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The Search for the Fastest Protocol

* |deally— a best/fastest protocol

* In reality — it dependson the requirementsand setting

* The main parameters:
 Computationalpower (in thistalk we’ll assume standard machines)
* Network speed: LAN vs WAN

* The requirements:

» Security level (semi-honest, covert, malicious)
* Speed: low latency or high throughput

* Note: online/offline really only helps for latency (or for settings where throughput
demands have high variance)
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Two Main Paradigms for Secure Computation

The garbled-circuit paradigm The secret-sharing paradigm
e Constant-round  Many rounds (depth of circuit)
* High bandwidth * Low bandwidth
* Conclusion: * Conclusion:
e Suitable for low latency goal  Suitable for high throughput goal
e Performs well even in slow * Performs well on fast networks
networks only
* High bandwidth means low * Multiplerounds means bad
throughput performance for deep circuits
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Some Sample Numbers — SHA256

 Circuit parameter: the SHA256 circuit has almost 100,000 AND gates
and has depth 4000

e Garbled circuits:

* The best garbled circuit has 256 bits per AND gate
* The size of the garbled circuit is 25Mb
* On a 10Gbps connection, cannot send more than 400 circuits per second

* Secret sharing:

* On a 30ms latency network, minimum computation latency 120 seconds
* On a 1ms latency network, minimum computation latency 4 seconds
* On a 0.1ms latency network, minimum computation latency 0.4 seconds
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Concrete Efficiency — The Last Decade

* Two-party computation (semi-honest)
* Fairplay (2004): 4383 gates, 7.09 seconds on a LAN

* Long series of works: Yao, GMW, OT extensions
e Latest (2014): 22,000 gates (6800 AND), 16ms on a LAN
* Improvement factor of 2000; Moore’s law gives 32
* Two-party computation (malicious)
* Long series of works: cut-and-choose Yao, LEGO-type, SPDZ, TinyOT,...

* Work on semi-honest has been significantin malicioussetting
* Faster and smaller garbled circuits, OT extensions, circuit optimizations...
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Concrete Efficiency — The Last Decade

* Multiparty computation (semi-honest)
* FairplayMP (2008): 1024 gates, 10 sec for 5 parties, 55 sec for 10 parties

e But only honest majority

* GMW implementation (CHKMR 2012): 5500 gates, 7 sec for 5 parties, 10 sec
for 10 parties (but actually much faster)

* Multiparty computation (malicious)
e SPDZ, multiparty TinyOT

* Almost no work in the semi-honest setting: since FairplayMP nothing
constant-round (for low latency goal evenin slow networks)
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Multiparty Computation

e Secret sharing approach:
* Information-theoretic protocols
« GMW
e Suitable for high throughput

* Garbled-circuitapproach:
* The BMR protocol (Beaver-Micali-Rogaway), constant round
e Potential for low latency
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The BMR Garbled Circuit

* Background—Yao’s garbled circuits

w
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* Relies inherently on the fact that one party garblesand the other evaluates
e Cannotwork this way in the multiparty setting (collusions!)
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The BMR Garbled Circuit

* Theidea — each party contributesa secret to mask each value
* Let u,v beinputwires and let w be output wire; let n be number of parties
* Each party P; chooses random keys kfc’,i and k;,i for each wire x € {u, v, w}

* Forevery a,b € {0,1}and every i € {1, ..., n}, double-encrypt k‘;‘q/(ia’b) under the

b 1.b b
keys ky; 1,k 20 Kiinand ky 1, ky 5, Kyn

: b b
* Using a PRG: ¢y p = A (G(k'ﬁ,i) D G(kg,i)) D (kv%(f )” ”k\%% ))

; : ] . . b
* Using a PRF: V) ¢, = ©iLy (Fig, (911D @ Fip (g11))) © e
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Point and Permute

* For every wire u, parties generatea secretrandom4,, € {0,1}
* Thevalue A, @ «a isrevealed, where « is the real value on the wire
* Oninput wires, if u is associated with P;’s input, then it receives 1,

* On output wires, A,, is made public
* The actual ciphertext equation:

' ' ; : Aub®2,) DA,
vj€lnl: c,, = 1 (Fig, @D @ Fyp (91l)) @ Aol

a,
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The Original BMR Protocol

* Primaryobservation: given keys on all wires, the circuit needed to
construct the BMR circuit is of constant depth

* Use any existing protocol with rounds=0(depth)to securely compute
the BMR circuit
* Semi-honest: use GMW; each party inputs result of PRF computations

* Malicious: need to work harder; BMR only did honest majority
* Use general compiler from semi-honest to malicious
* Need to be constant round (so coin-tossing of Pass)
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The Aim

* Optimize BMR in the semi-honest setting
e Joint work with Aner Ben-Efraim and Eran Omri

e Constructa BMR protocol for the malicioussetting

e Using SPDZ —joint work with Benny Pinkas, Nigel Smart and Avishay Yanay
(CRYPTO 2015)

* Using SHE directly — joint work with Nigel Smart and Eduardo Soria-Vazquez
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FairplayMP

* Used BGW to computethe equation for the garbled gate
* Map the concatenation of all keys to a single field element
* Natural over an arithmetic circuit

* Drawbacks of approach:
* Only for an honest majority (uses BGW)
* Very large field computations
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Optimizing Semi-Honest BMR

* Main contributions:
e Adapt free-XOR (when using arithmetic circuit, requires a characteristic-2 field)
e Constructa protocol based on OT (no honest majority)

* Construct faster BGW-based protocols
* FairplayMP worked in a prime field; coin flipping of 4,, values is complex

* Implement and compare to GMW
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Computing Garbled Gates

* \We translate the equationinto an arithmetic circuit

* The equation for gate function g(a, b):

( . : :
=1 (Fie, @D ® Fyp (G11)) @k 1fg(a,b) = 2

=1 (Fie, @D ® Fyp (G11)) @k 1fg(a,b) # A




Computing Garbled Gates

* \We translate the equationinto an arithmetic circuit

* The equation for an AND gate:

(O (Fig, @I) @ Fp @I1)) B kS i@ ® 4) - (b @A) =2y

= 4
| Ok (Fug Gl @ Fig GID) B iy @@ ) (b @A) A




Computing Garbled Gates

* \We translate the equationinto an arithmetic circuit

* The equation for an AND gate:

kg;,j if(a®A,) - (bDA,) =4,

J _mn . ' '
Ca,b _@lzl (Fku,l(g”]) @ Fkg,l(g”])) @ {leVJ lf (a @ /’{u) . (b @ /‘11]) =5 /1W



Arithmetizing the Expression

* The equation for AND:

Cop = Ola (Fig, (Il © Fip (911)
® (kb (1-@® 1) b D))

® (k™ @@ ) (b @ 1))



Free XOR

* Foreveryi € [n], party P; choosesa random R;
* For every wire u, P; chooses a random kﬂ)i and sets k&,i = kg}l- @D R;
* A side benefit—a much simpler BMR equation!

* Cap = Olkn (Fiz, D & Fip (9110)

@k, ® (R (@D 1) b D) D 4y))

* This needs 2 instead of 4 multiplications for AND (as well as free for XOR)
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A BGW-Based Protocol (the idea)

* Cop= O (Fg, @I © Fo (911)) DK, ; D (B (@®2)- b ®1,) DA))

The parties all hold shares of each A (AL, @ --- @ A% = 1,,)
Each party P; inputs
* Fie (GI) @ Fyp (gllj)forallj (Pjinputs Fya (g11j) © Fyp (11) @ ki)

° Rl
e ad® /11;1 We work in a field
. large enough for k only
* bD A, (in contrast to
. /lf,v FairplayMP)

Use BGW to compute the result (2 multiplications, 4 additions)
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BGW-Based Protocols

* \We have multiple optimizations
* Fast field multiplication: using PCLMULQDQ and utilizing “small” values

e Reducing number of rounds: fewer degree reductions

* Theresult of R; - ((a d1)- bDA,)D /1W) is only added to other values, and so no
need to do degree reduction on it

e And more...

* Complexity: cubicin the number of parties

e Each gate needs n multiplications, but multiplication is quadraticin BGW-
semi-honest (computing Shamir shares is 0(n?))
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Honest Minority — OT-Based Protocol

* Main observation: we only need to multiply bits and a string by a bit
* Two-party string-bit multiplication with OT: computex - b

P, (x): Choose random r P, (b)
Setxog=1;X =xPr
xo’xl \ b
String OT
(extension)
Xb
Output r Output x,



OT-Based Protocol

* Step 1: Compute pairwise XOR shares of 4, - 4,
e This is just the XOR of products A}, - A, and so can use bit-OT multiplication

* Step 2: Compute XOR sharesof (a @ 1,,) - (b D A,) D A,, for each
a,b € {0,1} (local computation only)

* Step 3: Compute XOR sharesof R; - (a @ 4,) - (b D 1,) D 4,

* This uses a 4 string-OT multiplications between each pair

* Step 4: XOR the result with the PRF values and broadcast



Evaluation

 CREATE (part of DETER):
* Intel Xeon 2.20GHz, 6 core,
* Network with 0.1ms ping time (= 0.05ms latency)

* Amazon Virginia-Virginia
* c4.8xlarge instances
* Network with 1ms ping time (= 0.5ms latency)

 Amazon Virginia-lreland
e c4.8xlarge instances
* Network with 75ms ping time (=37.5ms latency)
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Evaluation

* Compareto GMW in [CHKMR12] on same platforms
* Uses optimized OT extensions

* GMW online and offline: OT on random inputs, in online single-bit sent only
per AND gate

* BMR online and offline: build circuit offline, send input and compute online

* Run with:
e AEScircuit: 6800 AND gates, depth =40
e SHA256 circuit: 90,825 AND gates, depth = 4000
 SHA256* synthetic: 90,825 AND gates, depth=10, 100, 1000
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Hypotheses

* GMW will win on very shallow circuitsin all networks

* BMR will win on deep circuitsin all networks

* BMR will win on not shallow circuits in slow networks

* BMR-online will beat GMW-online except for very shallow circuits
« BGW-BMR will beat BGW-OT (but requires honest majority)

* Questions:
* What is the effect of the number of parties?
* At what circuit-depth and network speed does BMR/GMW win?
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Amazon Virginia-lreland — WAN (37.5ms latency)

Total Time/#Parties: Amazon Virginia-Ireland, Depth=4000, #AND=91,000
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Amazon Virginia — LAN (0.5ms latency)

Total Time/Parties: Amazon Virginia, Depth=4000, #AND=91,000 Online Time/Parties, Amazon Virginia, Depth=4000, #AND=91,000
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CREATE — Fast LAN (0.05ms latency)

Total Time/Parties: CREATE, Depth=4000, #AND=91000
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CREATE — Fast LAN (0.05ms latency)

The SHA256 Circuit — 90,825 AND gates:

[ 3 | 5 | 7 9 11 13 33
oT Off 1963 + 95 | 2389 + 116 | 2819 + 122 | 14928 + 817
On 260 + 28 324 + 22 419 + 23 1506 + 12
BGW3  Off 2017 + 168 | 4234 + 192 | 5825 + 201 | 53257 + 541
On 252 + 24 321 + 39 416 + 36 1445 + 130
BGW2  Off 930 + 118 | 1799 + 129 | 2528 + 139 | 3946 + 179 | 5690 + 259 | 51098 + 902
On 135 + 14 194 + 13 253 + 16 315 + 32 412 + 47 1485 + 225
BGW4  Off || 582+ 70 | 1219 + 126 | 2200 + 193 | 3383 + 164 | 4920 + 158 | 6868 + 170 | 60858 + 657
On 78 + 11 138 + 17 196 + 18 251 + 18 317 + 30 419 + 38 1471 + 190
GMW Off || 637 £ 67 | 719+ 165 | 789 + 143 | 906 + 261 | 964 + 236 | 953 + 159 1463 + 120
(d=4000) On || 391 + 37 | 466 + 140 | 531 + 137 | 636 + 241 | 644 + 196 | 700 + 134 1113 + 81
GMW Off || 674 + 42 | 732+ 170 | 715+ 131 | 873 + 255 | 889 + 212 | 895 + 171 1372 + 158
(d=1000) On 141 + 34 187 + 134 | 213+ 138 | 301 +£230 | 314 + 212 | 292 + 169 387 + 79
GMW Off || 610 + 42 | 648 + 129 | 755 + 156 | 836 + 242 | 876 + 205 | 870 + 138 1346 + 147
(d=100) On 88 + 70 105 + 105 91 + 88 167 + 196 | 176 + 191 139 + 134 143 + 54
GMW Off || 585 + 76 | 644 + 148 | 716 + 162 | 802 + 223 | 862 + 201 | 857 + 130 1364 + 170
(d=10) On 68 + 97 70 + 92 105 + 246 | 156 + 208 | 124 + 168 | 127 + 150 135 + 86

®»BIU
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Amazon Virginia — LAN (0.5ms latency)

The AES Circuit — 6800 AND gates:
| 3 | 5 | 7 | 9 | 11 | 13

OT Off |53 £ 22 | 91 £ 152 | 324 &+ 1344 | 429 4+ 417 | 701 £ 1284 | 1629 + 3027
On 6 + 10 17 £ 17 28 £ 27 43 £+ 96 37 £ 24 59 £ 162

BGW3 Off | 29 &£ 11 | 103 & 165 | 249 + 364 | 394 £ 311 | 838 & 1305 | 1008 + 584
On | 18 £ 15 23 + 35 28 + 24 38 £+ 20 58 £ 171 99 + 138

BGW2 Off 88 £+ 140 | 270 £ 322 | 412 + 317 | 670 £ 290 782 £ 339
On 23 £ 15 33 £ 68 44 + 78 38 + 100 46 £+ 20

BGW4 Off | 47 =85 | 148 + 243 | 361 £ 394 | 682 £ 514 | 1078 £ 287 | 1815 £ 2455
On 8 £ 12 22 £16 35 £ 32 36 £ 23 66 £ 206 46 £ 22

GMW  Off || 127 £ 47 | 126 £ 48 125 £ 47 | 164 £ 186 | 111 + 62 116 £ 85
On || 27 £ 11 35 £ 15 43 £ 55 62 + 142 68 £+ 160 119 £ 211

BGW-BMR beats OT-BMR for few parties only;
.) Blu i GMW wins in total time, loses in online time (small circuit)

Cryptography and Cyber Security



Amazon Virginia-lreland — WAN (37.5ms latency)

The AES Circuit — 6800 AND gates:

3

7

13

oT Off || 698 £ 930 | 1093 + 1249 | 9699 + 6119
On 138 &+ 88 107 £+ 87 362 £ 515
BGW3 Off | 329 £688 | 2314 + 1218 | 9774 + 8181
On 143 £+ 81 142 £ 76 329 £ 533
BGW2 Off 2212 + 1440 | 8745 £ 6832
On 148 + 92 264 + 409
BGW4 Off | 498 £ 737 | 3149 + 2065 | 13298 + 10576
On 139 £ 78 159 £ 70 308 £ 473
GMW  Off | 231 &£ 143 | 277 + 1067 382 £ 290
On || 3337 + 166 3232 £ 9 3341 £ 213

& BiU
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The SHA256 Circuit — 90,825 AND gates:

3 7 13
oT Off 6426 + 1651 10291 + 4968 25215 + 4784
On 172 £ 76 226 + 62 456 + 357
BGW3  Off | 5404 + 11751 17011 &+ 23574 | 38584 £ 35997
On 182 £ 77 237 £ 91 520 £ 659
BGW2  Off 14781 + 12134 | 37585 £ 17255
On 283 + 86 459 + 325
BGW4  Off 8124 + 8000 23521 £ 20794 | 65736 £ 45895
On 226 + 78 282 + 86 454 + 281
GMW Off 850 £ 900 5002 £ 10643 5042 + 9212
(d=4000) On || 309741 + 32130 | 333996 + 92024 | 329220 + 31340
GMW Off 701 £ 556 3581 + 4976 7932 £+ 16242
(d=1000) On 77147 £+ 4031 83168 £ 19932 82111 + 5584
GMW Off 735 £ 509 2610 £ 8173 4969 + 9222
(d=100) On 8038 £ 518 8327 £ 80 8341 + 271
GMW Off 998 £ 362 1180 + 521 5360 £+ 12829
(d=10) On 880 £ 75 906 + 25 904 + 84

At depth 100, GMW wins in total time evenina WAN,
but is an order of magnitude slower in online time




Hypotheses

* GMW will win on very shallow circuits in all networks
* BMR wi “ win or if deep is 4000, then not true in very fast networks
* BMR will win ' if 100 is not shallow, then true only for few parties (total time)

* BMR-online will beat G| only forfew parties OR deep circuits (in slow network) cits

* BGW-BMR will beat BGW-OT ( only for few parties ONESt Majority)

* Questions:
 What is the effect of the number of parties? marginal in GMW; significant in BMR

* At what circuit-depth and network speed does BMR/GMW win?
it depends, but GMW far better than expected
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Constant-Round for Malicious Adversaries

* The only multiparty protocol everimplemented for malicious
adversaries is SPDZ
* In a slow network with a deep circuit, thiscannot perform well
* Multiparty TinyOT is also concretely efficient, but has many rounds

e Can we use the BMR paradigm in this setting as well?

* A major obstacle: forcing the parties to inputthe correct PRF valuesis
inherently inefficient (expensive zero knowledge)



SPDZ-BMR [L-Pinkas-Smart-Yanay CRYPTO15]

* Main idea: Use SPDZ to compute the BMR garbled circuit
* Major obstacle— provingcorrectness of PRF values

* Solution:
* Don’t force the parties to input correct PRF values
* We prove thatinputtingincorrect PRF valuescan only resultin abort
* The only problem can be if it changes from one valid value to another

* Obstacle 2 — need to ensure that A, values are pseudorandom; coin
tossing expensive

* Solution:SPDZ providescoin tossing almost for free
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SPDZ-BMR [L-Pinkas-Smart-Yanay CRYPTO15]

e Obstacle 3 — need to force consistency of /13,, values when wire u is input
to multiple gates

e Solution:
* Constructa single arithmetic circuit for computing all gates at once
e Depth of circuit is constant
* The main goal: reduce the number of multiplications in the BMR-circuit
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SPDZ-BMR

* The gate computation works as follows:
 Computethe “indicatorvariables”

[%a] = (fg([Aa], [As)) ; [Ac]) = (fo([Aals o)) = [Ae])?
* Multiply by the output keys:
Veza] = (1 —[2a]) - [keyo] + [@a] - [Ke1]

e Add in the PRF masks and open:

A=Y (1B @1 +F% (9)]) + [Vewd]



SPDZ-BMR Cost

* Size of circuit computingthe BMR garbled circuit
e 13 multiplications per AND gate, and 7 multiplications per XOR gate

* Cost of computingthe circuit using SPDZ

* For every wire, need to generate n shared random values
* Since each gaterequires essentially generating n ciphertexts

* To create a shared random value each of n parties needs to encrypt input
data (which must be valid)

* Each of these requires a ZKPOK, with O(n) SHE encryptions
* Overall number of SHE multiplications per gate: 0(n?)

 Very fast onlinetime — only 2 rounds and local computation

Center for Research in Applied
Cryptography and Cyber Security



SPDZ-SHE [L-Smart-Soria-Vazquez 2016]

 Main idea: Use somewhat homomorphicencryption (SHE) to directly
compute the BMR garbled circuit

» Save the intermediary step of generating multiplication triples

* Major goal: reduce the depth of the circuit computingthe BMR
garbled circuit

* This has significant influence over the efficiency since it affects the size of the
SHE parameters

* We achieve a quadraticnumber of multiplicationsonly (but need an
SHE of depth 3)



SPDZ-SHE

* A naive approach yields a circuit of depth 4:
* Multiply to get indicator bit— 2 multiplications (need to square)
 Multiplyindicator bit by keys — 1 more multiplication
* An additional multiplicationis needed (as in SPDZ) to ensure correct output

e Our aim: reduce the depth of the circuit run inside SHE
* We construct equations multiplyingkey in directly
e Our equationsdo not always compute the correct key
* Our equation always computes the correct key or its additive complement
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SPDZ-BMR

* A depth-2 equation for the AND gate:

(Vewa) = (1= (a)) - ((Ae) - (Ret) + (1= (Ac)) - (Key0))
) (o) = o)) - (et) + (1= () = (A) - (Key0))

e For example’ifla = }lb == AC = 0 then we gEt kC,O
* Forexample,if 4, = 4, = A, = 1 thenwe get —k_

* Thisis a problem:

e A party learns information if it knows that it received the value or its
complement



SPDZ-BMR

* The solution
* No party knows the basic key values
* The key used to mask is the square of these values

* Thereis additional cost since the basic key values now need to be
generated using an SHE “generate random”
* Thus, there are more multiplications but the depth is lower
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Summary

* The BMR paradigm deserves more attention

* Semi-honest optimizationsare an important first step
* Improvements on the circuit
e Surprising results regardingthe BGW vs OT approaches

* We used SPDZ and SHE to compute for malicious
* What other methods can be used?
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