Shao, J., Tan, Y., Gao, L., Yang, Q., Plant, C.
& Assent, I. (2019).
Synchronization-based clustering on evolving data stream.
Information Sciences,
501, 573-587.
https://doi.org/10.1016/j.ins.2018.09.035
Cao, X., Chen, L., Cong, G.
, Jensen, C. S., Qu, Q., Skovsgaard, A., Wu, D. & Yiu, M. L. (2012).
Spatial Keyword Querying: Invited Paper.
Lecture Notes in Computer Science,
7532, 16-29 .
https://doi.org/10.1007/978-3-642-34002-4_2
Magnani, M.
, Assent, I., Hornbæk, K., Jakobsen, M. R. & Larsen, K. F. (2013).
SkyView: a user evaluation of the skyline operator. In Q. He & A. Iyengar (Eds.),
Proceedings of the 22nd ACM International Conference on Information & Knowledge Management, CIKM '13 (pp. 2249-2254 ). Association for Computing Machinery.
https://doi.org/10.1145/2505515.2505739
Neerbek, J., Dolog, P.
& Assent, I. (2019).
Selective Training: A Strategy for Fast Backpropagation on Sentence Embeddings. In Q. Yang, M-L. Zhang, Z. Gong, S-J. Huang & Z-H. Zhou (Eds.),
Advances in Knowledge Discovery and Data Mining - 23rd Pacific-Asia Conference, PAKDD 2019, Proceedings: PAKDD '19 (pp. 40-53). Springer.
https://doi.org/10.1007/978-3-030-16142-2_4
Mai, S. T., Dieu, M. S.
, Assent, I., Jacobsen, J.
, Kristensen, J. & Birk, M. (2017).
Scalable and interactive graph clustering algorithm on multicore CPUs. In
2017 IEEE 33rd International Conference on Data Engineering (ICDE) (pp. 349-360). IEEE Computer Society Press. Proceedings of the International Conference on Data Engineering
https://doi.org/10.1109/ICDE.2017.94
Son, M. T., Amer-Yahia, S.
, Assent, I., Birk, M., Storgaard Dieu, M., Jacobsen, J. & Kristensen, J. (2019).
Scalable Interactive Dynamic Graph Clustering on Multicore CPUs.
IEEE Transactions on Knowledge and Data Engineering,
31(7), 1239-1252. [8340880].
https://doi.org/10.1109/TKDE.2018.2828086
Assent, I., Domeniconi, C., Gullo, F., Tagarelli, A. & Zimek, A. (Eds.) (2013).
Proceedings of the 4th MultiClust Workshop on Multiple Clusterings, Multi-view Data, and Multi-source Knowledge-driven Clustering. Association for Computing Machinery.
http://dl.acm.org.ez.statsbiblioteket.dk:2048/citation.cfm?id=2501006&coll=DL&dl=ACM
Dang, X-H., Micenková, B., Assent, I. & Ng, R. T. (2013).
Outlier Detection with Space Transformation and Spectral Analysis. In C. Kamath, J. Dy, Z. Obradovic, J. Ghosh, S. Parthasarathy & Z-H. Zhou (Eds.),
Proceedings of the 2013 SIAM International Conference on Data Mining, SDM (pp. 225-233). Society for Industrial and Applied Mathematics.
https://doi.org/10.1137/1.9781611972832.25
Campos, G. O., Zimek, A., Sander, J., Campello, R. J. G. B.
, Micenková, B., Schubert, E.
, Assent, I. & Houle, M. E. (2016).
On the evaluation of unsupervised outlier detection: measures, datasets, and an empirical study.
Data Mining and Knowledge Discovery,
30(4), 891-927.
https://doi.org/10.1007/s10618-015-0444-8
Campos, G. O., Zimek, A., Sander, J., Campello, R. J. G. B.
, Micenkova, B., Schubert, E.
, Assent, I. & Houle, M. E. (2016).
On the Evaluation of Outlier Detection: Measures, Datasets, and an Empirical Study Continued. In R. Krestel, D. Mottin & E. Müller (Eds.),
Proceedings of the Conference "Lernen, Wissen, Daten, Analysen" (Vol. 1670, pp. 1). ceur workshop proceedings. CEUR Workshop Proceedings Vol. 1670
http://ceur-ws.org/Vol-1670/paper-55.pdf
Müller, E.
, Assent, I., Günnemann, S., Seidl, T. & Dy, J. (2015).
MultiClust special issue on discovering, summarizing and using multiple clusterings.
Machine Learning,
98(1-2), 1-5.
https://doi.org/10.1007/s10994-014-5445-0
Dang, X-H., Micenková, B., Assent, I. & Ng, R. T. (2013).
Local Outlier Detection with Interpretation. In H. Blockeel, K. Kersting , S. Nijssen & F. Železný (Eds.),
Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2013, Prague, Czech Republic, September 23-27, 2013, Proceedings, Part III (pp. 304-320 ). Springer VS. Lecture Notes in Computer Science Vol. 8190
https://doi.org/10.1007/978-3-642-40994-3_20
Assent, I., Müller, E., Günnemann, S., Krieger, R. & Seidl, T. (2010).
Less is More: Non-Redundant Subspace Clustering. In
1st International Workshop on Discovering, Summarizing and Using Multiple Clusterings (MultiClust 2010) in conjunction with 16th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, DC, USA (2010)
Kristensen, J., Mai, S. T., Assent, I., Jacobsen, J., Vo, B. & Le, A. (2017).
Interactive exploration of subspace clusters for high dimensional data. In D. Benslimane, E. Damiani, W. I. Grosky, A. Hameurlain, A. Sheth & R. R. Wagner (Eds.),
Database and Expert Systems Applications - 28th International Conference, DEXA 2017, Proceedings (Vol. 10438 LNCS, pp. 327-342). Springer VS. Lecture Notes in Computer Science Vol. 10438
https://doi.org/10.1007/978-3-319-64468-4_25
Pham, T. H.
, Kristensen, J., Mai, S. T., Assent, I., Jacobsen, J., Vo, B. & Le, A. (2018).
Interactive Exploration of Subspace Clusters on Multicore Processors. In A. Hameurlain, R. Wagner, D. Benslimane, E. Damiani & W. I. Grosky (Eds.),
Transactions on Large-Scale Data- and Knowledge-Centered Systems XXXIX: Special Issue on Database- and Expert-Systems Applications (Vol. 11310, pp. 169-199). Springer VS. Lecture Notes in Computer Science (LNCS) Vol. 11310
https://doi.org/10.1007/978-3-662-58415-6_6
Kranen, P., Müller, E.
, Assent, I., Krieger, R. & Seidl, T. (2010).
Incremental Learning of Medical Data for Multi-Step Patient Health Classification. In C. Plant & C. Böhm (Eds.),
Database Technology for Life Sciences and Medicine (pp. 321-344). World Scientific. Science, Engineering and Biology Informatics Vol. 6