Efficient Constant-Round Multiparty Computation Yehuda Lindell Bar-Ilan University Based on joint works with Aner Ben-Efraim, Eran Omri, Benny Pinkas, Nigel Smart, Eduardo Soria-Vasquez and Avishai Yanay ## The Search for the Fastest Protocol - Ideally a best/fastest protocol - In reality it depends on the requirements and setting - The main parameters: - Computational power (in this talk we'll assume standard machines) - Network speed: LAN vs WAN - The requirements: - Security level (semi-honest, covert, malicious) - Speed: low latency or high throughput - Note: online/offline really only helps for latency (or for settings where throughput demands have high variance) ## Two Main Paradigms for Secure Computation #### The garbled-circuit paradigm - Constant-round - High bandwidth #### Conclusion: - Suitable for low latency goal - Performs well even in slow networks - High bandwidth means low throughput #### The secret-sharing paradigm - Many rounds (depth of circuit) - Low bandwidth #### Conclusion: - Suitable for high throughput goal - Performs well on fast networks only - Multiple rounds means bad performance for deep circuits ## Some Sample Numbers – SHA256 - Circuit parameter: the SHA256 circuit has almost 100,000 AND gates and has depth 4000 - Garbled circuits: - The best garbled circuit has 256 bits per AND gate - The size of the garbled circuit is 25Mb - On a 10Gbps connection, cannot send more than 400 circuits per second - Secret sharing: - On a 30ms latency network, minimum computation latency 120 seconds - On a 1ms latency network, minimum computation latency 4 seconds - On a 0.1ms latency network, minimum computation latency 0.4 seconds # Concrete Efficiency – The Last Decade - Two-party computation (semi-honest) - Fairplay (2004): 4383 gates, 7.09 seconds on a LAN - Long series of works: Yao, GMW, OT extensions - Latest (2014): 22,000 gates (6800 AND), 16ms on a LAN - Improvement factor of 2000; Moore's law gives 32 - Two-party computation (malicious) - Long series of works: cut-and-choose Yao, LEGO-type, SPDZ, TinyOT,... - Work on semi-honest has been significant in malicious setting - Faster and smaller garbled circuits, OT extensions, circuit optimizations... # Concrete Efficiency – The Last Decade - Multiparty computation (semi-honest) - FairplayMP (2008): 1024 gates, 10 sec for 5 parties, 55 sec for 10 parties - · But only honest majority - GMW implementation (CHKMR 2012): 5500 gates, 7 sec for 5 parties, 10 sec for 10 parties (but actually much faster) - Multiparty computation (malicious) - SPDZ, multiparty TinyOT - Almost no work in the semi-honest setting: since FairplayMP nothing constant-round (for low latency goal even in slow networks) ## **Multiparty Computation** - Secret sharing approach: - Information-theoretic protocols - GMW - Suitable for high throughput - Garbled-circuit approach: - The BMR protocol (Beaver-Micali-Rogaway), constant round - Potential for low latency ## The BMR Garbled Circuit Background – Yao's garbled circuits - Relies inherently on the fact that one party garbles and the other evaluates - Cannot work this way in the multiparty setting (collusions!) ## The BMR Garbled Circuit - The idea each party contributes a secret to mask each value - Let u, v be input wires and let w be output wire; let n be number of parties - Each party P_i chooses random keys $k_{x,i}^0$ and $k_{x,i}^1$ for each wire $x \in \{u, v, w\}$ - For every $a,b\in\{0,1\}$ and every $i\in\{1,\ldots,n\}$, double-encrypt $k_{w,i}^{g(a,b)}$ under the keys $k_{u,1}^a,k_{u,2}^a,\ldots,k_{u,n}^a$ and $k_{v,1}^b,k_{v,2}^b,\ldots,k_{v,n}^b$ - Using a PRG: $c_{a,b} = \bigoplus_{i=1}^n \left(G(k_{u,i}^a) \bigoplus G(k_{v,i}^b) \right) \bigoplus \left(k_{w,1}^{g(a,b)} || \cdots || k_{w,n}^{g(a,b)} \right)$ - Using a PRF: $\forall j \ c_{a,b}^j = \bigoplus_{i=1}^n \left(F_{k_{u,i}^a}(g||j) \bigoplus F_{k_{v,i}^b}(g||j) \right) \bigoplus k_{w,j}^{g(a,b)}$ #### Point and Permute - For every wire u, parties generate a secret random $\lambda_u \in \{0,1\}$ - The value $\lambda_u \oplus \alpha$ is revealed, where α is the real value on the wire - On input wires, if u is associated with P_i 's input, then it receives λ_u - On output wires, λ_{u} is made public - The actual ciphertext equation: $$\forall j \in [n]: c_{a,b}^j = \bigoplus_{i=1}^n \left(F_{k_{u,i}^a}(g||j) \bigoplus F_{k_{v,i}^b}(g||j) \right) \bigoplus k_{w,j}^{g(a \bigoplus \lambda_u, b \bigoplus \lambda_v) \bigoplus \lambda_w}$$ ## The Original BMR Protocol - Primary observation: given keys on all wires, the circuit needed to construct the BMR circuit is of constant depth - Use any existing protocol with rounds=O(depth) to securely compute the BMR circuit - Semi-honest: use GMW; each party inputs result of PRF computations - Malicious: need to work harder; BMR only did honest majority - Use general compiler from semi-honest to malicious - Need to be constant round (so coin-tossing of Pass) #### The Aim - Optimize BMR in the semi-honest setting - Joint work with Aner Ben-Efraim and Eran Omri - Construct a BMR protocol for the malicious setting - Using SPDZ joint work with Benny Pinkas, Nigel Smart and Avishay Yanay (CRYPTO 2015) - Using SHE directly joint work with Nigel Smart and Eduardo Soria-Vazquez # **FairplayMP** - Used BGW to compute the equation for the garbled gate - Map the concatenation of all keys to a single field element - Natural over an arithmetic circuit - Drawbacks of approach: - Only for an honest majority (uses BGW) - Very large field computations ## **Optimizing Semi-Honest BMR** - Main contributions: - Adapt free-XOR (when using arithmetic circuit, requires a characteristic-2 field) - Construct a protocol based on OT (no honest majority) - Construct faster BGW-based protocols - FairplayMP worked in a prime field; coin flipping of λ_u values is complex - Implement and compare to GMW ## **Computing Garbled Gates** - We translate the equation into an arithmetic circuit - The equation for gate function g(a, b): $$c_{a,b}^{j} = \begin{cases} \bigoplus_{i=1}^{n} \left(F_{k_{u,i}^{a}}(g||j) \bigoplus F_{k_{v,i}^{b}}(g||j) \right) \bigoplus k_{w,j}^{0} & \text{if } g(a,b) = \lambda_{w} \\ \bigoplus_{i=1}^{n} \left(F_{k_{u,i}^{a}}(g||j) \bigoplus F_{k_{v,i}^{b}}(g||j) \right) \bigoplus k_{w,j}^{1} & \text{if } g(a,b) \neq \lambda_{w} \end{cases}$$ ## **Computing Garbled Gates** - We translate the equation into an arithmetic circuit - The equation for an AND gate: $$c_{a,b}^{j} = \begin{cases} \bigoplus_{i=1}^{n} \left(F_{k_{u,i}^{a}}(g||j) \bigoplus F_{k_{v,i}^{b}}(g||j) \right) \bigoplus k_{w,j}^{0} & \text{if } (a \bigoplus \lambda_{u}) \cdot (b \bigoplus \lambda_{v}) = \lambda_{w} \\ \bigoplus_{i=1}^{n} \left(F_{k_{u,i}^{a}}(g||j) \bigoplus F_{k_{v,i}^{b}}(g||j) \right) \bigoplus k_{w,j}^{1} & \text{if } (a \bigoplus \lambda_{u}) \cdot (b \bigoplus \lambda_{v}) \neq \lambda_{w} \end{cases}$$ ## **Computing Garbled Gates** - We translate the equation into an arithmetic circuit - The equation for an AND gate: $$c_{a,b}^{j} = \bigoplus_{i=1}^{n} \left(F_{k_{u,i}^{a}}(g||j) \bigoplus F_{k_{v,i}^{b}}(g||j) \right) \bigoplus \begin{cases} k_{w,j}^{0} & \text{if } (a \bigoplus \lambda_{u}) \cdot (b \bigoplus \lambda_{v}) = \lambda_{w} \\ k_{w,j}^{1} & \text{if } (a \bigoplus \lambda_{u}) \cdot (b \bigoplus \lambda_{v}) \neq \lambda_{w} \end{cases}$$ ## Arithmetizing the Expression • The equation for AND: $$c_{a,b}^{j} = \bigoplus_{i=1}^{n} \left(F_{k_{u,i}^{a}}(g||j) \bigoplus F_{k_{v,i}^{b}}(g||j) \right)$$ $$\bigoplus \left(k_{w,j}^{\lambda_{w}} \cdot \left(1 - (a \bigoplus \lambda_{u}) \cdot (b \bigoplus \lambda_{v}) \right) \right)$$ $$\bigoplus \left(k_{w,j}^{1-\lambda_{w}} \cdot (a \bigoplus \lambda_{u}) \cdot (b \bigoplus \lambda_{v}) \right)$$ ### Free XOR - For every $i \in [n]$, party P_i chooses a random R_i - For every wire u, P_i chooses a random $k_{u,i}^0$ and sets $k_{u,i}^1 = k_{u,i}^0 \oplus R_i$ - A side benefit a much simpler BMR equation! • $$c_{a,b}^{j} = \bigoplus_{i=1}^{n} \left(F_{k_{u,i}^{a}}(g||j) \bigoplus F_{k_{v,i}^{b}}(g||j) \right)$$ $$\bigoplus k_{w,j}^{0} \bigoplus \left(R_{j} \cdot \left((a \bigoplus \lambda_{u}) \cdot (b \bigoplus \lambda_{v}) \bigoplus \lambda_{w} \right) \right)$$ This needs 2 instead of 4 multiplications for AND (as well as free for XOR) ## A BGW-Based Protocol (the idea) • $$c_{a,b}^{j} = \bigoplus_{i=1}^{n} \left(F_{k_{u,i}^{a}}(g||j) \bigoplus F_{k_{v,i}^{b}}(g||j) \right) \bigoplus k_{w,j}^{0} \bigoplus \left(R_{j} \cdot \left((a \bigoplus \lambda_{u}) \cdot (b \bigoplus \lambda_{v}) \bigoplus \lambda_{w} \right) \right)$$ - The parties all hold shares of each λ ($\lambda_u^1 \oplus \cdots \oplus \lambda_u^n = \lambda_u$) - Each party P_i inputs - $F_{k_{u,i}^a}(g||j) \oplus F_{k_{v,i}^b}(g||j)$ for all j (P_j inputs $F_{k_{u,j}^a}(g||j) \oplus F_{k_{v,j}^b}(g||j) \oplus k_{w,j}^0$) - \bullet R_i - $a \oplus \lambda_u^i$ - $b \oplus \lambda_v^i$ - λ_w^i - Use BGW to compute the result (2 multiplications, 4 additions) We work in a field large enough for k only (in contrast to FairplayMP) ## **BGW-Based Protocols** - We have multiple optimizations - Fast field multiplication: using PCLMULQDQ and utilizing "small" values - Reducing number of rounds: fewer degree reductions - The result of $R_j \cdot ((a \oplus \lambda_u) \cdot (b \oplus \lambda_v) \oplus \lambda_w)$ is only added to other values, and so no need to do degree reduction on it - And more... - Complexity: cubic in the number of parties - Each gate needs n multiplications, but multiplication is quadratic in BGW-semi-honest (computing Shamir shares is $O(n^2)$) # Honest Minority – OT-Based Protocol - Main observation: we only need to multiply bits and a string by a bit - Two-party string-bit multiplication with OT: compute $x \cdot b$ ## **OT-Based Protocol** - Step 1: Compute pairwise XOR shares of $\lambda_u \cdot \lambda_v$ - This is just the XOR of products $\lambda_u^i \cdot \lambda_v^i$ and so can use bit-OT multiplication - Step 2: Compute XOR shares of $(a \oplus \lambda_u) \cdot (b \oplus \lambda_v) \oplus \lambda_w$ for each $a, b \in \{0,1\}$ (local computation only) - Step 3: Compute XOR shares of $R_i \cdot (a \oplus \lambda_u) \cdot (b \oplus \lambda_v) \oplus \lambda_w$ - This uses a 4 string-OT multiplications between each pair - Step 4: XOR the result with the PRF values and broadcast ### **Evaluation** - CREATE (part of DETER): - Intel Xeon 2.20GHz, 6 core, - Network with 0.1ms ping time (≈ 0.05ms latency) - Amazon Virginia-Virginia - c4.8xlarge instances - Network with 1ms ping time (≈ 0.5ms latency) - Amazon Virginia-Ireland - c4.8xlarge instances - Network with 75ms ping time (≈37.5ms latency) ## **Evaluation** - Compare to GMW in [CHKMR12] on same platforms - Uses optimized OT extensions - GMW online and offline: OT on random inputs, in online single-bit sent only per AND gate - BMR online and offline: build circuit offline, send input and compute online - Run with: - AES circuit: 6800 AND gates, depth = 40 - SHA256 circuit: 90,825 AND gates, depth = 4000 - SHA256* synthetic: 90,825 AND gates, depth=10, 100, 1000 ## Hypotheses - GMW will win on very shallow circuits in all networks - BMR will win on deep circuits in all networks - BMR will win on not shallow circuits in slow networks - BMR-online will beat GMW-online except for very shallow circuits - BGW-BMR will beat BGW-OT (but requires honest majority) - Questions: - What is the effect of the number of parties? - At what circuit-depth and network speed does BMR/GMW win? # Amazon Virginia-Ireland – WAN (37.5ms latency) # Amazon Virginia – LAN (0.5ms latency) # CREATE - Fast LAN (0.05ms latency) # CREATE – Fast LAN (0.05ms latency) #### The SHA256 Circuit – 90,825 AND gates: | | | 3 | 5 | 7 | 9 | 11 | 13 | 33 | |----------|-----|---------------|----------------|----------------|----------------|----------------|----------------|-----------------| | OT | Off | 813 ± 127 | 1160 ± 135 | 1464 ± 106 | 1963 ± 95 | 2389 ± 116 | 2819 ± 122 | 14928 ± 817 | | | On | 85 ± 15 | 138 ± 14 | 204 ± 22 | 260 ± 28 | 324 ± 22 | 419 ± 23 | 1506 ± 12 | | BGW3 | Off | 517 ± 85 | 1064 ± 154 | 1864 ± 169 | 2917 ± 168 | 4234 ± 192 | 5825 ± 201 | 53257 ± 541 | | | On | 81 ± 11 | 137 ± 15 | 193 ± 13 | 252 ± 24 | 321 ± 39 | 416 ± 36 | 1445 ± 130 | | BGW2 | Off | | 930 ± 118 | 1799 ± 129 | 2528 ± 139 | 3946 ± 179 | 5690 ± 259 | 51098 ± 902 | | | On | | 135 ± 14 | 194 ± 13 | 253 ± 16 | 315 ± 32 | 412 ± 47 | 1485 ± 225 | | BGW4 | Off | 582 ± 70 | 1219 ± 126 | 2200 ± 193 | 3383 ± 164 | 4920 ± 158 | 6868 ± 170 | 60858 ± 657 | | | On | 78 ± 11 | 138 ± 17 | 196 ± 18 | 251 ± 18 | 317 ± 30 | 419 ± 38 | 1471 ± 190 | | GMW | Off | 637 ± 67 | 719 ± 165 | 789 ± 143 | 906 ± 261 | 964 ± 236 | 953 ± 159 | 1463 ± 120 | | (d=4000) | On | 391 ± 37 | 466 ± 140 | 531 ± 137 | 636 ± 241 | 644 ± 196 | 700 ± 134 | 1113 ± 81 | | GMW | Off | 674 ± 42 | 732 ± 170 | 715 ± 131 | 873 ± 255 | 889 ± 212 | 895 ± 171 | 1372 ± 158 | | (d=1000) | On | 141 ± 34 | 187 ± 134 | 213 ± 138 | 301 ± 230 | 314 ± 212 | 292 ± 169 | 387 ± 79 | | GMW | Off | 610 ± 42 | 648 ± 129 | 755 ± 156 | 836 ± 242 | 876 ± 205 | 870 ± 138 | 1346 ± 147 | | (d=100) | On | 88 ± 70 | 105 ± 105 | 91 ± 88 | 167 ± 196 | 176 ± 191 | 139 ± 134 | 143 ± 54 | | GMW | Off | 585 ± 76 | 644 ± 148 | 716 ± 162 | 802 ± 223 | 862 ± 201 | 857 ± 130 | 1364 ± 170 | | (d=10) | On | 68 ± 97 | 70 ± 92 | 105 ± 246 | 156 ± 208 | 124 ± 168 | 127 ± 150 | 135 ± 86 | ## Amazon Virginia – LAN (0.5ms latency) #### The AES Circuit – 6800 AND gates: | | | 3 | 5 | 7 | 9 | 11 | 13 | |-------------------------|-----|--------------|---------------|---------------|---------------|---------------|-----------------| | $\overline{\text{OT}}$ | Off | 53 ± 22 | 91 ± 152 | 324 ± 1344 | 429 ± 417 | 701 ± 1284 | 1629 ± 3027 | | | On | 6 ± 10 | 17 ± 17 | 28 ± 27 | 43 ± 96 | 37 ± 24 | 59 ± 162 | | BGW3 | Off | 29 ± 11 | 103 ± 165 | 249 ± 364 | 394 ± 311 | 838 ± 1305 | 1008 ± 584 | | | On | 13 ± 15 | 23 ± 35 | 28 ± 24 | 38 ± 20 | 58 ± 171 | 59 ± 138 | | BGW2 | Off | | 88 ± 140 | 270 ± 322 | 412 ± 317 | 670 ± 290 | 782 ± 339 | | | On | | 23 ± 15 | 33 ± 68 | 44 ± 78 | 38 ± 100 | 46 ± 20 | | BGW4 | Off | 47 ± 85 | 148 ± 243 | 361 ± 394 | 682 ± 514 | 1078 ± 287 | 1815 ± 2455 | | | On | 8 ± 12 | 22 ± 16 | 35 ± 32 | 36 ± 23 | 66 ± 206 | 46 ± 22 | | $\overline{\text{GMW}}$ | Off | 127 ± 47 | 126 ± 48 | 125 ± 47 | 164 ± 186 | 111 ± 62 | 116 ± 85 | | | On | 27 ± 11 | 35 ± 15 | 43 ± 55 | 62 ± 142 | 68 ± 160 | 119 ± 211 | # Amazon Virginia-Ireland – WAN (37.5ms latency) #### The AES Circuit – 6800 AND gates: | | | 3 | 7 | 13 | |------|-----|----------------|-----------------|-------------------| | OT | Off | 698 ± 930 | 1093 ± 1249 | 9699 ± 6119 | | | On | 138 ± 88 | 107 ± 87 | 362 ± 515 | | BGW3 | Off | 329 ± 688 | 2314 ± 1218 | 9774 ± 8181 | | | On | 143 ± 81 | 142 ± 76 | 329 ± 533 | | BGW2 | Off | | 2212 ± 1440 | 8745 ± 6832 | | | On | | 148 ± 92 | 264 ± 409 | | BGW4 | Off | 498 ± 737 | 3149 ± 2065 | 13298 ± 10576 | | | On | 139 ± 78 | 159 ± 70 | 308 ± 473 | | GMW | Off | 231 ± 143 | 277 ± 1067 | 382 ± 290 | | | On | 3337 ± 166 | 3232 ± 9 | 3341 ± 213 | #### The SHA256 Circuit – 90,825 AND gates: | | | 3 | 7 | 13 | |------------------------|-----|--------------------|--------------------|--------------------| | $\overline{\text{OT}}$ | Off | 6426 ± 1651 | 10291 ± 4968 | 25215 ± 4784 | | | On | 172 ± 76 | 226 ± 62 | 456 ± 357 | | BGW3 | Off | 5404 ± 11751 | 17011 ± 23574 | 38584 ± 35997 | | | On | 182 ± 77 | 237 ± 91 | 520 ± 659 | | BGW2 | Off | | 14781 ± 12134 | 37585 ± 17255 | | | On | | 283 ± 86 | 459 ± 325 | | BGW4 | Off | 8124 ± 8000 | 23521 ± 20794 | 65736 ± 45895 | | | On | 226 ± 78 | 282 ± 86 | 454 ± 281 | | GMW | Off | 850 ± 900 | 5002 ± 10643 | 5042 ± 9212 | | (d=4000) | On | 309741 ± 32130 | 333996 ± 92024 | 329220 ± 31340 | | GMW | Off | 701 ± 556 | 3581 ± 4976 | 7932 ± 16242 | | (d=1000) | On | 77147 ± 4031 | 83168 ± 19932 | 82111 ± 5584 | | GMW | Off | 735 ± 509 | 2610 ± 8173 | 4969 ± 9222 | | (d=100) | On | 8038 ± 518 | 8327 ± 80 | 8341 ± 271 | | GMW | Off | 598 ± 362 | 1180 ± 521 | 5360 ± 12829 | | (d=10) | On | 880 ± 75 | 906 ± 25 | 904 ± 84 | At depth 100, GMW wins in total time even in a WAN, but is an order of magnitude slower in online time ## Hypotheses | • GMW will win on very shallow circuits in all networks | | |---------------------------------------------------------|--| |---------------------------------------------------------|--| - BMR will win or if deep is 4000, then not true in very fast networks - BMR will win if 100 is not shallow, then true only for few parties (total time) - BMR-online will beat Glonly for few parties OR deep circuits (in slow network) cuits X - BGW-BMR will beat BGW-OT (only for few parties onest majority) - Questions: - What is the effect of the number of parties? marginal in GMW; significant in BMR - At what circuit-depth and network speed does BMR/GMW win? it depends, but GMW far better than expected ## Constant-Round for Malicious Adversaries - The *only* multiparty protocol ever implemented for malicious adversaries is SPDZ - In a slow network with a deep circuit, this cannot perform well - Multiparty TinyOT is also concretely efficient, but has many rounds - Can we use the BMR paradigm in this setting as well? - A major obstacle: forcing the parties to input the correct PRF values is inherently inefficient (expensive zero knowledge) ## SPDZ-BMR [L-Pinkas-Smart-Yanay CRYPTO15] - Main idea: Use SPDZ to compute the BMR garbled circuit - Major obstacle proving correctness of PRF values - Solution: - Don't force the parties to input correct PRF values - We prove that inputting incorrect PRF values can only result in abort - The only problem can be if it changes from one valid value to another - Obstacle 2 need to ensure that λ_u values are pseudorandom; coin tossing expensive - Solution: SPDZ provides coin tossing almost for free ## SPDZ-BMR [L-Pinkas-Smart-Yanay CRYPTO15] - Obstacle 3 need to force consistency of λ_u^i values when wire u is input to multiple gates - Solution: - Construct a single arithmetic circuit for computing all gates at once - Depth of circuit is constant - The main goal: reduce the number of multiplications in the BMR-circuit ### SPDZ-BMR - The gate computation works as follows: - Compute the "indicator variables" $$[x_a] = \left(f_g([\lambda_a], [\lambda_b]) \stackrel{?}{\neq} [\lambda_c]\right) = (f_g([\lambda_a], [\lambda_b]) - [\lambda_c])^2$$ • Multiply by the output keys: $$[\mathbf{v}_{c,x_a}] = (1 - [x_a]) \cdot [\mathbf{k}_{c,0}] + [x_a] \cdot [\mathbf{k}_{c,1}]$$ Add in the PRF masks and open: $$[\mathbf{A}_g] = \sum_{i=1}^n \left([F_{k_{a,0}^i}^0(g)] + [F_{k_{b,0}^i}^0(g)] \right) + [\mathbf{v}_{c,x_a}]$$ #### SPDZ-BMR Cost - Size of circuit computing the BMR garbled circuit - 13 multiplications per AND gate, and 7 multiplications per XOR gate - Cost of computing the circuit using SPDZ - For every wire, need to generate n shared random values - Since each gate requires essentially generating n ciphertexts - To create a shared random value each of n parties needs to encrypt input data (which must be valid) - Each of these requires a ZKPOK, with O(n) SHE encryptions - Overall number of SHE multiplications per gate: $O(n^3)$ - Very fast online time only 2 rounds and local computation ## SPDZ-SHE [L-Smart-Soria-Vazquez 2016] - Main idea: Use somewhat homomorphic encryption (SHE) to directly compute the BMR garbled circuit - Save the intermediary step of generating multiplication triples - Major goal: reduce the depth of the circuit computing the BMR garbled circuit - This has significant influence over the efficiency since it affects the size of the SHE parameters - We achieve a quadratic number of multiplications only (but need an SHE of depth 3) #### SPDZ-SHE - A naïve approach yields a circuit of depth 4: - Multiply to get indicator bit 2 multiplications (need to square) - Multiply indicator bit by keys 1 more multiplication - An additional multiplication is needed (as in SPDZ) to ensure correct output - Our aim: reduce the depth of the circuit run inside SHE - We construct equations multiplying key in directly - Our equations do not always compute the correct key - Our equation always computes the correct key or its additive complement ### SPDZ-BMR • A depth-2 equation for the AND gate: $$\langle \mathbf{v}_{c,x_A} \rangle = (1 - \langle \lambda_a \rangle) \cdot \left(\langle \lambda_c \rangle \cdot \langle \tilde{\mathbf{k}}_{c,1} \rangle + (1 - \langle \lambda_c \rangle) \cdot \langle \tilde{\mathbf{k}}_{c,0} \rangle \right)$$ $$+ \langle \lambda_a \rangle \cdot \left((\langle \lambda_b \rangle - \langle \lambda_c \rangle) \cdot \langle \tilde{\mathbf{k}}_{c,1} \rangle + (1 - \langle \lambda_b \rangle - \langle \lambda_c \rangle) \cdot \langle \tilde{\mathbf{k}}_{c,0} \rangle \right)$$ - For example, if $\lambda_a=\lambda_b=\lambda_c=0$ then we get $k_{c,0}$ - For example, if $\lambda_a=\lambda_b=\lambda_c=1$ then we get $-k_{c,0}$ - This is a problem: - A party learns information if it knows that it received the value or its complement #### SPDZ-BMR - The solution - No party knows the basic key values - The key used to mask is the **square** of these values - There is additional cost since the basic key values now need to be generated using an SHE "generate random" - Thus, there are more multiplications but the depth is lower ## Summary - The BMR paradigm deserves more attention - Semi-honest optimizations are an important first step - Improvements on the circuit - Surprising results regarding the BGW vs OT approaches - We used SPDZ and SHE to compute for malicious - What other methods can be used?