Document Structure Description 1.0

Nils Klarlund? Anders Mgller? Michael 1. Schwartzbach’

Abstract

Document Structure Description 1.0 is a complete specification of a new
XML notation for describing classes of XML documents. The notation is de-
signed to be a simple tool based on familiar concepts. DSDs provide more
flexible and precise structural descriptions than possible with DTDs or the cur-
rent XML Schema proposal. A DSD generates a CSS-like default mechanism
independent of formatting models. Finally, it allows an extension mechanism
so that DSDs may be updated with new structural concepts.

1 Introduction

A Document Structure Description (DSD) is a specification of a class of XML doc-
uments. A DSD defines a grammar for XML documents, default element attributes
and content, and documentation of the class. A DSD is itself an XML document.
This note describes the design of the DSD notation.

1.1 Design goals
We have five major goals for the descriptive power of DSDs: they should

e allow context dependent descriptions of content and attributes, since the con-
text of a node, such as ancestors and attribute values, often govern what is
legal syntax;

e generalize CSS [4] (Cascading Style Sheets) so that readable, CSS-like rules for
default attribute values and default content can be defined for arbitrary XML
domains, not only predefined user formatting models;

e complement XSLT [9] in the sense that the expressive power of DSDs should
be close to that of XSLT, so that assumptions made by XSLT style sheets can
be made explicit in a DSD;

*Copyright AT&T and BRICS. The specification may be distributed publicly provided that the
document is reproduced in whole, including all copyright and ownership information.

TAT&T Labs-Research, Shannon Labs, 180 Park Ave., Florham Park, NJ 07932.
Email: klarlund@research.att.com.

fBRICS, University of Aarhus, Ny Munkegade, DK-8000 Aarhus C, Denmark.
Email: {amoeller,mis}@brics.dk.

e allow the description of semi-structured data, that is, the description of what
references may point to; and

e allow the redefinitions of syntactic classes, so that language extensions can be
expressed in terms of existing DSDs.

Currently, the W3C is preparing a similar notation called XML Schema [2]. In its
current incarnation, XML Schema appears to address only the first goal and in a
very limited way. DTDs (the grammar notation that is part of XML 1.0 [8]) meet
none of these goals.

It is also important to us

e that a DSD yields a linear time algorithm for checking conformance of XML
documents; and

e that DSDs are based on simple concepts that are familiar to computer scientists.

1.2 Design requirements

The essense of the DSD notation is captured through specific technical requirements
that we believe are important to XML applications.

Syntax for attribute values Attribute values in XML documents are generally
constrained, often in ways that cannot be expressed by enumeration types. Examples
include data types like designations of time and font size, but also more sophisticated
ones like lists of pairs of numbers, etc. Thus, the syntax (a.k.a. data domains) of
attribute values must be expressible in a more general manner, namely with regular
expressions. Regular expressions can be translated to deterministic finite-state au-
tomata; this representation is naturally efficient in most practical circumstances, at
least for 7-bit alphabets. For example, dictionaries (large collection of words) become
trees in the automaton representation. Work on the use of automata on large alpha-
bets, such as in the MONA tool [12], indicates that the automaton representation
may generalize well to Unicode.

Attribute dependencies Often attributes within an element are ordered in im-
portance. In HTML, for example, the maxlength attribute of an INPUT element is
relevant only when the type attribute has the value “text” or “password”. Thus,
a concept of an attribute dependency must be explicitly provided. They are also
essential to the insertion of defaults in the right order.

Boolean logic Frequently, as in the maxlength example, dependencies are boolean
and involve the attribute values themselves. Therefore, boolean logic about attributes
and their values must be part of the description of attribute dependencies. Also, con-
ditionally required attributes should be expressible. For example, one might want to
enforce the HTML 4.0 recommendation that for an OBJECT element a type attribute
should be provided when the data attribute is used.

Content dependent on attribute values Content, the sequence of child ele-
ments of an element, sometimes depends on attributes or their values. For example,
it may be required that the content of an element is empty when a SRC attribute is
present. Such content dependencies must be expressible through content expressions
that are linked to boolean logic.

Nonterminals DTDs and XML Schema suffer from the absence of nonterminals.
If element descriptions are based on nonterminals, then multiple uses of the same
element name can be described; also, the use of nonterminals is a natural glue for
binding together several descriptions. For example, the mechanism for gluing modules
together in the XHTML modularization note [1] is too simple: if a content model is to
be extended, the original definition has to be literally included in the new one. In this
way, it is impossible to extend a concept without knowing its full definition. Naturally,
this problem severely restricts the composition of modules. Module composition
based on the use of nonterminals solves this problem. Our use of nonterminals also
allows DSDs to mimic the processing modes of XSLT [9].

Ordered content Ordered content must be described by regular expressions as in
DTDs. However, since elements in the DSD framework are described by nonterminals,
DSD content expressions are akin to extended BNF, that is, regular expressions over
nonterminals.

Unordered content Element content often consists of several separate kinds of
subcontent, where the ordering between kinds have no significance. For example,
in the case of prompts in an XML-based dialog language, an element may require
a help prompt and an error prompt, but their order is insignificant. Description of
unordered content is required. Also, the mechanism must be efficient, that is, it must
not entail product constructions of automata as in SGML.

Attribute defaults A simple CSS-like default mechanism must be provided that
inserts attribute values according to attribute dependencies and context. It must
be available in both DSDs and in application documents. It is not as simple as it
appears to use a CSS-like formalism for XML documents in general. The problem
is that CSS assumes a formatting model where properties, not attributes, carry the
rendering details that are the outcome of running a CSS processor on a document.
Thus, the outcome of a CSS style sheet applied to a document is not specified as an
XML tree. The CSS model may entail that properties that are not appropriate for
a particular node are in fact assigned, for example by the inheritance mechanism.
(Certain properties are inherited, like font-size, even though that not all HTML
elements make sense out of this property.) If attributes are identified with proper-
ties, then two problems must be addressed: (a) an order must be specified among
attributes, as mentioned under ” Attribute dependencies” above; (b) and attributes
must be filled in only when they are actually allowed. Thus, in order to make a
general CSS-like notation for XML, it is necessary to define it relative to an XML
grammar description that determines an attribute order.

Element defaults Often, it is natural to specify element defaults. Example: in a
markup language for voice dialogues, prompts are often left unspecified. They are best
regarded as elements since they contain text augmented with text-to-speech markup.
Thus, the default mechanism must also be able to insert element defaults. The
element defaults may depend on attributes of the containing element, for example, if
the available prompts depend on an attribute specifying the dialog structure. Also,
as for attribute defaults, the element default insertion mechanism must be combined
with the XML grammar.

Context dependencies Often, elements are allowed only in certain syntactic situ-
ations. For example, an input element in HTML with type “submit” is allowed only
if it is contained in a form element. Such context dependencies must be expressible.
The ability to express contexts should be similar to that of XSLT.

Extensibility of language description Frequently, platform variations or device
differences are reflected at the level of the markup language. For example, some
voice browsers may provide advanced controls of speech synthesis that are reflected
in attributes like SpeechRate, but a language should not provide such attributes.
Thus, a language extension mechanism must be available so that modifications to a
language description can be precisely described.

Self-describability The notation must be self-describable: all static requirements
to DSDs should be expressible in a DSD, called a meta-DSD.

Extension of DTD descriptive power The notation must extend the descriptive
power of DTDs.

Documentability DSD elements for documentation purposes must be a part of
the notation.

Easy collapse to elementary descriptions The addition of concepts, such as
boolean logic, to the DSD notation when compared to other XML grammar propos-
als, must not complicate the presentation of a DSD to casual programmers. More
concretely, it must be possible to create XSLT style sheets that extract the underlying
context-free grammar behind a DSD while ignoring all boolean constraints.

1.3 Design non-requirements

We will omit certain aspects of XML DTDs. We find, as does the XML Schema
Working group, that XML notations and unparsed entities are baroque. We draw
the conclusion that they should be left out. We also leave out parsed entities, better
known as parameterless macros or text macros. Internal parsed entities (macro defi-
nitions in the application document) may still appear in a document type declaration,
which is allowed by virtue of the application document being XML. Similarly, exter-
nal parsed entities (macro definitions in the XML Schema or DTD) will be allowed

also only through the fact that the document is an XML document. The parameter
entities of DTDs (yet another idiosyncratic text macro concept) should be made un-
necessary by our use of nonterminals. Similarly, conditional sections should be made
unnecessary by our extensibility requirement. Also, we will omit the IDREFS type,
which could be easily reintroduced. We will omit tokenized (NMTOKEN and NM-
TOKENS) attribute types and enumerated attribute types; both are representable
using regular expressions.

We would like to avoid using the elaborate vocabulary outlined in the XML In-
formation Set specification draft [11]. We think that a grammar notation should be
explainable in elementary terms.

We are not concerned with verbosity of DSDs; at least not to the extent it’s caused
by the inherent volume of parenthesized notations in XML.

1.4 Brief comparison to other proposals

DCDs [6] are more expressive than DTDs; so are DDMLs [5] and XML Schemas [8].
Neither of these extensions satisfy the majority of our goals. For example, they fail
to specify attribute structure, relationships between attribute values and content,
and content that depend on context. XML Schema, in the data description part [3],
provides a variety of mechanisms for attribute value domains. In the structure de-
scription part [2], XML Schema provides mechanisms that in some regards are similar
to ours; for example, archetypes are somewhat similar to our constraints.

The assertion grammars outlined in [13] elevate certain DTD parameter entities
to a first-order status that allow content models to be extended piecemeal; in essence,
this mechanism can be seen as a specialized way of redefining content expressions in
DSDs. Assertion grammars, like DSDs, offer context sensitive ways of specifying con-
tent and attributes. They also provide an inheritance mechanism, which we believe
could be adapted to our framework.

1.5 The future

In Section 1.3, we already mentioned a couple of issues that are currently left out
and that we are working on solving.

XML namespaces [7] will not be addressed here, but we are working on a solution
along the lines of [2].

We are also considering whether DSDs should be allowed to determine that certain
attributes are inherited (in the sense of an inherited property of CSS). In addition,
we are awaiting the final XSLT 1.0 specification, since it may be desirable to include
the node set expression language, XPath, in DSDs.

1.6 The rest of the note

This note presents the complete design of the DSD language. Section 1.7 summarizes
XML concepts and Section 1.8 provides an overview of the DSD concepts. The DSD
language is described in detail in Section 2. Appendix A provides a meta-DSD, that

is, a DSD for DSD documents. Appendix B shows an alternative concrete syntax for
our CSS-like notation for context descriptions.

1.7 XML concepts

The reader is assumed to be familiar with XML [8]. An XML document (assumed to
be well-formed) may be represented as a tree, called the XML tree. The XML tree’s
internal nodes are those that have child nodes; they correspond to non-empty ele-
ments. Child nodes are ordered. The root of the tree corresponds to the root element.
Leaf nodes are those without children. They correspond to empty elements, chardata,
comments, and processing instructions. DTD information is not represented.

Each element has a name and contains a set of attributes, which are pairs of
names and values. Attributes are not regarded as nodes.

A path is a sequence, possibly empty, of nodes vy, ..., v, such that v; is a parent
of v;11. We say that an element v occurs before element v’ if the start tag of v occurs
before the start tag of v’ in the XML document. In particular, any element occurs
before any of its descendants. The last element of some set of elements is defined
using the same ordering of nodes.

The content of an element is the sequence of its child nodes. The context of a
node is the path of nodes starting at the root of the document tree to the node itself.
Attribute values and chardata nodes are strings of characters.

Processing instructions with target dsd or include are assumed to contain in-
formation relevant to the DSD processing of the document. All other processing
instructions, comments, and chardata nodes consisting of white-space only, are ig-
nored during processing but kept in the document.

Elements and attributes whose name has namespace prefix [7] DSD and namespace
name http://www.brics.dk/DSD as well as declarations of this namespace occuring
in the application document are removed before the actual processing. Elements
named DSD:Default, however, are considered a part of the DSD and are recorded
before being removed.

We often abuse language by not distinguishing between an XML concept and its
tree representation; for example, an “element” often means a node representing the
element. To avoid confusing the DSD and the application document, we usually refer
to attributes of DSD elements as properties.

See [8] for a further explanation of XML concepts.

1.8 DSD concepts and overview

This section describes all the main concepts of the DSD notation and how they fit
together. Several important details, described in Section 2, are omitted here.

A DSD is walid if all validity requirements in Section 2 hold. All DSDs are
assumed valid, unless otherwise indicated. An application document is an XML
document that is intended to be conforming to a DSD (as defined below). Application
document processing is the process, carried out by a DSD processor, of checking the
conformance of an application document to a DSD. The meta-DSD in Appendix A
is constructed so that a DSD is valid if and only if it conforms to the meta-DSD.

Element IDs and descriptions A DSD defines a set of element IDs, which play
a role similar to nonterminals in the parsing of context-free languages. During appli-
cation document processing, each element in the document is assigned an element ID.
The element IDs are assigned in a top-down manner starting with the root element
ID determined by the DSD. Elements with the same name may be assigned differ-
ent IDs during this processing. Each element ID determines an element description,
which is a pair consisting of an element name and a constraint.

Note that many nodes in the application document may be assigned the same
element ID. Thus, assigned element IDs do not identify individual nodes in the ap-
plication document; they only do so in the DSD.

Constraints A constraint defines the attribute structure of the element, including
the syntax of attribute values and dependencies among attributes and their values;
a constraint also determines the structure of the content, which may depend on
attribute values and context. During document processing, several constraints may
be evaluated for a given element. During evaluation of a constraint, attributes and
content are gradually declared.

Boolean logic and context patterns Boolean expressions describe properties
about the context, the presence or absence of declared attributes, and their values.
Context properties are described by context patterns, which are a kind of regular
expressions over element names. Boolean expressions are true or false; they have no
side effects.

Content expressions The content of an element is described by regular expres-
sions, called content expressions, over element IDs. A string derived from the content
expression determines, through the pairs determined by element IDs, a string of ele-
ment names, where each name occurrence is associated with a constraint. The DSD
language prescribes an operational way of deriving such a string for the content of
an element.

String types String types are regular expressions over characters. They are used
to characterize both attribute values and chardata nodes.

Evaluation An application document is processed by evaluating the element de-
scription denoted by the root element ID on the XML tree in what is essentially a
single top-down pass. As a side-effect, the evaluation transforms the tree by inserting
new attributes and nodes where required by defaults. For each element, the assigned
element description is evaluated. The evaluation either succeeds, and the element
satisfies the element description, or it fails. The evaluation of an element description
on an element, called the current element, proceeds as follows:

1. Tt is verified that the name of the element description is the same as that of the
current element; otherwise, the evaluation fails.

2. The constraint of the element description is evaluated as detailed in Section 2.7.
During this evaluation, child elements are assigned element IDs according to
the evaluation of the content expressions that are enforced by the constraint.

3. The child elements are evaluated recursively.

If any of these evaluations fail, the evaluation of the current element fails; otherwise,
it succeeds.

Default insertions Default element attributes and content are associated a boolean
expression. Defaults are only applicable when their boolean expression is true.

The insertion of default attributes depends on the structure of attribute dec-
larations: the evaluation of the current element gradually declares attributes and
only defaults that mention declared attributes are considered. In this way, priorities
among attributes of an element can be expressed, and it is guaranteed that values
are inserted only for allowed attributes.

Defaults can be specified both in the DSD document and in the application doc-
ument. A notion of specificity takes care of assigning priorities to defaults whenever
more than one is applicable. For instance, application document defaults always have
higher priority than DSD document defaults.

ID types A DSD may declare that application document attributes are of type ID
or IDRef. These characterizations are equivalent to DTD types ID and IDREF. Thus,
an element possessing an attribute of type ID with value id is set to be a definition
of id. A DSD may allow an attribute to redefine id through an element containing
an attribute of type RenewID with value id. A reference of type IDRef with value
id denotes the last definition in the document with value id. Similarly, a reference
of type CurrID refers to the current definition, that is, the last definition occurring
before the reference. The DSD may impose a boolean expression, called the points-to
requirement, on the element denoted by a reference.

DSD concepts and definitions All main concepts of DSDs—except element
descriptions—may be separately defined and redefined. The internal reference mech-
anism of DSDs themselves is based on the four ID types.

Document inclusion A simple document inclusion mechanism allows both DSDs
and application documents to be created as extensions of other documents. During
parsing, include declarations are replaced by the documents they refer to.

Conformance The application document is conforming if the evaluation of the root
element of the application document succeeds, and each attribute that is a reference
denotes a definition that satisfies the points-to requirement of the attribute. For a
conforming document, the result of the application document processing is an XML
document that is a textual representation of the transformed tree. The result may
also include various information calculated during the processing.

2 The DSD language

This section describes the DSD language. We believe that all design goals and re-
quirements mentioned in Sections 1.1 and 1.2 are fulfilled by this language.

The structure of a DSD is defined in this section by a traditional context-free
grammar, since it is easier to read than a DTD. We use a form of Extended Backus-
Naur Form (EBNF) notation in this note. (It is essentially the same as the one
defined in Section 6 of the XML 1.0 specification [8].) For the sake of clarity, the
syntax for empty elements is shown in the single tag form; also, attributes do not
need to it appear in the order indicated, and single quotes may be used instead of
double quotes. A DSD is a string that is derivable from maindsd according to the
syntax in Sections 2.4 to 2.13 and that is a well-formed XML document.

2.1 DSD references

An application document refers to a main DSD by a processing instruction of the
form

<?dsd URI=AttValue?>

appearing in the prolog (as defined in Section 2.8 of the XML 1.0 specification [8])
of the document. (Processing instructions with target dsd occuring after the prolog
are ignored.) The reference indicates that the application document is intended to
conform to the main DSD specified by the URI AttValue.

2.2 Document inclusions

Include processing instructions allow both DSD documents and application docu-
ments to be created as extensions of other documents.

<?7include URI=AttValue?>

The URI property contains the URI of the included document. An include replace-
ment consists of replacing the include processing instruction with the root element
of the XML document designated by the URI. Any document can be, directly or
indirectly, included only once into a given document. Include instructions with a
URI that has already been included are replaced by the empty string. Document
inclusion takes place before the actual processing in the order of occurence.

2.3 Internal definitions and references

Internal definitions and references are those that appear in the DSD; they are so
called to distinguish them from definitions and references in the application docu-
ment. When confusion is not possible, we omit “internal” when referring to them.

When a DSD element is of the form <SDef ID="4d"/>, where S is Element,
Constraint, AttributeDecl, Content, Bool, Context, or StringType, we say that
it is an internal definition of 4d. Similarly, a DSD element of the form <SDef
RenewID="1%d"/> is called an internal redefinition.

A DSD element of the form <S IDRef="4d"/> is an internal, final reference
to 2d. Similarly, a DSD element of the form <S CurrIDRef="%d"/> is called an
internal, current reference.

The target element of a final reference to some zd is the last definition or redefini-
tion of 4d. The target element of a current reference to some %d is the last definition
or redefinition of 7d that occurs before, but does not contain, the internal current
reference. An internal redefinition is both considered a definition and a reference.
The target of an internal renewing definition is defined as for an internal current
reference.

Validity requirements For every reference <S IDRef="%d"/> or <S CurrIDRef=
"4d" />, the target must exist and be a structural definition of the appropriate form,
that is either of the form <SDef ID="4d"...>...</SDef> or of the form <SDef
RenewID= "4d"...>...</SDef>. There may be at most one definition of a given %d
in a DSD. Before each redefinition, there must occur a definition of the same zd that
does not contain the redefinition.

2.3.1 The meaning of internal references

During processing, an ID stack (which is initially empty) is used to keep track of the
use of internal final references. An internal final reference to some %d is processed as
follows:

e If the ¢d does not appear in the ID stack,

1. the <d is pushed onto the ID stack,
2. the target is processed in place of the reference, and
3. the %d is popped off the ID stack.
e Otherwise, if the 4d already appears in the stack, the meaning of the reference
depends on its form as follows. For a Bool, the reference evaluates to false; for a
Context, the match fails; for a StringType, the denoted language is the empty

one; for a Constraint, evaluation succeeds; and for a Content, the tentative
evaluation succeeds and no content is consumed.

This mechanism avoids self-referencing definitions. Internal current references are
processed without using the stack, just by processing the target of the reference.

2.4 Main DSD

A DSD consists of various meta-information, subDSDs, defaults, and structural def-
initions. SubDSDs typically arise from the use of include processing instructions.

10

maindsd — <DSD IDRef=AttValue DSDVersion=AttValue>
dsdcontent
</DSD>
subdsd ~ — <DSD (IDRef=AttValue)? DSDVersion=AttValue>
dsdcontent
</DSD>
dsdcontent — (<Title> content </Title>)?
(<Version> content </Version>)?
(<Author> content </Author>)?
(doc (subdsd | default | structdef))x*

The IDRef property of the maindsd, called the root element ID, denotes the root
element description that an application document must satisfy. The DSDVersion
must be specified. To comply to the present specification, it must have the value
“1.07. The elements Title, Version, and Author may be used to specify meta-
information about the DSD; they may contain arbitrary well-formed XML, but a
simple HTML subset like [10] is recommended.

Example
Here is a complete DSD that requires an XML document to contain a single element Hello
whose content is character data:
<!-- http://www.brics.dk/DSD/examples/1.0/hello_world.dsd -->
<DSD IDRef="Hello" DSDVersion="1.0">
<Title>HelloML</Title>

<ElementDef ID="Hello">
<StringType/>
</ElementDef>

<Default>
<Context><Element Name="Hello"/></Context>
<DefaultContent>
Hello world!
</DefaultContent>
</Default>

</DSD>

The DSD also defines the default value of character data inside Hello elements to be the
string ”Hello world!”. So, the application document

<7dsd URI="http://www.brics.dk/DSD/examples/1.0/hello_world.dsd"?>
<Hello/>
conforms to the DSD, and the document resulting from the DSD processing is

<?dsd URI="http://www.brics.dk/DSD/examples/1.0/hello_world.dsd"?>

<Hello>
Hello world!
</Hello>

11

2.4.1 Structure definitions
A structdef binds a structure description to an ID.

structdef — elementdef |
constraintdef |
attributedecldef |
contentdef |
booldef |
contextdef |
stringtypedef

2.4.2 Documentation

Documentation may be associated to all definitions and to most other significant
syntactic constructs. Documentation elements do not affect the processing.

doc— (<Label> content </Label>)?
(<BriefDoc> content </BriefDoc>)?
(<Doc> content </Doc>)?

The form Label can be used to assign a label to the syntactic construct. The
BriefDoc may be used for brief descriptions (such as those used to display a message
when the mouse cursor is placed over a hyperlink). The Doc can be used for a longer
explanation (such as for an interactive manual). A documentation element may con-
tain arbitrary well-formed XML elements and chardata, but using XMLized HTML
is recommended.

2.5 Defaults

A default associates a set of default attributes and elements to a boolean expression.

default — <Default>
(doc boolexp)?
(defattribute | defcontent)x
</Default>
defattribute — <DefaultAttribute Name=AttValue Value=AttValue/>
defcontent — <DefaultContent>
(element | CharData)
</DefaultContent>

A DefaultAttribute defines a default value for attributes of the given name. A
DefaultContent defines a default element or chardata node. If it contains an element,
this element is a default for elements with the same name. CharData is regarded as
a default for the chardata pseudo-element, see Section 2.10.

A default is applicable for an attribute name (or element name) if

e it contains a default attribute (or element) with the same name; and

e cither its boolean expression is omitted or it is meaningful and true.

12

When more than one default is applicable, the selected default for an attribute name
(or element name) is found by narrowing the set of applicable defaults to the ones with
the highest specificity among them (see Section 2.5.2). Then, the latest occurring
default definition is the selected default if the set is non-empty; otherwise, the selected
default does not exist.

Default attributes and content are inserted according to Section 2.8 and Sec-
tion 2.10, respectively.

2.5.1 Application document defaults

Defaults can also be specified in the application document. Every application docu-
ment element may contain DSD:Default elements that extend the DSD.

appdocdefault — <DSD:Default>
(doc boolexp)?
(defattribute | defcontent)x
</DSD:Default>

The namespace DSD must be declared with the name http://www.brics.dk/DSD.
According to the explanation below, a default defined in the application document
is applicable only to the parent of the DSD:Default node and to the content of the
parent. Internal current references occuring within a DSD:Default are treated as
internal final references.

2.5.2 Specificity of defaults
The specificity of defaults is defined by the following rules:

e A default defined in the application document has higher specificity than any
default defined in the DSD document.

e The specificity of defaults defined in the DSD document is defined by the speci-
ficity of their boolean expressions (see Section 2.11.1). If the boolean expression
is omitted, then the default implicitly has the minimum specificity.

e For application document defaults, a default d; has higher specificity than a
default d if the parent of the DSD:Default element containing d; is a descen-
dant of the parent of the DSD:Default element containing ds; in the case that
they have the same parent, their specificity is determined according to the rules
for defaults defined in the DSD document.

Example

Speech applications often require tuning of parameters that depend—at the same time—on
the platform (such as the speech engine) and on programmer-defined abstractions (such as
class attributes). Here, we define a DSD fragment that can be included as a stylesheet in
speech documents:

13

<DSD:Default>

<Context><Element Name="select"/></Context>

<DefaultAttribute Name="ATT:speech-engine" Value="watson.2039"/>
</DSD:Default>

<DSD:Default>
<Context>
<Element Name="select">
<Attribute Name="interaction_class" Value="myown"/>
<Attribute Name="ATT:speech-engine" Value="watson.2039"/>
</Element>
</Context>
<DefaultAttribute Name="ATT:speech-engine-timeout" Value="2s"/>
</DSD:Default>

This stylesheet instructs the DSD processor to augment select elements with an ATT: speech-
engine attribute designating the watson.2039 speech engine. Moreover, it tells the DSD

processor to augment all select elements whose interaction_class attribute is myown and

whose ATT:speech-engine attribute is watson.2039 with an attribute ATT: speech-engine-

timeout whose value is 2s.

Note that a programmer would expect the ATT: speech-engine attribute to be inserted
before the ATT:speech-engine-timeout attribute; see the example in Section 2.8 for how
such priorities are specified.

The DSD default syntax is nothing but an XMLized adaptation of Cascading Style
Sheets. A more familiar concrete syntax would be:

select {’ATT:speech-engine’: watson.2039}

select [interaction_class=’myown’]
[ATT:speech-engine=’watson.2039°] {’ATT:speech-engine-timeout’: 2s}

2.6 Element descriptions

An element description defines a pair consisting of an element name and a constraint.
An element definition associates an element description to an element ID.

elementdescr — <Element IDRef=AttValue/> |
<Element Name=AttValue (Defaultable="YesOrNo")?>
doc constraintexp
</Element>

elementdef — <ElementDef ID=AttValue (Name=AttValue)?
(Defaultable="YesOrNo")?>
doc constraintexp
</ElementDef>

An element description of the first form (with an IDRef) is called indirect and of the
second form (with a Name) direct. Every direct element description is assigned an
implicit element ID, different from all other IDs, such that all element descriptions
have an ID. The Name property defines the name of the description. If omitted, the
name defined is the value of the ID.

An element description is evaluated on the current element as follows:

14

1. If the name of the current element is not the same as the name defined by the
element description, then evaluation fails.

2. The constraint of the element description is evaluated according to Section 2.7.
During this evaluation, attributes and content expressions are gradually de-
clared. Initially, the sets of declared attributes and content expressions are
empty. The element description evaluation fails if the evaluation of the con-
straint fails.

3. An evaluation error occurs if not all of the attributes of the current element are
declared during the evaluation.

4. Similarly, an evaluation error occurs unless the sets of element names of de-
clared content expressions are disjoint and their union contain the names of the
element’s child elements. This requirement treats character data as a pseudo-
element. In particular, at most one of the content expressions may declare
character data. Note that omitting content expressions from an element de-
scription has the effect that no content is allowed.

5. By the preceding requirement and the semantics of content descriptions (Sec-
tion 2.10), each child element, except those matched by AnyElement, has been
assigned an element ID. For each such child element, the element description
designated by the ID is evaluated. If any of these evaluations fail, then the
evaluation of the current element fails.

The meaning of the Defaultable property is defined in Section 2.10.

Example

We develop here a DSD for a markup language that expresses simple menus as found in
IVR systems (IVR means Interactive Voice Response). The notation is based on a select
element similar to that of HTML:

<!-- http://www.brics.dk/DSD/examples/1.0/phone_example.dsd -->
<DSD IDRef="phoneml" DSDVersion="1.0">

<Title>PhoneML DSD</Title>

<ElementDef ID="phoneml">
<0OneOrMore>
<Element IDRef="select"/>
</0neOrMore>
</ElementDef>

</DSD>
This DSD, which is not yet complete, defines the markup language to consist of a root
element identified by the element definition phoneml. This element description defines the
element name to be phoneml (since no explicit name is provided in the element definition).

It also defines the content to be a non-empty sequence of elements provided by the select
element definition, which is:

15

<ElementDef ID="select">
<AttributeDecl Name="class" Optional="yes"/>
<0neOrMore>
<Element IDRef="option_element"/>
</0One0OrMore>
<Element Name="help" Defaultable="yes">
<Content IDRef="audio_content"/>
</Element>
<Element Name="prompt" Defaultable="yes">
<Content IDRef="audio_content"/>
</Element>
</ElementDef>

The constraint of this definition declares an optional class attribute; it also introduces
three kinds of content, which can be arbitrarily interspersed: one or more elements defined
by option_element, a help element with content audio_content, and a prompt element,
also with content audio_content. The option_element element definition is:

<ElementDef ID="option_element" Name="option">
<AttributeDecl Name="value"/>
<Content IDRef="audio_content"/>
</ElementDef>

which defines elements with ID option_element to have the tag name option and content
audio_content. So, if we assume that the elements option, help, and prompt may contain
character data, then a conforming document might be

<?dsd URI="http://www.brics.dk/DSD/examples/1.0/phoneml.dsd"?>
<phoneml>

<select>
<option value="blue">blue widget</option>
<option value="red">red widget</option>
<prompt>Please select red or blue widget!</prompt>
<help>Say red or blue</help>

</select>

</phoneml>

The order of appearance of the help and prompt elements within the select element is
inconsequential. Here is another conforming way of writing the select element:
<select>
<help>Say red or blue</help>
<option value="blue">blue widget</option>
<prompt>Please select red or blue widget!</prompt>
<option value="red">red widget</option>
</select>

2.7 Constraints

A constraint definition associates an ID to a constraint expression. A constraint
expression is a sequence of constraint terms.

constraint— <Constraint (IDRef=AttValue | CurrIDRef=AttValue)/> |
<Constraint> doc constraintexp </Constraint>

16

constraintdef — <ConstraintDef (ID=AttValue | RenewID=AttValue)>
doc constraintexp
</ConstraintDef>
constraintexp — (doc constraintterm)s

constraintterm — attributedecl|
condconstraint |
contentexp |
boolexp |
constraint
condconstraint— <If> doc boolexp
<Then> doc constraintexp </Then>
(<Else> doc constraintexp </Else>)?
</If>

A constraint that is a reference is evaluated according to Section 2.3. Evaluation of
a constraint that is not a reference consists of evaluating its constraint expression.
The evaluation of a constraint expression consists of evaluating its constraint terms
in their order of occurrence. If any such evaluation fails, then the evaluation of the
constraint fails.

Constraint terms are evaluated as follows:

e Attribute declarations are evaluated as described in Section 2.8.

e For a conditional constraint, its first constraint expression is evaluated if the
boolean expression is true; otherwise, and if it contains a second expression,
this expression is evaluated.

e Content expressions are evaluated as described in Section 2.10.

e A boolean expressions is verified to be meaningful and true; otherwise, the
evaluation fails.

e A constraintterm being a constraint is evaluated as the constraint expression
it contains.

Note that both a condconstraint and a contentexp may take the shape of an If
element. The ambiguity is solved by always regarding an If element in this context
as a condconstraint.

Example

We describe how to make the PhoneML language of Section 2.6 extensible so that we can
later add new attributes to the select element. Since element IDs cannot be redefined, we
must in the initial design of the DSD make a “hook” for extensions. The hook is a constraint
that we name select_constraint. We change the DSD as indicated here:

<!-- http://www.brics.dk/DSD/examples/1.0/phone_with_constraints.dsd -->
<DSD IDRef="phoneml" DSDVersion="1.0">

<Title>PhoneML DSD</Title>

17

<ElementDef ID="select">
<Constraint IDRef="select_constraint"/>
</ElementDef>

<ConstraintDef ID="select_constraint">
<AttributeDecl Name="class" Optional="yes"/>
<OneOrMore>
<Element IDRef="option_element"/>
</0OneOrMore>
<Element Name="help" Defaultable="yes">
<Content IDRef="audio_content"/>
</Element>
<Element Name="prompt" Defaultable="yes">
<Content IDRef="audio_content"/>
</Element>
</ConstraintDef>

</béb>
2.8 Attribute declarations

An attribute declaration declares an attribute with a name and a type.

attributedec] =~ — <AttributeDecl (IDRef=AttValue | CurrIDRef=AttValue)/> |

<AttributeDecl Name=AttValue attrdeclattrs >
attrdeclcontent
</AttributeDecl>

attributedecldef — <AttributeDeclDef (ID=AttValue | RenewID=AttValue)
Name=AttValue attrdeclattrs >
attrdeclcontent
</AttributeDeclDef>

— (Optional="YesOrNo")? (IDType="IDType")?
attrdeclcontent — (doc stringtypeexp)? (doc pointsto)?
IDType — ID | IDRef | RenewID | CurrIDRef

pointsto — <PointsTo> doc boolexp </PointsTo>

attrdeclattrs

An attribute declaration that is a reference is evaluated according to Section 2.3. If
it is not a reference, then it is evaluated as follows on the current element. If its
name is already in the current set of declared attributes, then the evaluation fails.
Otherwise, if the attribute (as named in the declaration) is not present in the current
element, and there are applicable defaults then the selected default is inserted. The
evaluation is successful if either,

e the attribute is not present (after possible default insertion) and the declaration
has the Optional property with value “yes” or “Yes”, or

e the attribute is present and either the declaration does not provide a string
type or the attribute value satisfies the string type according to Section 2.13.

Otherwise, if the attribute is present and does not satisfy the string type, evaluation
fails. If evaluation is successful, then the attribute is said to have been declared.

18

If an IDType has been specified there are some additional requirements in order
for evaluation to be successful:

e 1o two attributes of type ID in the document can have the same value;

e the value of an attribute of type IDRef must occur as the value of an attribute
of type ID of some other element; and

e the value of an attribute of type RenewID or CurrIDRef must occur as the
value of an attribute of type ID of some element that is before and that does
not contain the current element.

If evaluation is successful, an attribute of type IDRef is a reference to the last element
that has an attribute of type ID or RenewID with the same value. An attribute of
type RenewID or CurrIDRef is a reference to the last element that is before and does
not contain the current element and has an attribute of type ID or RenewID with the
same value.

The semantics of PointsTo is explained in Section 2.15.

Validity requirements A PointsTo may be present only if the attribute declara-
tion has the IDRef, RenewID, or CurrIDRef type. An attribute declaration may have
the Optional property only if it is not an IDType.

Example

The attribute declaration below declares an attribute with name publication_ref. Its value
is an ID reference, whose referenced element must have the name Book or Article.

<AttributeDecl Name="publication_ref" IDType="IDRef">
<Stringtype IDRef="Name"/>
<PointsTo>
<0r>
<Context><Element Name="Book"/></Context>
<Context><Element Name="Article"/></Context>
</0r>
</PointsTo>
</AttributeDecl>

Example

Here we use the PhoneML description of Section 2.7 to add platform and programmer
specific attributes. Insertion of defaults for these attributes were discussed in Section 2.5.

<!-- http://www.brics.dk/DSD/examples/1.0/phone_extension.dsd -->
<DSD IDRef="phoneml" DSDVersion="1.0">

<Title>PhoneML DSD (with AT&T engine and "interaction_class")</Title>

<?7include URI=
"http://www.brics.dk/DSD/examples/1.0/phone_with_constraints.dsd"?>

<ConstraintDef RenewID="select_constraint">
<Constraint CurrIDRef="select_constraint"/>

19

<AttributeDecl Name="interaction_class" Optional="yes"/>

<AttributeDecl Name="ATT:speech-engine" Optional="yes"/>

<AttributeDecl Name="ATT:speech-engine-timeout" Optional="yes"/>
</ContentDef>

<Default>
<Context><Element Name="select"/></Context>
<DefaultAttribute Name="interaction_class" Value="myown"/>
</Default>

</DSD>

Note that the interaction_class attribute is introduced before the ATT:speech-engine
attribute, which in turn is before the ATT:speech-engine-timeout attribute. This order
in the DSD also specifies the order in which defaults are inserted; refer to the example in
Section 2.5 to see why this is important.

2.9 Attribute descriptions
An attribute description consists of a name and a string type.

attributedescr — <Attribute Name=AttValue Value=AttValue/> |
<Attribute Name=AttValue>
(doc stringtypeexp)?
</Attribute>

An attribute description is meaningful only for a declared presence of an attribute.
The description is true if an attribute with the name denoted by Name is present
and the attribute value either is the same as the name denoted by Value or satisfies
the stringtypeexp. If neither a Value nor a stringtypeexp is specified, then every
attribute value satisfies the description.

Example

Attribute descriptions may be used to guide the insertion of defaults, just as in CSS, see
earlier example in Section 2.5. They are also useful in common situations where certain
attribute combinations are disallowed. For example, we may express the requirement that
exactly one out of the two attributes ID or RenewID must be present as the constraint:

<OneO0f><Attribute Name="ID"/><Attribute Name="RenewID"/></0One0f>

2.10 Content descriptions
A content description defines a set of content by a content expression.

contentdescr — <Content (IDRef=AttValue | CurrIDRef=AttValue)/> |
<Content> doc contentexp </Content>

contentdef — <ContentDef (ID=AttValue | RenewID=AttValue)>
doc contentexp

20

</ContentDef>

contentexp — <Sequence> (doc contentexp)x </Sequence> |

<Optional> doc contentexp </Optional> |
<ZeroOrMore> doc contentexp </ZeroOrMore> |
<0neOrMore> doc contentexp </0neOrMore> |
<Union> (doc contentexp)* </Union> |
<AnyElement/> |
<Empty/> |
<If> doc boolexp

<Then> doc contentexp </Then>

(<Else> doc contentexp </Else>)?
</I1f> |
stringtype |
elementdescr |
contentdescr

A content description that is a reference is evaluated according to Section 2.3. Eval-
uation of a content description that is not a reference is defined as follows.

The element names of a content expression is the set of element names of element
declarations in the content expression. An occurrence of stringtype, which represents
chardata, is treated as a pseudo-element declaration, that is, as a declaration of an
element with a name different from all other names in the DSD (but one that the same
for all occurrences of stringtype). Additionally, if the content expression contains an
<AnyElement/> or an <Empty/>, then every possible element is considered declared
(except the chardata pseudo-element, which can only be declared by an occurrence
of stringtype).

With stringtype regarded as a chardata pseudo-element descriptor, we identify
content with an element sequence. A content expression induces for any content a
subsequence, called the projected content, that consists of the element occurrences
whose names are declared by the expression.

Content expression evaluation is carried out by a process of tentative evaluation.
A successful tentative evaluation defines a consumed prefix of the content, along with
a remaining suffix.

A content expression is evaluated from left to right on the projected original
content. The evaluation succeeds if the tentative evaluation succeeds and consumes
all of the projected content. In that case, the content expression is said to have been
declared. Since tentative evaluation is carried out on a subsequence of the children
of the original content, it is possible to associate a current child node to tentative
evaluation on non-empty content: it is the node that corresponds to the first element
of the remaining suffix of the content. During tentative evaluation, element defaults
are sometimes inserted in front of the remaining suffix. If tentative evaluation of a
content expression fails, then all defaults inserted during the tentative evaluation of
the expression are removed.

Adjacent chardata nodes (including chardata nodes only separated by comments
or processing instructions) are here considered as one node with their content being
concatenated.

21

Tentative evaluation of a content expression on content takes place as follows:

<Sequence> ¢j ...c, </Sequence> If n = 0 then tentative evaluation succeeds and
no content is consumed. Now assume that n > 0. Then, c¢; is tentatively
evaluated on the content. If this evaluation succeeds, then the remaining con-
tent is tentatively evaluated with respect to <Sequence> c; . .. ¢, </Sequence>.
Otherwise, evaluation fails.

<Optional> ¢ </Optional> This construct is equivalent to <Union> ¢ <Sequence/>
</Union>.

<ZeroOrMore> ¢ </ZeroOrMore> First, c is tentatively evaluated. If this evaluation
consumes content, then the result is the tentative evaluation of <ZeroOrMore>
¢ </Zero0OrMore> on the remaining content. Otherwise, if no content was con-
sumed, the tentative evaluation of the whole expression succeeds and consumes
no content.

<OneOrMore> ¢ </0OneOrMore> This expression is evaluated as <Sequence> c
<ZeroOrMore> ¢ </ZeroOrMore> </Sequence>.

<Union> ¢ ...c¢, </Union> Content expressions c1,...,c, are tentatively evaluated
starting from the same current child node, in turn, until an evaluation succeeds.
Then the evaluation of the whole expression succeeds. If no tentative evalua-
tion succeeds, then the evaluation of the whole expression fails and nothing is
consumed.

<AnyElement/> This expression succeeds if the content is non-empty in which case it
consumes the first element; otherwise, it fails. Note that <AnyElement/> does
not assign an ID to the consumed element.

<Empty/> This expression succeeds if the remaining suffix is empty; otherwise, it
fails. No content is consumed.

<If> b <Then> ¢; </Then> (<Else> ¢y </Else>)? </If> It is an evaluation error if
b is not a meaningful boolexp. If b is true, then ¢; is tentatively evaluated. If b
is false and cq is present, then cs is tentatively evaluated. Otherwise, tentative
evaluation succeeds and nothing is consumed.

stringtype If the remaining suffix is non-empty and the current child node is a char-
data pseudo-element which matches the stringtype according to Section 2.13,
the tentative evaluation consumes the current child node and succeeds. Other-
wise, if an applicable default chardata exists, the selected default is inserted in
front of the remaining suffix (as a part of the consumed prefix), and evaluation
succeeds. Otherwise, tentative evaluation fails.

elementdescr The tentative evaluation succeeds if the remaining suffix is non-empty,
the current child node is a non-pseudo element, and the element description
defines a name (Section 2.6) that is the same as that of the current child node.
In this case, the tentative evaluation consumes the current child node, and it
assigns this element the ID of the element description. Otherwise, if

22

e an applicable default for the name of the element description exists;

e the element description has a Defaultable property with value “yes” or
“Yes”; and

e the current node has not itself been inserted as a part of a default

then the default element (including its content) of the selected default is inserted
in front of the remaining suffix (as a part of the consumed prefix), it is assigned
the ID of the element description, and the evaluation succeeds. Otherwise,
tentative evaluation fails.

Note that tentative evaluation of an elementdescr does not include the eval-
uation defined in Section 2.6—tentative evaluation only assigns an ID to the
node.

contentdescr This content expression is tentatively evaluated as the content expres-
sion it contains.

Example

Since DSDs may constrain character data in element content, it is easy to characterize say
tables in relational databases:

<!-- http://wuw.brics.dk/DSD/examples/1.0/relational.dsd -->
<DSD IDRef="prices" DSDVersion="1.0">

<Title>Price tables</Title>

<ElementDef ID="prices">
<0OneOrMore>
<Sequence>
<Element Name="name"/>
<StringType IDRef="Name"/>
<Element Name="no"/>
<StringType IDRef="ProductNumber"/>
<Element Name="price"/>
<StringType IDRef="DollarAmount"/>
</Sequence>
</0One0rMore>
</ElementDef>

</DSD>
where Name, ProductNumber, DollarAmount are appropriate string types. A conforming
application document may look like

<?dsd URI="http://www.brics.dk/DSD/examples/1.0/relational.dsd"?>
<prices>
<name/>Elbow Joint <no/>a9382 <price/>23.04

<name/>Straight Joint <no/>c383 <price/>14.55
</prices>

23

Example

The audio_content of the PhoneML language is text (character data) interspersed with em
elements that themselves contain audio_content:
<ContentDef ID="audio_content">

<ZeroOrMore><Content IDRef="audio_item"/></ZeroOrMore>
</ContentDef>

<ContentDef ID="audio_item">
<Union>
<StringType/>
<Element Name="em"><Content IDRef="audio_content"/></Element>
</Union>
</ContentDef>

2.11 Boolean formulas

A boolean formula is a boolean expression, which is made out of usual boolean con-
nectives and atomic propositions that are attribute descriptions or context patterns.

boolformula— <Bool (IDRef=AttValue | CurrIDRef=AttValue)/> |
<Bool> doc boolexp </Bool>
booldef — <BoolDef (ID=AttValue | RenewID=AttValue)>
doc boolexp
</BoolDef>

boolexp ~ — <And> (doc boolexp)* </And> |
<0r> (doc boolexp)x </0r> |
<0ne0f> (doc boolexp)x </0OneDf> |
<Not> (doc boolexp)* </Not> |
<Imply> doc boolexp doc boolexp </Imply> |
<Equiv> (doc boolexp)x </Equiv> |
attributedescr |
contextpattern |
boolformula

A boolean formula that is a reference is explained in Section 2.3; if not a reference,
the formula is explained in terms of its boolean expression.

A boolexp is meaningful (at a point during evaluation of the current element) if
all contained attribute descriptions are meaningful (see Section 2.9). A meaningful
boolean expression is true according to the following conditions:

<And> by ...b, </And> Each b; is true.

<0r> by ...b, </0r> At least one b; is true.
<One0f> by ...b, </0ne0f> Exactly one b; is true.
<Not> by ...b, </Not> Some b; is false.

<Imply> by by </Imply> Either b; is false or bs is true (or both).

24

<Equiv> by ...b, </Equiv> Either each b; is true or each b; is false.
attributedescr See Section 2.9.

contextpattern See Section 2.12.

boolformula The formula is true.

Note that evaluation of a boolean expression has no side effects except for those
explained in Section 2.3, which details the meaning of circular references.

2.11.1 Specificity of boolean expressions

The specificity of a boolean expression is the maximum specificity of any context
expression (see Section 2.12.1) that is part of the boolean expression; if there are no
such expressions, then its specificity is minimum.

2.12 Context patterns

A context pattern determines a set of matching paths in the XML tree. A context
pattern is specified as a context expression, which is a sequence of context term
according to which a matching path may be decomposed.

contextpattern — <Context (IDRef=AttValue | CurrIDRef=AttValue)/> |
<Context> contextexp </Context>
contextdef — <ContextDef (ID=AttValue | RenewID=AttValue)>
doc contextexp

</ContextDef>
contextexp — (doc contextterm)x
contextterm — <SomeElements/> |

elementpattern |

contextpattern

elementpattern— <Element (IDRef=AttValue | Name=AttValue)?>
(doc attributedescr)x
</Element>

A context pattern that is a reference is explained in Section 2.3; if not a reference,
the context pattern is explained in terms of its context expression.

Context expressions and terms match paths of elements. Each such element is
the current element or is above it.

e A path is matched by a context expression consisting of terms ¢; ...t, if the
path may be decomposed into consecutive fragments p; ...p, such that p; is
matched by context term t; for each 3.

e A path is matched by an elementpattern if it consists of one element node

— whose name matches the Name property, if a such is specified;

25

— whose assigned element ID matches the value of the IDRef property, if a
such is specified; and

— each attribute description names a declared attribute in the element, and
each attribute description is true.

e Every path is matched by <SomeElements/>.

e A path a matched by a Context if it is matched by the context expression it
contains.

An element node is matched by a context pattern if it is the last node in a path that
is matched. As a boolean expression, the context pattern is then true; otherwise, it
is false.

2.12.1 Specificity of context patterns

Context patterns are compared as follows. Context pattern c¢; has higher specificity
than cg if

1. the number of attribute names in ¢; is larger than that of cs; or

2. the number of attribute names in ¢; is the same as that of ¢, and the number
of element names in ¢ is larger than that of cs;

Example

With DSDs, we can reconstruct some of the CSS functionality for HTML according to the
visual formatting model. In our framework, there is no separate universe of concepts called
properties; instead, font families, sizes, etc. are represented as attributes. We can even
extend CSS selectors, so that they allow selectors to act on font attributes themselves. For
example, we may specify that fonts set to 8pt are rendered using the Terminal8 font. To
do so, we design the HTML DSD so that all elements specifying font attributes declare
the size attribute before the font family attribute. (This could easily be accomplished by
defining a constraint font_constraint that declares all the font related attributes in a
desired order; then, a definition of an element may reference this constraint in order to
declare font attributes.) Then, to render 8pt fonts using Terminal8, we would write
<Default>
<Context>
<Element><Attribute Name="font-size" Value="8pt"/></Element>
</Context>

<DefaultAttribute Name="font-family" Value="Terminal8"/>
</Default>

To specify that all h1 headers are rendered in blue, we write

<Default>
<Context><Element Name="h1"/><SomeElements/></Context>
<DefaultAttribute Name="font-color" Value="blue"/>
</Default>

Note that we specify that not only the hl elements receive the default value blue, but also
all their descendants. In this way, we explicitly express that the font color property of the
CSS formatting model is inherited.

26

2.13 String types

A string type defines a set of character strings in terms of a regular expression. String
types are used to specify valid chardata and attribute values.

stringtype ~ — <StringType (IDRef=AttValue | CurrIDRef=AttValue)?/> |
<StringType> doc stringtypeexp </StringType>
stringtypedef — <StringTypeDef (ID=AttValue | RenewID=AttValue)>
doc stringtypeexp
</StringTypeDef>
stringtypeexp — <Sequence> (doc stringtypeexp)x </Sequence> |
<Optional> doc stringtypeexp </0Optional> |
<ZeroOrMore> doc stringtypeexp </ZeroOrMore> |
<OneOrMore> doc stringtypeexp </OneOrMore> |
<Union> (doc stringtypeexp)* </Union> |
<Intersection> (doc stringtypeexp)* </Intersection> |
<Complement> doc stringtypeexp </Complement> |
<Repeat Value="Numeral"> doc stringtypeexp </Repeat> |
<Empty/> |
<String Value=AttValue/> |
<CharSet Value=AttValue/> |
<CharRange Start="Char" End="Char"/> |
<AnyChar/> |
stringtype

A string type or a string type expression defines a regular language over a Unicode
alphabet. The alphabet is determined as the declared encoding of the DSD document.
A string type that is a reference is explained in Section 2.3. If it is not a reference
and no string type expression is provided, the language defined is the set of all
strings. If it is not a reference but a string type expression is provided then the
language defined is that of the expression.
The languages of string type expressions are defined as follows:

<Sequence> 1 ...S, </Sequence> The concatenation of the languages defined by
S1y++-458n-

<Optional> s </Optional> The union of the language defined by s and the language
containing only the empty string.

<ZeroOrMore> s </ZeroOrMore> The concatenation of zero or more strings from the
language denoted by s.

<OneOrMore> s </0OneOrMore> The concatenation of one or more strings from the
language denoted by s.

<Union> 87 ...8, </Union> The union of the languages denoted by s1,..., s,.

<Intersection> s;...s, </Intersection> The intersection of the languages de-
noted by s1,..., 8.

27

<Complement> s </Complement> The complement of the language denoted by s.

<Repeat Value="n"> s </Repeat> The concatenation of n strings from the lan-
guage denoted by s.

<Empty/> The empty language.
<String Value="v"/> The singleton set consisting of the string v.

<CharSet Value="v"/> The set of strings of length one that contain one of the
characters in v.

<CharRange Start="c¢;" End="c"/> The set of strings consisting of a single char-
acter whose code is greater than or equal to the code of the character ¢; and
less or equal to the code of the character c,.

<AnyChar/> The set of strings of length one.
stringtype The language of the string type.

Note that since characters are specified as attribute values some characters, like '<’,
cannot occur directly, but must be specified by character entities.
A string satisfies a string type if it belongs to the language defined by the type.

Example

The definition of ProductNumber from the database example in Section 2.10 may look like:

<StringTypeDef ID="ProductNumber">
<Sequence>
<CharRange Start="a" End="c"/>
<0OneOrMore>
<CharRange Start="0" End="9"/>
</0OneOrMore>
</Sequence>
</StringTypeDef>

This regular expression would usually be written something like [a-c] [0-9]+.

2.14 Common syntactic constructs

From the XML specification [8], we adopt the definitions of the following syntactic
categories: Char, AttValue, CharData, element, and content. A YesOrNo is one of
the strings “yes”, “Yes”, “no”, or “No”. A Numeral is a non-empty string of digits.

2.15 Checking points-to requirements

The points-to requirements are satisfied if for all attributes whose declarations are of
type IDRef, RenewID, or CurrIDRef, and that have a PointsTo boolean expression,
the expression is meaningful and true of the referenced element. This requirement
must hold of the document after its evaluation.

28

2.16 Validity, conformance, and result document

A main DSD is walid if all validity requirements in this section hold. An application
document is conforming if

e it contains a DSD processing instruction specifying a valid main DSD;

e the evaluation of the root element description on the root element succeeds;
and

e all points-to requirements are satisfied.

For a conforming document, the result of the application document processing is an
XML document that is a textual representation of the original XML tree augmented
with inserted values of attributes and elements.

The result may also include various information calculated during the process-
ing. This information is specified using a namespace with prefix DSD and name
http://www.brics.dk/DSD. As an example, the element ID assigned to a node in
the application document may be added as the value of an attribute DSD: IDRef. This
parsing information can be useful in subsequent processing by other tools. Similarly,
when a DSD processor determines that an application document is not conformant,
error messages may be placed inside DSD:Error elements added to the tree.

29

A A DSD for DSDs

The meta-DSD presented here is complete in the sense that a document is a wvalid
DSD if and only if it conforms to the meta-DSD.

<?xml version="1.0"7>
<?dsd URI="http://www.brics.dk/DSD/dsd.dsd"?>

<DSD IDRef="maindsd" DSDVersion="1.0">

<Title>DSD for DSDs</Title>
<Version>1.0</Version>
<Author>Nils Klarlund, Anders Moeller, and Michael I. Schwartzbach</Author>

<Doc>
This document is a valid DSD that describes DSD validity.

For more information about DSD, see the DSD home page at
http://www.brics.dk/DSD/.
</Doc>

<!-- GENERAL CONCEPTS -->

<ElementDef ID="maindsd" Name="DSD">
<AttributeDecl Name="IDRef" IDType="IDRef" Optional="no">
<PointsTo><Context><Element Name="ElementDef"/></Context></PointsTo>
</AttributeDecl>
<AttributeDecl Name="DSDVersion"><String Value="1.0"/></AttributeDecl>
<Content IDRef="dsdcontent"/>
</ElementDef>

<ElementDef ID="subdsd" Name="DSD">
<AttributeDecl Name="IDRef" IDType="IDRef" Optional="yes">
<PointsTo><Context><Element Name="ElementDef"/></Context></PointsTo>
</AttributeDecl>
<AttributeDecl Name="DSDVersion"><String Value="1.0"/></AttributeDecl>
<Content IDRef="dsdcontent"/>
</ElementDef>

<ContentDef ID="dsdcontent">
<Sequence>
<Optional><Element Name="Title"><Content IDRef="content"/></Element></Optional>
<Optional><Element Name="Version"><Content IDRef="content"/></Element></Optional>
<Optional><Element Name="Author"><Content IDRef="content"/></Element></Optional>
<ZeroOrMore>
<Sequence>
<Content IDRef="doc"/>
<Union>
<Element IDRef="subdsd"/><Element IDRef="default"/><Content IDRef="structdef"/>
</Union>
</Sequence>
</ZeroOrMore>
</Sequence>
</ContentDef>

<ContentDef ID="structdef">
<Union>

30

<Element IDRef="elementdef"/>
<Element IDRef="constraintdef"/>
<Element IDRef="attributedecldef"/>
<Element IDRef="contentdef"/>
<Element IDRef="booldef"/>
<Element IDRef="contextdef"/>
<Element IDRef="stringtypedef"/>
</Union>
</ContentDef>

<ContentDef ID="doc">
<Sequence>
<Optional><Element Name="Label"><Content IDRef="content"/></Element></Optional>
<Optional><Element Name="BriefDoc"><Content IDRef="content"/></Element></Optional>
<Optional><Element Name="Doc"><Content IDRef="content"/></Element></Optional>
</Sequence>
</ContentDef>

<!-- DEFAULTS -->

<ElementDef ID="default" Name="Default">
<Optional><Content IDRef="boolexp"/></Optional>
<ZeroOrMore>
<Union><Element IDRef="defattribute"/><Element IDRef="defcontent"/></Union>
</ZeroOrMore>
</ElementDef>

<ElementDef ID="defattribute" Name="DefaultAttribute">
<AttributeDecl Name="Name"/>
<AttributeDecl Name="Value"/>

</ElementDef>

<ElementDef ID="defcontent" Name="DefaultContent">
<Union><Content IDRef="element"/><StringType/></Union>
</ElementDef>

<!-- ELEMENT DESCRIPTIONS -->

<ElementDef ID="elementdescr" Name="Element">
<AttributeDecl Name="IDRef" IDType="IDRef" Optional="yes">
<PointsTo><Context><Element Name="ElementDef"/></Context></PointsTo>
</AttributeDecl>
<AttributeDecl Name="Name" Optional="yes"/>
<AttributeDecl Name="Defaultable" Optional="yes">
<StringType IDRef="YesOrNo"/>
</AttributeDecl>
<0One0f><Attribute Name="IDRef"/><Attribute Name="Name"/></0One0f>
<If><Attribute Name="Name"/><Then><Content IDRef="constraintexp"/></Then></If>
</ElementDef>

<ElementDef ID="elementdef" Name="ElementDef">
<AttributeDecl Name="ID" IDType="ID"/>
<AttributeDecl Name="Name" Optional="yes"/>
<AttributeDecl Name="Defaultable" Optional="yes">
<StringType IDRef="YesOrNo"/>
</AttributeDecl>
<Content IDRef="constraintexp"/>

31

</ElementDef>
<!-- CONSTRAINTS -->

<ElementDef ID="constraint" Name="Constraint">
<AttributeDecl Name="IDRef" IDType="IDRef" Optional="yes">
<PointsTo><Context><Element Name="ConstraintDef"/></Context></PointsTo>
</AttributeDecl>
<AttributeDecl Name="CurrIDRef" IDType="CurrIDRef" Optional="yes">
<PointsTo><Context><Element Name="ConstraintDef"/></Context></PointsTo>
</AttributeDecl>
<Not><And><Attribute Name="IDRef"/><Attribute Name="CurrIDRef"/></And></Not>
<If>
<Not><0r><Attribute Name="IDRef"/><Attribute Name="CurrIDRef"/></0r></Not>
<Then><Content IDRef="constraintexp"/></Then>
</If>
</ElementDef>

<ElementDef ID="constraintdef" Name="ConstraintDef">
<AttributeDecl Name="ID" IDType="ID" Optional="yes"/>
<AttributeDecl Name="RenewID" IDType="RenewID" Optional="yes">
<PointsTo><Context><Element Name="ConstraintDef"/></Context></PointsTo>
</AttributeDecl>
<One0f><Attribute Name="ID"/><Attribute Name="RenewID"/></One0f>
<Content IDRef="constraintexp"/>
</ElementDef>

<ContentDef ID="constraintexp">
<ZeroOrMore>
<Sequence>
<Content IDRef="doc"/>
<Content IDRef="constraintterm"/>
</Sequence>
</ZeroOrMore>
</ContentDef>

<ContentDef ID="constraintterm">
<Union>
<!-- NOTE: condconstraint must be before contentexp
to resolve If ambiguity correctly -->
<Element IDRef="attributedecl"/>
<Content IDRef="condconstraint"/>
<Content IDRef="contentexp"/>
<Content IDRef="boolexp"/>
<Element IDRef="constraint"/>
</Union>
</ContentDef>

<ContentDef ID="condconstraint">
<Element Name="If">

<Sequence>
<Content IDRef="boolexp"/>
<Element Name="Then"><Content IDRef="constraintexp"/></Element>
<Optional>

<Element Name="Else"><Content IDRef="constraintexp"/></Element>

</0Optional>

</Sequence>

32

</Element>
</ContentDef>

<!-- ATTRIBUTE DECLARATIONS -->

<ElementDef ID="attributedecl" Name="AttributeDecl">
<AttributeDecl Name="IDRef" IDType="IDRef" Optional="yes">
<PointsTo><Context><Element Name="AttributeDeclDef"/></Context></PointsTo>
</AttributeDecl>
<AttributeDecl Name="CurrIDRef" IDType="CurrIDRef" Optional="yes">
<PointsTo><Context><Element Name="AttributeDeclDef"/></Context></PointsTo>
</AttributeDecl>
<Not><And><Attribute Name="IDRef"/><Attribute Name="CurrIDRef"/></And></Not>
<If>
<Not><0r><Attribute Name="IDRef"/><Attribute Name="CurrIDRef"/></0r></Not>
<Then>
<AttributeDecl Name="Name"/>
<Constraint IDRef="attrdeclattrs"/>
<Content IDRef="attrdeclcontent"/>
</Then>
</If>
</ElementDef>

<ElementDef ID="attributedecldef" Name="AttributeDeclDef">
<AttributeDecl Name="ID" IDType="ID" Optional="yes"/>
<AttributeDecl Name="RenewID" IDType="RenewID" Optional="yes">
<PointsTo><Context><Element Name="AttributeDeclDef"/></Context></PointsTo>
</AttributeDecl>
<One0f><Attribute Name="ID"/><Attribute Name="RenewID"/></One0f>
<AttributeDecl Name="Name"/>
<Constraint IDRef="attrdeclattrs"/>
<Content IDRef="attrdeclcontent"/>
</ElementDef>

<ConstraintDef ID="attrdeclattrs">
<AttributeDecl Name="Optional" Optional="yes">
<StringType IDRef="YesOrNo"/>
</AttributeDecl>
<AttributeDecl Name="IDType" Optional="yes">
<StringType IDRef="IDType"/>
</AttributeDecl>
</ConstraintDef>

<ContentDef ID="attrdeclcontent">
<Sequence>
<Optional><Content IDRef="stringtypeexp"/></Optional>
<If>
<Attribute Name="IDType">
<Union>
<String Value="IDRef"/><String Value="CurrIDRef"/><String Value="RenewID"/>
</Union>
</Attribute>
<Then>
<Optional>
<Sequence><Content IDRef="doc"/><Element IDRef="pointsto"/></Sequence>
</Optional>
</Then>

33

</If>
</Sequence>
</ContentDef>

<StringTypeDef ID="IDType">
<Union>
<String Value="ID"/><String Value="IDRef"/>
<String Value="RenewID"/><String Value="CurrIDRef"/>
</Union>
</StringTypeDef>

<ElementDef ID="pointsto" Name="PointsTo">
<Content IDRef="boolexp"/>
</ElementDef>

<!-- ATTRIBUTE DESCRIPTIONS -->

<ElementDef ID="attributedescr" Name="Attribute">
<AttributeDecl Name="Name"/>
<AttributeDecl Name="Value" Optional="yes"/>
<If>
<Not><Attribute Name="Value"/></Not>
<Then><Optional><Content IDRef="stringtypeexp"/></Optional></Then>
</If>
</ElementDef>

<!-- CONTENT DESCRIPTIONS -->

<ElementDef ID="contentdescr" Name="Content">
<AttributeDecl Name="IDRef" IDType="IDRef" Optional="yes">
<PointsTo><Context><Element Name="ContentDef"/></Context></PointsTo>
</AttributeDecl>
<AttributeDecl Name="CurrIDRef" IDType="CurrIDRef" Optional="yes">
<PointsTo><Context><Element Name="ContentDef"/></Context></PointsTo>
</AttributeDecl>
<Not><And><Attribute Name="IDRef"/><Attribute Name="CurrIDRef"/></And></Not>
<If>
<Not><0r><Attribute Name="IDRef"/><Attribute Name="CurrIDRef"/></0r></Not>
<Then><Content IDRef="contentexp"/></Then>
</If>
</ElementDef>

<ElementDef ID="contentdef" Name="ContentDef">
<AttributeDecl Name="ID" IDType="ID" Optional="yes"/>
<AttributeDecl Name="RenewID" IDType="RenewID" Optional="yes">

<PointsTo><Context><Element Name="ContentDef"/></Context></PointsTo>

</AttributeDecl>
<One0f><Attribute Name="ID"/><Attribute Name="RenewID"/></One0f>
<Content IDRef="contentexp"/>

</ElementDef>

<ContentDef ID="contentexp">
<Sequence>
<Content IDRef="doc"/>
<Union>
<Element Name="Sequence">
<ZeroOrMore><Content IDRef="contentexp"/></ZeroOrMore>

34

</Element>
<Element Name="Optional"><Content IDRef="contentexp"/></Element>
<Element Name="ZeroOrMore"><Content IDRef="contentexp"/></Element>
<Element Name="OneOrMore"><Content IDRef="contentexp"/></Element>
<Element Name="Union">
<ZeroOrMore><Content IDRef="contentexp"/></ZeroOrMore>
</Element>
<Element Name="AnyElement"/>
<Element Name="Empty"/>
<Element Name="If">
<Sequence>
<Content IDRef="boolexp"/>
<Element Name="Then"><Content IDRef="contentexp"/></Element>
<Optional>
<Element Name="Else"><Content IDRef="contentexp"/></Element>
</Optional>
</Sequence>
</Element>
<Element IDRef="stringtype"/>
<Element IDRef="elementdescr"/>
<Element IDRef="contentdescr"/>
</Union>
</Sequence>
</ContentDef>

<!-- BOOLEAN FORMULAS -->

<ElementDef ID="boolformula" Name="Bool">
<AttributeDecl Name="IDRef" IDType="IDRef" Optional="yes">
<PointsTo><Context><Element Name="BoolDef"/></Context></PointsTo>
</AttributeDecl>
<AttributeDecl Name="CurrIDRef" IDType="CurrIDRef" Optional="yes">
<PointsTo><Context><Element Name="BoolDef"/></Context></PointsTo>
</AttributeDecl>
<Not><And><Attribute Name="IDRef"/><Attribute Name="CurrIDRef"/></And></Not>
<If>
<Not><0r><Attribute Name="IDRef"/><Attribute Name="CurrIDRef"/></0r></Not>
<Then><Content IDRef="boolexp"/></Then>
</If>
</ElementDef>

<ElementDef ID="booldef" Name="BoolDef">
<AttributeDecl Name="ID" IDType="ID" Optional="yes"/>
<AttributeDecl Name="RenewID" IDType="RenewID" Optional="yes">

<PointsTo><Context><Element Name="BoolDef"/></Context></PointsTo>

</AttributeDecl>
<One0f><Attribute Name="ID"/><Attribute Name="RenewID"/></0One0f>
<Content IDRef="boolexp"/>

</ElementDef>

<ContentDef ID="boolexp">
<Sequence>
<Content IDRef="doc"/>
<Union>
<Element Name="And"><ZeroOrMore><Content IDRef="boolexp"/></ZeroOrMore></Element>
<Element Name="Or"><ZeroOrMore><Content IDRef="boolexp"/></ZeroOrMore></Element>
<Element Name="OneOf"><ZeroOrMore><Content IDRef="boolexp"/></ZeroOrMore></Element>

35

<Element Name="Not"><ZeroOrMore><Content IDRef="boolexp"/></ZeroOrMore></Element>
<Element Name="Imply">
<Sequence><Content IDRef="boolexp"/><Content IDRef="boolexp"/></Sequence>
</Element>
<Element Name="Equiv"><ZeroOrMore><Content IDRef="boolexp"/></ZeroOrMore></Element>
<Element IDRef="attributedescr"/>
<Element IDRef='"contextpattern"/>
<Element IDRef="boolformula"/>
</Union>
</Sequence>
</ContentDef>

<!-- CONTEXT PATTERNS -->

<ElementDef ID="contextpattern" Name="Context">
<AttributeDecl Name="IDRef" IDType="IDRef" Optional="yes">
<PointsTo><Context><Element Name="ContextDef"/></Context></PointsTo>
</AttributeDecl>
<AttributeDecl Name="CurrIDRef" IDType="CurrIDRef" Optional="yes">
<PointsTo><Context><Element Name="ContextDef"/></Context></PointsTo>
</AttributeDecl>
<Not><And><Attribute Name="IDRef"/><Attribute Name="CurrIDRef"/></And></Not>
<If>
<Not><0r><Attribute Name="IDRef"/><Attribute Name="CurrIDRef"/></0r></Not>
<Then><Content IDRef="contextexp"/></Then>
</If>
</ElementDef>

<ElementDef ID="contextdef" Name="ContextDef">
<AttributeDecl Name="ID" IDType="ID" Optional="yes"/>
<AttributeDecl Name="RenewID" IDType="RenewID" Optional="yes">

<PointsTo><Context><Element Name="ContextDef"/></Context></PointsTo>

</AttributeDecl>
<One0f><Attribute Name="ID"/><Attribute Name="RenewID"/></One0f>
<Content IDRef="contextexp"/>

</ElementDef>

<ContentDef ID="contextexp">
<ZeroOrMore>
<Sequence>
<Content IDRef="doc"/><Content IDRef="contextterm"/>
</Sequence>
</ZeroOrMore>
</ContentDef>

<ContentDef ID="contextterm">
<Union>
<Element IDRef="elementpattern"/>
<Element Name="SomeElements"/>
<Element IDRef="contextpattern"/>
</Union>
</ContentDef>

<ElementDef ID="elementpattern" Name="Element">
<AttributeDecl Name="IDRef" IDType="IDRef" Optional="yes">
<PointsTo><Context><Element Name="ElementDef"/></Context></PointsTo>
</AttributeDecl>

36

<AttributeDecl Name="Name" Optional="yes"/>
<Not><And><Attribute Name="IDRef"/><Attribute Name="Name"/></And></Not>
<ZeroOrMore>
<Sequence><Content IDRef="doc"/><Element IDRef="attributedescr"/></Sequence>
</ZeroOrMore>
</ElementDef>

<!-- STRING TYPES -->

<ElementDef ID="stringtype" Name="StringType">
<AttributeDecl Name="IDRef" IDType="IDRef" Optional="yes">
<PointsTo><Context><Element Name="StringTypeDef"/></Context></PointsTo>
</AttributeDecl>
<AttributeDecl Name="CurrIDRef" IDType="CurrIDRef" Optional="yes">
<PointsTo><Context><Element Name="StringTypeDef"/></Context></PointsTo>
</AttributeDecl>
<Not><And><Attribute Name="IDRef"/><Attribute Name="CurrIDRef"/></And></Not>
<If>
<Not><Or><Attribute Name="IDRef"/><Attribute Name="CurrIDRef"/></0r></Not>
<Then><Optional><Content IDRef="stringtypeexp"/></0Optional></Then>
</If>
</ElementDef>

<ElementDef ID="stringtypedef" Name="StringTypeDef">
<AttributeDecl Name="ID" IDType="ID" Optional="yes"/>
<AttributeDecl Name="RenewID" IDType="RenewID" Optional="yes">
<PointsTo><Context><Element Name="StringTypeDef"/></Context></PointsTo>
</AttributeDecl>
<One0f><Attribute Name="ID"/><Attribute Name="RenewID"/></One0f>
<Content IDRef="stringtypeexp"/>
</ElementDef>

<ContentDef ID="stringtypeexp">
<Sequence>
<Content IDRef="doc"/>
<Union>
<Element Name="Sequence">
<ZeroOrMore><Content IDRef="stringtypeexp"/></ZeroOrMore>
</Element>
<Element Name="Optional"><Content IDRef="stringtypeexp"/></Element>
<Element Name="ZeroOrMore"><Content IDRef="stringtypeexp"/></Element>
<Element Name="OneOrMore"><Content IDRef="stringtypeexp"/></Element>
<Element Name="Union">
<ZeroOrMore><Content IDRef="stringtypeexp"/></ZeroOrMore>
</Element>
<Element Name="Intersection">
<ZeroOrMore><Content IDRef="stringtypeexp"/></ZeroOrMore>
</Element>
<Element Name="Complement"><Content IDRef="stringtypeexp"/></Element>
<Element Name="Repeat">
<AttributeDecl Name="Value"><StringType IDRef="Numeral"/></AttributeDecl>
<Content IDRef="stringtypeexp"/>
</Element>
<Element Name="AnyChar"/>
<Element Name="Empty"/>
<Element Name="String"><AttributeDecl Name="Value"/></Element>
<Element Name="CharSet"><AttributeDecl Name="Value"/></Element>

37

<Element Name="CharRange'>
<AttributeDecl Name="Start"><StringType IDRef="Char"/></AttributeDecl>
<AttributeDecl Name="End"> <StringType IDRef="Char"/></AttributeDecl>
</Element>
<Element IDRef="stringtype"/>
</Union>
</Sequence>
</ContentDef>

<!-- COMMON SYNTACTIC CONSTRUCTS -->

<StringTypeDef ID="Char">
<AnyChar/>
</StringTypeDef>

<StringTypeDef ID="YesOrNo">
<Union>
<String Value="yes"/><String Value="Yes"/><String Value="no"/><String Value="No"/>
</Union>
</StringTypeDef>

<StringTypeDef ID="Numeral">
<OneOrMore><CharRange Start="0" End="9"/></OneOrMore>
</StringTypeDef>

<ContentDef ID="element">
<AnyElement/>
</ContentDef>

<ContentDef ID="content">
<ZeroOrMore><Union><AnyElement/><StringType/></Union></ZeroOrMore>
</ContentDef>

</DSD>

B A more readable default syntax

We have strived to make context descriptions very similar to the selector mechanism
of Cascading Style Sheets [4]. The XMLized syntax we use should be complemented
with a version of CSS syntax that appeals to application document writers. We
already gave one example in Section 2.5. Here is another one that shows how content
defaults could be formulated:

<DSD:Default>

<Context><Element/></Context>

<DefaultAttribute Name="font-weight" Value="bold"/>
</DSD:Default>

<DSD:Default>
<Context>
<Element Name="menu">
<Attribute Name="class" Value="myown">
</Element>
</Context>
<DefaultContent>

38

<prompt>
please enter your selection!
</prompt>
</DefaultContent>
</DSD:Default>

could be written more concisely as

<DSD:Defaults>

* {font-weight: bold}

menu.myown {<prompt>please enter your selection!</prompt>}
</DSD:Defaults>

C Availability

An experimental implementation of a DSD processor is available from the DSD home
page:

http://www.brics.dk/DSD/

This home page also contains DSD examples and an XSL stylesheet for rendering
DSD documents in browsers.

39

References

[1] Murray Altheim et al. Modularization of XHTML. Techni-
cal report, W3C, March 1999. W3C Working Draft, Online at
http://www.w3.org/TR /1999 /xhtml-modularization-19990406/ .

[2] David Beech et al. XML Schema part 1: Structures. Technical report, W3C,
May 1999. W3C Working Draft.

[3] Paul V. Biron and Ashok Malhotra. XML Schema part 2: Datatypes. Technical
report, W3C, May 1999. World Wide Web Consortium Working Draft.

[4] Bert Bos, Hakon Wium Lie, Chris Lilley, and Ian Jacobs, editors. Cas-
cading Style Sheets, level 2, CSS2 Specification. W3C, 1998. Online at
http://www.w3.org/TR/REC-CSS2/.

[5] Ronald Bourret, John Cowan, Ingo Macherius, and Simon St. Laurent, edi-
tors. Document Definition Markup Language (DDML) Specification, Version
1.0. W3C, 1999. Online at http://www.w3.org/TR/NOTE-ddml.

[6] Tim Bray, Charles Frankston, and Ashok Malhotra, editors. Document Content
Description for XML. W3C, 1998. Online at http://www.w3.org/TR/NOTE-
dcd.

[7] Tim Bray, Dave Hollander, and Andrew Layman, editors. Namespaces in XML.
W3C, 1999. Online at http://www.w3.org/TR/REC-xml-names.

[8] Tim Bray, Jean Paoli, and C. M. Sperberg-McQueen, editors. Exten-
sible Markup Language (XML) 1.0. W3C, February 1998. Ounline at
http://www.w3.org/TR/REC-xml.

[9] James Clark. XSL transformations (XSLT) specification. Technical report, W3C,
1999. W3C Working Draft, Online at http://www.w3.org/TR/WD-xslt.

[10] John Cowan. Itsy bitsy teeny weeny simple hypertext. Online at
http://www.ccil.org/ cowan /XML /ibtwsh.dtd.

[11] John Cowan and David Megginson. XML information set. Technical report,
W3C, May 1999. W3C Working Draft, Online at http://www.w3.org/TR/xml-
infoset.

[12] Nils Klarlund and Anders Mgller. MONA Version 1.8 User Manual. BRICS,
1998. Online at http://www.brics.dk/mona.

[13] Dave Raggett. Assertion grammars. Draft, Online at
http://www.w3.org/People/Raggett/dtdgen/Docs/, May 1999.

40

