Müller, E.
, Assent, I., Günnemann, S., Gerwert, P., Hannen, M., Jansen, T. & Seidl, T. (2011).
A Framework for Evaluation and Exploration of Clustering Algorithms in Subspaces of High Dimensional Databases. In T. Härder, W. Lehner, B. Mitschang, H. Schöning & H. Schwarz (Eds.),
Proceedings of the 14th GI Conference on Database Systems for Business, Technology, and the Web (BTW 2011) (pp. 347-366). Gesellschaft für Informatik e.V..
Neerbek, J., Eskildsen, M., Dolog, P.
& Assent, I. (2020).
A real-world data resource of complex sensitive sentences based on documents from the Monsanto trial. In N. Calzolari, F. Bechet, P. Blache, K. Choukri, C. Cieri, T. Declerck, S. Goggi, H. Isahara, B. Maegaard, J. Mariani, H. Mazo, A. Moreno, J. Odijk & S. Piperidis (Eds.),
LREC 2020 - 12th International Conference on Language Resources and Evaluation, Conference Proceedings (pp. 1258-1267). European Language Resources Association.
Thai Son, M., Assent, I., Birk, M. S.
, Dieu, M. S., Jacobsen, J., Kristensen, J., Rahman, H., Thirumuruganathan, S., Das, G., Omidvar-Tehrani, B., Borromeo, R. M., Chen, L., Miller, R., Benouaret, I., Amer-Yahia, S. & Roy, S. B. (2019).
An Efficient Greedy Algorithm for Sequence Recommendation. In
DEXA 2019: International Conference on Database and Expert Systems Applications, Aug 2019, Linz, Austria (pp. 314-326)
https://doi.org/10.1007/978-3-030-27615-7_24
Thai Son, M., Assent, I. & Le, A. T. (2016).
Anytime OPTICS: An efficient approach for hierarchical density-based clustering. In S. B. Navathe, W. Wu, S. Shekhar, X. Du, X. Sean Wang & H. Xiong (Eds.),
Database Systems for Advanced Applications - 21st International Conference, DASFAA 2016, Proceedings (Vol. 9642, pp. 164-179). Springer VS. Lecture Notes in Computer Science (LNCS) Vol. 9642
https://doi.org/10.1007/978-3-319-32025-0_11
Neerbek, J., Assent, I. & Dolog, P. (2018).
Detecting Complex Sensitive Information via Phrase Structure in Recursive Neural Networks. In D. Phung, V. S. Tseng, G. I. Webb, B. Ho, M. Ganji & L. Rashidi (Eds.),
Advances in Knowledge Discovery and Data Mining: PAKDD '18 (Vol. 10939, pp. 373-385). Springer VS. Lecture Notes in Computer Science (LNCS) No. 10939
https://doi.org/10.1007/978-3-319-93040-4_30
Micenková, B., Ng, R. T.
, Dang, X-H. & Assent, I. (2013).
Explaining outliers by subspace separability. In H. Xiong, G. Karypis, B. Thuraisingham, D. Cook & X. Wu (Eds.),
Proceedings, IEEE 13th International Conference on Data Mining (ICDM 2013) (pp. 518 - 527 ). IEEE Press. IEEE International Conference on Data Mining (ICDM'13)
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6724379
Kristensen, J., Mai, S. T., Assent, I., Jacobsen, J., Vo, B. & Le, A. (2017).
Interactive exploration of subspace clusters for high dimensional data. In D. Benslimane, E. Damiani, W. I. Grosky, A. Hameurlain, A. Sheth & R. R. Wagner (Eds.),
Database and Expert Systems Applications - 28th International Conference, DEXA 2017, Proceedings (Vol. 10438 LNCS, pp. 327-342). Springer VS. Lecture Notes in Computer Science Vol. 10438
https://doi.org/10.1007/978-3-319-64468-4_25
Assent, I., Müller, E., Günnemann, S., Krieger, R. & Seidl, T. (2010).
Less is More: Non-Redundant Subspace Clustering. In
1st International Workshop on Discovering, Summarizing and Using Multiple Clusterings (MultiClust 2010) in conjunction with 16th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, DC, USA (2010)
Dang, X-H., Micenková, B., Assent, I. & Ng, R. T. (2013).
Local Outlier Detection with Interpretation. In H. Blockeel, K. Kersting , S. Nijssen & F. Železný (Eds.),
Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2013, Prague, Czech Republic, September 23-27, 2013, Proceedings, Part III (pp. 304-320 ). Springer VS. Lecture Notes in Computer Science Vol. 8190
https://doi.org/10.1007/978-3-642-40994-3_20
Campos, G. O., Zimek, A., Sander, J., Campello, R. J. G. B.
, Micenkova, B., Schubert, E.
, Assent, I. & Houle, M. E. (2016).
On the Evaluation of Outlier Detection: Measures, Datasets, and an Empirical Study Continued. In R. Krestel, D. Mottin & E. Müller (Eds.),
Proceedings of the Conference "Lernen, Wissen, Daten, Analysen" (Vol. 1670, pp. 1). ceur workshop proceedings. CEUR Workshop Proceedings Vol. 1670
http://ceur-ws.org/Vol-1670/paper-55.pdf
Dang, X-H., Micenková, B., Assent, I. & Ng, R. T. (2013).
Outlier Detection with Space Transformation and Spectral Analysis. In C. Kamath, J. Dy, Z. Obradovic, J. Ghosh, S. Parthasarathy & Z-H. Zhou (Eds.),
Proceedings of the 2013 SIAM International Conference on Data Mining, SDM (pp. 225-233). Society for Industrial and Applied Mathematics.
https://doi.org/10.1137/1.9781611972832.25