page)*
package → package name

import → import name

template → template name { (gap | form | field)* }

regexp → regexp name : reg

page → page name : nameset { gap* }

gap → gap name (: (?)? nameset? reg?)?
form → form name { (gap | field)* }

field → field name (: (* | #))?
nameset → name | { name (, name)* }

reg → (see Figure 3)

Fig. 1. Abstract syntax for the full contract language.

of templates and a program using these that never cause errors or generate invalid documents,

but for which no contract can be used to establish this fact. Thus, a contract language must

also be evaluated on its practical usability.

The abstract syntax for our contract language is presented in Figure 1. As the size of this

grammar indicates, the language is not overly complicated. The various syntactic constructs

are explained in the following. An example of an actual contract for a product inventory page

is shown in Figure 2; in Section 4.1, we explain this example in detail and present three sets

of conforming template constants with different layouts.

A contract is comprised of template declarations corresponding to the template con-

stants being used. Each template declaration has a name and contains a description of the

gaps, forms, and input fields in the corresponding template:

template TemplateName { ... }

The product inventory contract in Figure 2 describes five templates, for example.

A gap descriptor in a template declaration specifies that the corresponding template has

at least one gap of that name:

gap GapName : GapPresence TemplateNameSet RegExp

A TemplateNameSet is either a single template name or a set of such names enclosed by {

... }. The TemplateNameSet of a gap descriptor specifies the possible templates that may

be plugged into such gaps. The RegExp part specifies which strings that may be plugged

into the corresponding gaps. A RegExp is a regular expression over the Unicode alphabet

using the syntax from the BRICS Automaton package [21] as summarized in Figure 3. The

GapPresence is either empty or “?”: in the former case, the gaps must be plugged with one

of the allowed values, whereas in the latter case, the gaps may additionally be left open.

The part RegExp may be omitted from a gap descriptor, in which case no strings may be

plugged in. Conversely, if the TemplateNameSet is omitted, no templates may be plugged in.

The latter case is particularly useful for describing attribute gaps, which are not allowed to

contain markup. The TemplateNameSet and RegExp may both be omitted, which is useful

in combination with the page construct explained below.

As an example, consider again the contract in Figure 2. A Wrapper template contains a

title gap where any string—but no templates—can be plugged in, and also a body gap that

we explain later. The declaration of the Inventory template tells us that, for an items gap

Böttger, Møller, and Schwartzbach 9

package shop.inventory

template Wrapper { gap title: <AnyString>,

gap body }

template Main { gap inventory: Inventory,

gap buyform: Selection }

template Inventory { gap items: ? Product }

template Product { gap productname: <AnyString>,

gap price: <AnyString>,

gap items: ? Product }

template Selection { form { field product,

field quantity } }

page MainPage: Wrapper { gap Wrapper.body: Main }

Fig. 2. A tiny contract.

Operation Meaning

"s" the string s

. any character
rs concatenation
r|s union
r&s intersection
~r complement
r? optional
r* zero or more occurrences
r+ one or more occurrences

r{n} n occurrences
r{n,} n or more occurrences

r{n,m} n to m occurrences
[c] character class (e.g, [A-Z])
[^c] negated character class
(r) grouping

<name> named regular language

Fig. 3. Syntax for regular expressions in contracts, derived from [21].

10 Contracts for Cooperation between Web Service Programmers and HTML Designers

that originates from this template, either a Product template must be plugged in (where its

gaps have been filled in appropriately according to the other parts of the contract), or, as

indicated by the “?”, the gap is left open when the page is shown.

Commonly used regular expressions can be named by regexp declarations:

regexp RegexpName : RegExp

The name RegexpName can then be used in other regular expressions using the notation

<RegexpName>. For example, a “length” in HTML 4.01 [23] can be expressed as follows:

regexp LENGTH: [0-9]+"%"?

The syntax of URLs is another example that fits into this formalism. The name AnyString

is predefined to denote the regular expression “.*”.

A form descriptor denotes an HTML form:

form FormName { ... }

which may contain gap and field descriptors. The FormName , which is optional, specifies

the name of the form (that is, its name attribute).

A field descriptor describes a family of form fields:

field FieldName : FieldCardinality

where FieldCardinality is either empty, meaning one occurrence, “*” meaning any number,

or “#”, which represents a radio button that has the special operational meaning in HTML

that a form may contain multiple radio buttons of the same name but only one name/value

pair is produced. (Thus, FieldCardinality corresponds to the field occurrence lattice in

the JWIG article [9], Section 5.2.) The order of gap, field, and form descriptors within a

template rule is insignificant.

The example in Figure 2 contains one form descriptor: The Selection template must

contain a form element, which in turn must contain two input fields, named product and

quantity.

A page declaration describes an HTML page:

page PageName : TemplateNameSet { ... }

Such declarations act as entry points into the contract. The TemplateNameSet specifies the

possible outermost templates. The contents of { ... } are additional gap descriptors that

are applicable only to this specific page and extend the existing ones. Each gap name of such

an additional gap descriptor must be prefixed with the name of the relevant template. The

additional gap descriptors are implicitly merged with the existing ones by taking the unions of

the respective template name sets and regular expressions. This mechanism allows different

pages of a Web service to be built from the same constituents but with different structures.

The contract in Figure 2 declares one page, named MainPage, consisting of a Wrapper

template that has been properly completed according to the template declarations. Note that

the Wrapper template declaration does not specify what must be plugged into its body gap;

this is deferred until the page declaration to allow reuse of the template in different contexts.

We come back to this issue in Section 4.1.

Declarations are organized in a hierarchical structure, typically a file system, similar to

Java source files. The root of the hierarchy is called the contract root directory. Each file

occurring below the contract root directory must contain a package declaration:

package Package

Böttger, Møller, and Schwartzbach 11

where Package is the path to the directory containing the file using “.” to separate the

components of the path. A file placed in a directory shop/inventory should then begin with

package shop.inventory

The names of the contract files are insignificant, and it makes no difference whether a set of

declarations from the same package are split into multiple files or combined in one file.

All references to template, regexp, and page declarations placed in another package

must be qualified according to the package names. For example, if a template named T is

declared in a directory a/b/c relative to the contract root directory, then this template can be

referred to as a.b.c.T. Similarly to Java, import declarations can be used to allow shorter

references to such names: If a file contains

import Package

then declarations in Package can be referred to from this file without the package qualifi-

cation. The package corresponding to the directory containing the file is always implicitly

imported. Ambiguous references are not allowed.

Additionally, Java-style comments (//... and /*...*/) are allowed throughout the con-

tracts.

The job of the HTML designer is to concretize the template declarations by constructing

an actual XML template for each. These XML templates are placed in a subdirectory of a

template root directory, which has the same subdirectory structure as the contract root direc-

tory. For example, an XML template corresponding to a template declaration T associated a

package a.b.c is placed in the file a/b/c/T.xml.

Finally, we extend JWIG such that each show statement is annotated with an appropriate

reference into the contract:

show H as P ;

The argument P refers to a page declaration that describes the required structure of the

HTML page H being shown. For example, P could be shop.inventory.MainPage, which is

interpreted relative to some contract root directory. At runtime, the program uses the XML

templates below the template root directory, which is specified by a compiler parameter.

4.1 An Example Contract

We are now in a position to fully understand the example contract shown in Figure 2. Assume

that we as a part of a Web service want to produce an HTML page with an inventory of

products and a form where a product and a quantity can be selected. Our example contract

describes such a page. The Wrapper template is intended as the outermost template, Main

corresponds to the body of the page, Inventory represents the product inventory, Product

represents a single product, and Selection is the form. The contract declarations for this

page are placed in a directory shop/inventory below the contract root directory.

Note that the items loop in Product permits an inventory to contain any number of

products, similar to the use of the list construction idiom explained in Section 3. Also, we want

to be able to reuse the Wrapper template for many different pages to obtain a coherent style,

although we only consider one single page in this example. The MainPage page declaration

combines the templates using Wrapper as entry point and adding an edge from its body gap

to the Main template. Other pages using the Wrapper template would simply add different

edges to this gap in their page declarations.

12 Contracts for Cooperation between Web Service Programmers and HTML Designers

The HTML designer can now create the XML template constants. The following templates

illustrate one possible design:

shop/inventory/Wrapper.xml:

<html>

<head><title><[title]></title></head>

<body><[body]></body>

</html>

shop/inventory/Main.xml:

<h1>Inventory</h1>

<[inventory]> <p/>

<[buyform]>

shop/inventory/Inventory.xml:

<table border="1">

<tr> <th>Name</th> <th>Price</th> </tr>

<[items]>

</table>

shop/inventory/Product.xml:

<tr>

<td><[productname]></td>

<td align="right">$<[price]></td>

</tr>

<[items]>

shop/inventory/Selection.xml:

<form>

Product: <input name="product"/>

Quantity: <input name="quantity"/>

<input type="submit" value="Buy!"/>

</form>

These files are placed in the directory shop/inventory below the template root directory.

In this design, the inventory is shown as a table with a header and one row for each

product. The JWIG system will fill in the action attribute for the form element. The result

is shown in the first image in Figure 4.

The designer can change the design by modifying the template constants. For example,

the inventory can be shown as an itemized list instead, simply by replacing the Inventory

and Product templates, without involving the programmer at all:

shop/inventory/Inventory.xml:

<[items]>

shop/inventory/Product.xml:

 <[productname]>: $<[price]>

<[items]>

Böttger, Møller, and Schwartzbach 13

Fig. 4. Three designs for the InventoryPage example.

14 Contracts for Cooperation between Web Service Programmers and HTML Designers

Obviously, such modifications of the layout are not possible with CSS.

Perhaps the designer instead wants the table rows to be colored, such that even and odd

rows have different background color. This can be achieved by adding a little JavaScript to

the Wrapper template:

shop/inventory/Wrapper.xml:

<html><head><title><[title]></title>

<script type="text/javascript"> <!--

function fancycolors() {

var t = document.getElementsByTagName(’tr’);

for (var i = 1; i<t.length; i++)

t[i].style.backgroundColor =

i%2==0 ? "gray" : "silver";

} // -->

</script>

</head>

<body onload="javascript:fancycolors();">

<[body]>

</body></html>

This illustrates that the designer may apply JavaScript programming to obtain full control of

the layout. Of course, the designer should only use JavaScript to change stylesheet properties,

not to modify the underlying DOM tree.

All three designs can be seen in Figure 4. These examples show one of the benefits of

using contracts:

The HTML designer has a large degree of freedom in deciding the design of the

pages without involving the programmer or worrying that the service will break

because of the modifications.

In fact, modifications of the design may be performed while the service is running, without

any downtime or recompilation—the running service automatically uses the newest family of

templates.

Independently of the designer, the programmer can develop the code that produces the

final pages from the templates, accesses a database, interacts with the client, etc. We will not

show an example of such code; it should be clear how the example from Section 3 could be

used as a starting point for solving this task.

4.2 Obligations of the HTML Designer

The semantics of a contract is divided into two parts corresponding to the obligations of the

HTML designer and the programmer, respectively. We first consider the HTML designer:

§1. The designer must build a template directory structure matching the contract direc-

tory structure, such that there is one file a/b/c/T.xml containing a wellformed XML

template constant for each template T with package a.b.c in the contract.

§2. Each template must contain the right occurrences of gaps, fields, and forms. This

means that a gap named g must occur at least once in the template if and only if the

Böttger, Møller, and Schwartzbach 15

corresponding template declaration contains a gap descriptor with name g . Simi-

larly, input fields must occur according to the field descriptors and their associated

FieldCardinality , and the template must contain one form for each form descriptor,

such that the FormName matches the name attribute, if present.

Recall that gap and field descriptors are allowed both at the same level as form
descriptors and nested within them. The gaps and fields in the XML templates must

adhere to the nesting structure used in the template declaration.

§3. All pages that can be derived from the contract and the template constants must be

valid according to the XHTML syntax.

The set of pages L(P, C, T) that can be derived from a page description P of a contract C

and template constants T is defined as those pages that can be obtained by starting with

a root template of P and recursively plugging all possible templates and strings into the

gaps according to the contract. For example, if contractroot and templateroot denote the

contract root directory and the template root directory, respectively, using the first design

from the example from Section 4.1, then

L(shop.inventory.MainPage, contractroot, templateroot)

contains the HTML code for the first page in Figure 4, together with the infinitely many other

pages that have a Wrapper template outermost, a Main template plugged into its body gap,

etc.

To define validity, we use the DSD2 schema language [20] description of XHTML 1.0

Transitional. We could instead use any XML language that can be described by DSD2

or DTD, for example WML if we want to apply the contract framework to WAP service

development instead. Using the DSD2 language has the benefit that it allows more syntactic

requirements to be formally captured than DTD or even XML Schema. For example, the

DSD2 description of XHTML expresses the facts that form elements cannot be nested, that

input elements must have a name attribute unless the value of type is submit or reset, and

that the values of color attributes must be valid color descriptions. The full DSD2 schema

is available at http://www.brics.dk/DSD/xhtm1-transitional.dsd.

The templates shown in the example in Section 4.1 can be seen to fulfill the designer

obligations induced by the contract in Figure 2. It is generally far from trivial to verify that

the validity requirement is satisfied; in Section 5.2 we present an automatic and conservatively

approximating approach.

4.3 Obligations of the Programmer

To fulfill a given contract, the programmer is obliged to:

§4. only use the templates that are declared in the contract by template declarations;

§5. only show pages whose structure fulfills the contract, that is, for every instruction “show
H as P ”, the structure of the page H must match the page declaration for P ; and

§6. only receive form fields that are present according to the field descriptors in the

contract for the latest page that has been shown.

16 Contracts for Cooperation between Web Service Programmers and HTML Designers

A page H that has been built from templates and strings using plug operations matches a

page declaration for P if the following conditions are satisfied:

• The outermost template constant in H is permitted as an outermost template according

to P .

• For each template or string y that has been plugged into a gap g in a template x during

the construction of H , there is a corresponding gap descriptor in the contract. This

gap descriptor can be located either in the template declaration of x or in the page
declaration of P , as described in Section 4.

The requirement §6 only applies to the singleton version of receive, since the array variant

receive[] cannot fail.

Note that the programmer in principle does not need the designer’s XHTML templates

until deployment of the Web service. From a contract C we can automatically derive a set

of dummy templates T (C), which represent a naive but valid design. For every template
declaration, an XHTML template is created containing a table with a row for each gap
descriptor, a form for each form descriptor, and an input field for each field descriptor.

The templates that occur as roots in some page declaration are enclosed by

<html><head><title/></head><body>...</body></html>

As an example, the dummy template for shop.inventory.Main is the following:

<table border="1">

<tr><th colspan="2">shop.inventory.Main</th></tr>

<tr><td>inventory:</td><td><[inventory]></td></tr>

<tr><td>buyform:</td><td><[buyform]></td></tr>

</table>

As for the designer’s obligations mentioned in the previous section, it is also not trivial to verify

that the programmer fulfills his parts of the contract. Again, we suggest a fully automatic

conservative approximation, which we explain in Section 5.3.

4.4 Renegotiating Contracts

As the example in Section 4.1 indicates, the designer does have a significant degree of freedom

in his work without being required to consider the program code. Similarly, the programmer

is free to restructure the program code, as long as the structure of the pages being built from

the templates fulfills the contract.

Of course, the designer may want to perform more profound changes in the page structures

that inevitably involve modifying the program code also. Or, conversely, the programmer may

want to modify the functionality of the service, which, for example, may require adding new

gaps or form fields to the designer’s templates. This leads to another benefit of using contracts:

Contracts make it explicit exactly when it is required that the HTML designer and

the programmer talk together, in other words, renegotiate the contract.

In many typical cases where the contract inevitably needs to be changed, doing so is not prob-

lematic, because the existing contract can help pinpointing where the changes are required.

Böttger, Møller, and Schwartzbach 17

4.5 Soundness

If the contract is fulfilled by both parties, then some important guarantees can be issued about

the dynamic behavior of the service: Neither TemplateExceptions, ReceiveExceptions,

nor ShowExceptions can occur. The proof is trivial: a TemplateException occurs if the

programmer attempts to use a nonexisting or not wellformed template, but this is made

impossible by §1 and §4; a ReceiveException occurs if the programmer tries to receive a

nonexisting form field, which is avoided by the combination of §2, §5, and §6; and a Show-

Exception occurs if invalid XHTML 1.0 appears at a show statement, but this is avoided by

§2, §3, and §5.

This shows yet another benefit of the contracts:

The contract defines the interface between HTML design and programming; if both

the designer and the programmer fulfill their respective parts of the contract, then

their work can safely be combined.

5 Checking Contracts Automatically

Building on the JWIG system, we are in a unique position to automatically check that the

obligations required by a contract are fulfilled by both the designer and the programmer. This

allows us to obtain strong guarantees about the behavior of the running Web service even

before it is launched. Furthermore, the designer and the programmer may independently

check their own work, since the contract serves as the crucial interface that combines the

individual checks to provide a global guarantee.

5.1 Summary Graphs in JWIG

The JWIG system performs static analysis of the class files of the Web services. For each

occurrence of an XML expression, the analyzer determines the set of XML documents that

may result from evaluation at runtime. Such a set is described as a summary graph, which

is a finite representation of a possibly infinite set of documents. Since the problem of finding

the exact solution is clearly undecidable, the analysis is conservatively approximate, so the

true set of actual XML documents may be smaller than that corresponding to the inferred

summary graph.

The notion of summary graphs is formally defined in [9]. Informally, the nodes of a

summary graph are the template constants being used in the program. The edges of the

graph correspond to plug operations that possibly have been performed. There is an edge

labeled g from a node t1 to a node t2 if the template t1 contains a gap named g that may

have been plugged with an XML document whose outermost template constant is t2. That

is, a single plug operation, x.plug(g,y), where both x and y are XML templates and g is

a gap appearing in x, results in an edge from each node that represents a template constant

used in x with an open g gap to the node that represents the outermost template constant of

y.

If gaps are plugged with strings, then the corresponding edges lead to regular expressions

describing the possible string values. These regular expressions are inferred by a separate

static analysis [10]. Some of the nodes in a summary graph are identified as roots, meaning

that they correspond to the outermost template constants of the documents described. Finally,

a summary graph notes for every template constant whether a given gap is possibly still open

18 Contracts for Cooperation between Web Service Programmers and HTML Designers

{"Average Guys"}

{"orange"}

{"square"}

body

bgcolor

title
Wrapper

List Item

items

type

<AnyString>

name

items

ε

itemsitems

Fig. 5. Summary graph for the example program.

or has definitely been plugged with one of the templates or strings corresponding to the given

edges.

The language L(G) of a summary graph G is the set of XML documents that is represents.

Intuitively, it contains those documents that are obtained by starting at a root and following

all possible choices of plug operations permitted by the edges.

For the small example in Section 3, the summary graph for the XML expression being

shown is inferred to be the one in Figure 5. For example, we see that Wrapper is always

the outermost template constant in the pages being produced, and the body of the page is

generated from the List template. An edge to “ε” means that the gap may remain open. The

ε-edge from the List node corresponds to the case where zero items are plugged in; the other

outgoing edge, that is, the one to the Item node, corresponds to the case where at least one

item is plugged in. The loop edge on the Item node and the outgoing ε-edge result from the

iterative construction of the list, as discussed earlier. For realistic applications, a summary

graph may contain hundreds of nodes and edges.

Using the algorithms presented in [9], the JWIG system is able to analyze a summary

graph and determine if all documents contained in its language are valid according to a given

DSD2 schema, in particular the one describing XHTML 1.0. The analyzer is also able to

determine that any field occurring in a receive expression is guaranteed to be present in

all documents that may have been sent to the client at the immediately preceding show
statement. In the present work, we heavily exploit these earlier results. The analyses in

JWIG are technically challenging; they handle all aspects of the Java language, and have

been carefully engineered to achieve high efficiency and precision.

5.2 Checking the Designer’s XHTML

When the designer has created a template directory T , it may be checked against a given

contract directory C. First, some simple local checks are performed:

• corresponding to §1, the template directory must have the same structure as the contract

directory, and each template file must contain a wellformed XML document; and

Böttger, Møller, and Schwartzbach 19

body

Wrapper

Main

Inventory Selection

Product

<AnyString>

title

<AnyString> <AnyString>

price

inventory buyform

ε
itemsitems

items

items

productname

Fig. 6. Summary graph for the example contract.

• corresponding to §2, each template file must contain the gaps, forms, and fields that are

mandated by the contract.

What remains is the global check that all pages P conform to the XHTML 1.0 specification,

corresponding to §3. This is done by constructing a summary graph GP,C,T such that

L(GP,C,T) = L(P, C, T)

and using JWIG to check validity against the appropriate DSD2 schema. The construction is

straightforward, since contracts are essentially abstract summary graphs. We simply use the

designer’s templates as summary graph nodes, the edges and roots are read directly from the

contract, and gaps that are marked by “?” in the contract become potentially open in the

summary graph.

As an example, the product inventory page contract from Figure 2 is converted into the

summary graph shown in Figure 6. In this figure, we omit the template constants that are

associated with the nodes; one of the three different sets of template constants shown in

Section 4.1 could be used here.

5.3 Checking the Programmer’s Code

For a given program, we first check that each template referred from the program is also

mentioned in the contract directory, corresponding to §4. The remaining checks require the

construction of summary graphs for each expression in show statements. These are obtained

by constructing the dummy template directory T (C), as described in Section 4.3, and then

running the JWIG analyzer on this structure. For every statement of the form:

show H as P;

20 Contracts for Cooperation between Web Service Programmers and HTML Designers

this provides a summary graph GH . To check §5, we inspect that P occurs as a page in

the contract, construct a summary graph GP,C,T (C) as in Section 5.2 but using the dummy

templates, and then check that

GH ⊆ GP,C,T (C)

Inclusion on summary graphs is determined on the set of edges, where potentially open gaps

are viewed as edges to a special “ε” template, and nodes representing string sets are compared

by set inclusion.

Finally, the check of fields in receive expressions, §6, is simply performed by the JWIG

analyzer using the algorithm described in [9].

5.4 Soundness

When the checks described above have been performed, we are guaranteed that the soundness

requirements described in Section 4.5 are satisfied since our analyses are conservative. Ulti-

mately, this works to ensure that the exceptions thrown by the template operations will never

occur. Notice that the two checks of templates and code are independent, which means that

the designer and the programmer are free to work on their own, only bound by the limitations

of the contract.

Our analyses are of course approximative, which means that they may unfairly reject

programs for which no exceptions would actually be thrown during runtime. However, expe-

riences from the JWIG project [9, 10] indicate that the precision is sufficient for practical use.

The analyses are also efficient, handling large programs in mere seconds.

6 Additional Tool Support

There are several other opportunities for providing tool support for both the programmer and

the designer.

6.1 Viewing Contracts Graphically

Contracts are defined as a directory structure of text files. While this is a concise formalism,

it may at times be easier to browse through a graphical representation. This is easily obtained

by depicting what is essentially the corresponding summary graph. Using the AT&T Graphviz

dot tool [13], the contract from Section 4.1 is presented as seen in Figure 7. The edges labeled

“MainPage” are applicable only to the shop.inventory.MainPage page, whereas the others

are also applicable to other pages, as defined in the contract.

6.2 A Dummy Designer

We have earlier shown how a contract C gives rise to a dummy template directory T (C).

For a programmer starting out with an already negotiated contract, this approach can be

exploited to construct a collection of primitive but functional templates that are guaranteed

to satisfy the contract.

Starting out with the contract from Section 4.1, the generated dummy templates present

an X-ray view of the MainPage as shown in Figure 8. For the programmer, this allows an

early implementation suitable for testing the business logic. For the designer, it offers an

explicit view at the template structure of the generated pages.

Böttger, Møller, and Schwartzbach 21

Wrapper
title body

Main
inventory buyform

MainPage

<AnyString>

MainPage

Selection
product quantity

Product
productname price items

?

Inventory
items

?

Fig. 7. Graphical view of the example contract.

6.3 A Dummy Programmer

When the designer has produced a draft set of templates, it is possible to view complete

sample documents, even when the programmer has not delivered the code yet. This is done

by generating random elements from the set L(P, C, T) for a given page P . In case of loops

in the contract, some care must be taken to generate only finite documents. Our strategy

uses a depth-first search of the contract graph to identify the back edges [1]. The designer

specifies a scale factor k, and when unfoldings of the graph are generated, a given back edge

is allowed to be traversed at most k times. If a gap g does not have an outgoing edge, then

the text <[g]> is generated. For strings, random elements of the specified regular language

are chosen.

6.4 Inferring Contracts

If an existing JWIG service is to be refactored into using contracts, then substantial automatic

support is also available. It is possible to infer a contract that is satisfied by the given code

and XHTML. The template directory structure is copied to form the contract directory. Each

template is described in the contract with respect to the existing gaps, forms, and fields. The

rest of the contract is inferred from the summary graphs computed by the analyzer. Each

show statement is represented by a page in the contract. The edges in all summary graphs

are distributed into either the templates or the pages in the contract. If an edge is present

in all the summary graphs corresponding to show statements, then it is represented directly

in that template, otherwise it is represented in only the pages corresponding to the relevant

show statements.

For the shop.inventory code, the inferred contract is identical to the given one, which

22 Contracts for Cooperation between Web Service Programmers and HTML Designers

Fig. 8. X-ray view of MainPage.

indicates that the accuracy of this inference algorithm is high.

6.5 Managing Templates

For a realistic application, the designer may have to consider numerous templates. Again,

automatic tool support may help. In a special development mode, the JWIG service may

generate XHTML pages enriched with JavaScript such that a mouse click on a point in a

generated page will identify the templates involved in that part of the presentation. During

development or testing, if the designer sees that something should be changed in the layout

of some page, this feature makes it easy to locate where the changes should be made. A

screenshot of the feature is presented in Figure 9.

7 Implementation

The contract mechanism we have described has been implemented in a prototype extension

of the JWIG system. This primarily consists of a syntax checker for contracts and tools

for checking that the obligations of the contract are fulfilled by the designer and the pro-

grammer, as described in Section 5. Most of the tools described in Section 6 have also been

prototyped. The implementations have been fairly straightforward, since the most compli-

cated parts wholly rely on the exisiting JWIG analyses.

Checking contracts is fairly efficient. We are in the process of converting existing JWIG

services to use the contract system. A large example is the JAOO 2002 conference adminis-

tration system, which consists of 3,923 lines of pure Java code and 198 XHTML templates

totalling 259K data. Checking the obligations of the designer or the programmer takes less

than 30 seconds for each.

To test the contract methodology, we have developed a small service from scratch. The

Böttger, Møller, and Schwartzbach 23

Fig. 9. Identifying the shop.inventory.Product template.

example is a typical Web shop, called The Plant Store, selling house plants and tracking the

buying histories of customers. Although this is just a single case study, we learned some

valuable lessons:

• It makes sense for both the programmer and the designer to take the lead when drafting

the contract.

• Benign renegotiations are frequent in the early stages of development.

• Being able to automatically obtain static guarantees about validity of the generated

XHTML pages and the handling of forms is helpful for catching bugs early in the

development process.

• The use of dummy templates and the graphical view of contracts are useful supplements

to the text of the contract.

• The X-ray view of generated pages is invaluable for the programmer, allowing early

prototyping without design distractions.

• It is a simple task to generate alternate presentations of the pages once they have been

designed, which is particularly useful for internationalization and customization.

• The effort required to develop and maintain the contracts seems managable. To some

degree, this is work that would have to be done anyway in order for the programmer

and designer to be able to cooperate, perhaps at a less conscious level, but now it is

within a formal framework that provides the many benefits mentioned above.

In all, the contract system seems to hit a sweet spot between complete decoupling and rigidity.

Naturally, further experiments are necessary to test the system on large scale projects.

8 Conclusion

By introducing our contract language, we improve collaboration between HTML designers and

programmers jointly developing Web services. A contract formalizes the interface between

the two parties and pinpoint the dependencies between design and code.

We work in the context of the JWIG system, which already provides a well-structured and

flexible mechanism for building Web pages from XML pages together with unique program

24 Contracts for Cooperation between Web Service Programmers and HTML Designers

analyses for ensuring that the templates are used consistently. The obligations incurred by

the contract can be automatically checked by tools that exploit these analyses. On top of

the contract language, we offer a host of tools facilitating the use of XML templates and

contracts.

Our initial experiments indicate that the contract system can be implemented efficiently

and is practically useful in the application development process.

References

1. Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. Data Structures and Algorithms.
Addison-Wesley, January 1983.

2. David Atkins, Thomas Ball, Glenn Bruns, and Kenneth Cox. Mawl: a domain-specific language
for form-based services. IEEE Transactions on Software Engineering, 25(3):334–346, May/June
1999.

3. Nicola Ken Barozzi et al. Cocoon, 2003. http://cocoon.apache.org/.
4. Kent Beck. Extreme Programming Explained. Addison-Wesley, October 1999.
5. Bert Bos, H̊akon Wium Lie, Chris Lilley, and Ian Jacobs. Cascading style sheets, level 2, CSS2

specification, May 1998. W3C Recommendation. http://www.w3.org/TR/REC-CSS2/.
6. Claus Brabrand, Anders Møller, and Michael I. Schwartzbach. The <bigwig> project. ACM

Transactions on Internet Technology, 2(2):79–114, 2002.
7. Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and François Yergeau. Exten-

sible Markup Language (XML) 1.0 (third edition), February 2004. W3C Recommendation.
http://www.w3.org/TR/REC-xml.

8. Aske Simon Christensen and Anders Møller. JWIG User Manual. BRICS, Department of
Computer Science, University of Aarhus, June 2002. Notes Series NS-02-6. Available from
http://www.brics.dk/JWIG/manual/.

9. Aske Simon Christensen, Anders Møller, and Michael I. Schwartzbach. Extending Java for high-
level Web service construction. ACM Transactions on Programming Languages and Systems,
25(6):814–875, November 2003.

10. Aske Simon Christensen, Anders Møller, and Michael I. Schwartzbach. Precise analysis of string
expressions. In Proc. 10th International Static Analysis Symposium, SAS ’03, volume 2694 of
LNCS, pages 1–18. Springer-Verlag, June 2003.

11. James Clark. XSL transformations (XSLT), November 1999. W3C Recommendation.
http://www.w3.org/TR/xslt.

12. Christian Cryder et al. Barracuda, 2003. http://barracudamvc.org/.
13. Emden Gansner, Eleftherios Koutsofios, and Stephen North. Drawing graphs with dot, February

2002. Available from http://www.research.att.com/sw/tools/graphviz/.
14. Benjamin Geer, Mike Bayer, et al. FreeMarker, 2003. http://freemarker.

sourceforge.net/.
15. Christian Kirkegaard, Anders Møller, and Michael I. Schwartzbach. Static analysis of XML trans-

formations in Java. IEEE Transactions on Software Engineering, 30(3):181–192, March 2004.
16. G. Krasner and S. Pope. A cookbook for using the model view controller user interface paradigm

in Smalltalk-80. Journal of Object-Oriented Programming, 1(3):26–49, August/September 1988.
17. David A. Ladd and J. Christopher Ramming. Programming the Web: An application-oriented

language for hypermedia services. World Wide Web Journal, 1(1), January 1996. O’Reilly &
Associates. Proc. 4th International World Wide Web Conference, WWW4.

18. Craig Larman. Applying UML and Patterns: An Introduction to Object-Oriented Analysis and

Design and the Unified Process. Pearson Education, July 2001.
19. Craig R. McClanahan et al. Struts, 2002. http://jakarta.apache.org/

struts/.
20. Anders Møller. Document Structure Description 2.0, December 2002. BRICS, Depart-

Böttger, Møller, and Schwartzbach 25

ment of Computer Science, University of Aarhus, Notes Series NS-02-7. Available from
http://www.brics.dk/DSD/.

21. Anders Møller. dk.brics.automaton – finite-state automata and regular expressions for Java, 2004.
http://www.brics.dk/automaton/.

22. Steven Pemberton et al. XHTML 1.0: The extensible hypertext markup language, January 2000.
W3C Recommendation. http://www.w3.org/TR/xhtml1.

23. Dave Raggett, Arnaud Le Hors, and Ian Jacobs. HTML 4.01 specification, December 1999. W3C
Recommendation. http://www.w3.org/TR/html4/.

24. Gal Schachor, Adam Chace, and Magnus Rydin. JSP Tag Libraries. Manning Publications, May
2001.

25. Govind Seshadri. Understanding JavaServer Pages Model 2 archi-
tecture, December 1999. Available from http://www.javaworld.com/

javaworld/jw-12-1999/jw-12-ssj-jspmvc.html.
26. Jon S. Stevens et al. Turbine, 2003. http://jakarta.apache.org/turbine/.
27. Sun Microsystems. Java Servlet Specification, Version 2.3, 2001. Available from

http://java.sun.com/products/servlet/.
28. Sun Microsystems. JavaServer Pages Specification, Version 1.2, 2001. Available from

http://java.sun.com/products/jsp/.
29. Jason van Zyl et al. Velocity, 2003. http://jakarta.apache.org/velocity.
30. WAP Forum. Wireless Markup Language, version 2.0, September 2001. Wireless Application

Protocol Forum. Available from http://www.wapforum.org/.
31. Justin Wells et al. WebMacro, 2003. http://www.webmacro.org/.

	Introduction
	Related Work
	Programming with XML Templates
	A Contract Language
	An Example Contract
	Obligations of the HTML Designer
	Obligations of the Programmer
	Renegotiating Contracts
	Soundness

	Checking Contracts Automatically
	Summary Graphs in JWIG
	Checking the Designer's XHTML
	Checking the Programmer's Code
	Soundness

	Additional Tool Support
	Viewing Contracts Graphically
	A Dummy Designer
	A Dummy Programmer
	Inferring Contracts
	Managing Templates

	Implementation
	Conclusion

