Müller, E.
, Assent, I., Günnemann, S., Seidl, T. & Dy, J. (2015).
MultiClust special issue on discovering, summarizing and using multiple clusterings.
Machine Learning,
98(1-2), 1-5.
https://doi.org/10.1007/s10994-014-5445-0
Campos, G. O., Zimek, A., Sander, J., Campello, R. J. G. B.
, Micenková, B., Schubert, E. ... Houle, M. E. (2016).
On the evaluation of unsupervised outlier detection: measures, datasets, and an empirical study.
Data Mining and Knowledge Discovery,
30(4), 891-927.
https://doi.org/10.1007/s10618-015-0444-8
Son, M. T., Amer-Yahia, S.
, Assent, I., Birk, M.
, Storgaard Dieu, M., Jacobsen, J. & Kristensen, J. (2019).
Scalable Interactive Dynamic Graph Clustering on Multicore CPUs.
IEEE Transactions on Knowledge and Data Engineering,
31(7), 1239-1252. [8340880].
https://doi.org/10.1109/TKDE.2018.2828086
Shao, J., Tan, Y., Gao, L., Yang, Q., Plant, C.
& Assent, I. (2019).
Synchronization-based clustering on evolving data stream.
Information Sciences,
501, 573-587.
https://doi.org/10.1016/j.ins.2018.09.035
Kremer, H., Günnemann, S., Ivanescu, A-M.
, Assent, I. & Seidl, T. (2011).
Efficient Processing of Multiple DTW Queries in Time Series Databases.
Lecture Notes in Computer Science,
6809, 150-167.
https://doi.org/10.1007/978-3-642-22351-8_9
Assent, I., Domeniconi, C., Gullo, F., Tagarelli, A. & Zimek, A. (Eds.) (2013).
Proceedings of the 4th MultiClust Workshop on Multiple Clusterings, Multi-view Data, and Multi-source Knowledge-driven Clustering. Association for Computing Machinery.
Pham, T. H.
, Kristensen, J., Mai, S. T., Assent, I., Jacobsen, J., Vo, B. & Le, A. (2018).
Interactive Exploration of Subspace Clusters on Multicore Processors. In A. Hameurlain, R. Wagner, D. Benslimane, E. Damiani & W. I. Grosky (Eds.),
Transactions on Large-Scale Data- and Knowledge-Centered Systems XXXIX: Special Issue on Database- and Expert-Systems Applications (Vol. 11310, pp. 169-199). Berlin, Heidelberg: Springer VS. Lecture Notes in Computer Science (LNCS), Vol.. 11310
https://doi.org/10.1007/978-3-662-58415-6_6
Müller, E.
, Assent, I., Günnemann, S., Gerwert, P., Hannen, M., Jansen, T. & Seidl, T. (2011).
A Framework for Evaluation and Exploration of Clustering Algorithms in Subspaces of High Dimensional Databases. In T. Härder, W. Lehner, B. Mitschang, H. Schöning & H. Schwarz (Eds.),
Proceedings of the 14th GI Conference on Database Systems for Business, Technology, and the Web (BTW 2011) (pp. 347-366). Gesellschaft für Informatik e.V..
Thai Son, M., Assent, I. & Le, A. T. (2016).
Anytime OPTICS: An efficient approach for hierarchical density-based clustering. In S. B. Navathe, W. Wu, S. Shekhar, X. Du, X. Sean Wang & H. Xiong (Eds.),
Database Systems for Advanced Applications - 21st International Conference, DASFAA 2016, Proceedings (Vol. 9642, pp. 164-179). Springer VS. Lecture Notes in Computer Science (LNCS), Vol.. 9642
https://doi.org/10.1007/978-3-319-32025-0_11
Neerbek, J., Assent, I. & Dolog, P. (2018).
Detecting Complex Sensitive Information via Phrase Structure in Recursive Neural Networks. In D. Phung, V. S. Tseng, G. I. Webb, B. Ho, M. Ganji & L. Rashidi (Eds.),
Advances in Knowledge Discovery and Data Mining: PAKDD '18 (Vol. 10939, pp. 373-385). Springer VS. Lecture Notes in Computer Science (LNCS), No. 10939
https://doi.org/10.1007/978-3-319-93040-4_30
Micenková, B., Ng, R. T.
, Dang, X-H. & Assent, I. (2013).
Explaining outliers by subspace separability. In H. Xiong, G. Karypis, B. Thuraisingham, D. Cook & X. Wu (Eds.),
Proceedings, IEEE 13th International Conference on Data Mining (ICDM 2013) (pp. 518 - 527 ). IEEE Press. IEEE International Conference on Data Mining (ICDM'13)
Kristensen, J., Mai, S. T., Assent, I., Jacobsen, J., Vo, B. & Le, A. (2017).
Interactive exploration of subspace clusters for high dimensional data. In D. Benslimane, E. Damiani, W. I. Grosky, A. Hameurlain, A. Sheth & R. R. Wagner (Eds.),
Database and Expert Systems Applications - 28th International Conference, DEXA 2017, Proceedings (Vol. 10438 LNCS, pp. 327-342). Springer VS. Lecture Notes in Computer Science, Vol.. 10438
https://doi.org/10.1007/978-3-319-64468-4_25
Dang, X-H., Micenková, B., Assent, I. & Ng, R. T. (2013).
Local Outlier Detection with Interpretation. In H. Blockeel, K. Kersting , S. Nijssen & F. Železný (Eds.),
Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2013, Prague, Czech Republic, September 23-27, 2013, Proceedings, Part III (pp. 304-320 ). Springer VS. Lecture Notes in Computer Science, Vol.. 8190
https://doi.org/10.1007/978-3-642-40994-3_20
Campos, G. O., Zimek, A., Sander, J., Campello, R. J. G. B.
, Micenkova, B., Schubert, E. ... Houle, M. E. (2016).
On the Evaluation of Outlier Detection: Measures, Datasets, and an Empirical Study Continued. In R. Krestel, D. Mottin & E. Müller (Eds.),
Proceedings of the Conference "Lernen, Wissen, Daten, Analysen" (Vol. 1670, pp. 1). ceur workshop proceedings. CEUR Workshop Proceedings, Vol.. 1670
Dang, X-H., Micenková, B., Assent, I. & Ng, R. T. (2013).
Outlier Detection with Space Transformation and Spectral Analysis. In C. Kamath, J. Dy, Z. Obradovic, J. Ghosh, S. Parthasarathy & Z-H. Zhou (Eds.),
Proceedings of the 2013 SIAM International Conference on Data Mining, SDM (pp. 225-233). Society for Industrial and Applied Mathematics.
https://doi.org/10.1137/1.9781611972832.25