
 Succinct Persistent Adaptive Garbled RAM 

or 

How To Delegate Your Database 

Ran Canetti 

TAU and BU 
 

Based on joint works with 

Justin Holmgren, Yilei Chen, Mariana Raykova 

ePrint reports  2015/388 and 2015/1074 



Delegating Computation 

“query” = program+input  

Verifiability 

answer 

Server Client 

Efficiency 

Bandwidth 

Server 

Client 

Privacy + + 



Delegating Computation 
“Old-fashioned” Setting:  Small input  + Big Computations 

• Verifiable Computation Protocols   [Blum-Kannan89, Blum-Luby-Rubinfeld90, 
Kilian92,Micali00, Ergun-Kumar-Rubinfeld99, Goldwasser-Kalai-Rothblum08, 
Gennaro-Gentry-Parno10…] 

 

• Fully Homomorphic Encryption  [Gentry09 … … …] 
 
 

 
 Today:  Big Data + Small Computations 

 
   Client work + Bandwidth proportional to input size 
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Requirement 2: Privacy 
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Requirement 3: Query delegation 
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Putting it all together: 

Remote Database ideal functionality 

• Obtain DB from owner, reveal size to adv 
• Receive (Query, Recipient) from owner: 

• Run Query(DB) 
    (potentially updating DB, disclose size & runtime to adv)  

• Output answer to Recipient,  disclose size to adv 
• If Recipient corrupted,  Adversary learns (only!) the answer    

 



Requirement 4: efficiency & size 

Want: 

• Size of query & answer proportional to   

     that of “plaintext query and answer” 

• All clients are efficient in size of answer 

• Database size is comparable  to plaintext 

• Server runtime proportional to original 



A scheme that UC-realizes the above functionality and has the above 
efficiency requirements  is s called a secure database delegation scheme. 



Existing solutions 

Verifiability: 
• Memory delegation [Chung-Kalai-Vadhan] 
• SNARKS & Proof Carrying Data  [Chiesa-Tromer, Bitansky-C-Chiesa-Tromer,…] 
• Accumulators & set computations [Tamassia, Triandopoulos, Papadopoulos,…] 
• General RAM computations with persistent memory   
       [Kalai-Paneth,Brakerski-Holmgren-Kalai] 
       But: no privacy… 
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• SNARKS & Proof Carrying Data  [Chiesa-Tromer, Bitansky-C-Chiesa-Tromer,…] 
• Accumulators & set computations [Tamassia, Triandopoulos, Papadopoulos,…] 
• General RAM computations with persistent memory   
       [Kalai-Paneth,Brakerski-Holmgren-Kalai] 

      But: no privacy… 

Privacy: 
• Homomorphic encryption… but  requires Ω(DB) work! 
• Searchable encryption (order preserving, token based, CryptDB,…) 
      But: no verifiability… 



Main result: 
Assuming circuit  IO  and  const-to-1  CRHFs, 
there exist a secure database delegation scheme.  
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                            [concurrently by Ananth-Chen-Chung-Lin-Lin] 



Garbling / Randomized Encoding 
[Yao, Ishai-Kushilevitz, Bellare-Hoang-Rogaway] 

• Algorithm 𝐺𝑎𝑟𝑏𝑙𝑒   

• 𝑓 , 𝑥 ← 𝐺𝑎𝑟𝑏𝑙𝑒(𝑓, 𝑥):  
• Correctness: 𝑓 𝑥 = 𝑓 (𝑥 ) 

• Security: If 𝑓 𝑥 = 𝑓′(𝑥′), then  
𝐺𝑎𝑟𝑏𝑙𝑒 𝑓, 𝑥 ≈ 𝐺𝑎𝑟𝑏𝑙𝑒(𝑓′, 𝑥′) 

• Efficiency: Computing 𝑓 (𝑥 ) is as easy as computing 𝑓(𝑥) 

• Succinctness: sizes of 𝑓  , 𝑥    are proportional to the size of 𝑓, 𝑥 
  

 



Garbling / Randomized Encoding 
[Yao, Ishai-Kushilevitz, Bellare-Hoang-Rogaway] 

• Algorithm 𝐺𝑎𝑟𝑏𝑙𝑒  (Kgen,Fgarble,Igarble) 

• 𝑓 , 𝑥 ← 𝐺𝑎𝑟𝑏𝑙𝑒(𝑓, 𝑥):   k Kgen(), 𝑓 Fgarbl𝑒(𝑘, 𝑓), 𝑥 Igarbl𝑒(𝑘, 𝑥) 

• Correctness: 𝑓 𝑥 = 𝑓 (𝑥 ) 

• Security: If 𝑓 𝑥 = 𝑓′(𝑥), then  
𝐺𝑎𝑟𝑏𝑙𝑒 𝑓, 𝑥 ≈ 𝐺𝑎𝑟𝑏𝑙𝑒(𝑓′, 𝑥′) 

• Efficiency: Computing 𝑓 (𝑥 ) is as easy as 𝑓(𝑥) 

• Succinctness: sizes of 𝑓  , 𝑥    are prop.  to 𝑥, 𝑓(𝑥) 

• Adaptivity:  Adv can choose  f 

𝑎𝑠 𝑎 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑥 , and 𝑥 as a function of   𝑓 .   
 



Brief History (partial) 

• [Yao]:  circuit garbling. No succinctness 

• … 

• [Goldwasser-Kalai-Poppa-Vinod-Zeldovich]:  TM garbling.      
Size Proportional to input size  

• [Lu-Ostrovsky, Gentry-Halevi-Raykova-Wichs,…]: RAM machine 
garbling.  Size proportional to runtime. 

• [Bellare-Hoang-Rogaway]: adaptive circuit  garbling, in ROM 

• [Bitansky-Garg-Lin-Pass-Telang, C-Holmgren-Jain-Vinod] :        
TM/RAM garbling, semi succinct. 

• [Koppula-Lewko-Waters]: TM garbling, fully succinct. 

• [C-Holmgren,Chen-Chow-Chung-Lai-Lin]: Fully succinct RAM 
garbling.   

 

 



Garbling with persistent memory 
[Gentry-Halevi-Raykova-Wichs] 

• Algorithm 𝐺𝑎𝑟𝑏𝑙𝑒  = (Kgen,Fgarble,Igarble) 

•  k Kgen(),  𝑥 ← 𝐼𝑔𝑎𝑟𝑏𝑙𝑒(𝑘, 𝑥) 𝑓𝑖
 𝐹𝑔𝑎𝑟𝑏𝑙𝑒 𝑘, 𝑓𝑖 ,   i=1,2,… 

•  Correctness: 𝑓𝑖 𝑥𝑖 = 𝑓𝑖
 (𝑥𝑖 )   for all i 

• Security: If 𝑓𝑖 𝑥𝑖 = 𝑓𝑖′(𝑥′𝑖),  for all i, then  
                  𝑥 ,  𝑓1

  , … 𝑓𝑖
  ≈  𝑥 ′,  𝑓′1

  , … 𝑓′𝑖
   

 

• Efficiency: Computing 𝑓 (𝑥 ) is as easy as 𝑓(𝑥) 

• Succinctness: sizes of 𝑓𝑖
 ,  𝑥𝑖  prop. to size of 𝑥

𝑖
′𝑓𝑖 𝑥𝑖  

• Adaptivity:  Adv can choose  fi   after seeing  𝑥 ,  𝑓1
  , … 𝑓𝑖 − 1

   



From  
Succinct Persistent Adaptive Garbled RAM (SPAGRAM)  

to database delegation 

• To delegate database x:  Garble x, send  to server.  
      Choose keys (sig, ver)  for a signature scheme. Post ver. 

 
• To query program C, garble the program:  
       “Output C(x), sign using  key sig.”    
       Send to server (or to third party)  



From  
Succinct Persistent Adaptive Garbled RAM (SPAGRAM)  

to database delegation 

• To delegate database x:  Garble x, send  to server.  
      Choose keys (sig, ver)  for a signature scheme. Post ver. 

 
• To query program C, garble the program:  
       “Output C(x), sign using  key sig.”    
       Send to server (or to third party)  
 
Note: Adaptivity is key! 



RAM Garbling with persistent memory: 
constructions 

[GHRW]:    Efficient, non-succinct,  non-adaptive, assuming “special 
purpose public-coins DIO”. 

 

[C-Holmgren, Chung etal]:  Succinct, non-adaptive, from IO+OWFs 

 

[CCHR, ACCLL]: Adaptive  

(from IO+const-2-1 CRHFs / DDH) 
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𝐶2 
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≡ 

≈𝑐 

Indistinguishability Obfuscation (IO) 
[Barak-Goldreich-Impagliazzo-Sahai-Rudich-Vadhan-Yang 01, Goldwasser-Rothblum 07] 

Several candidate constructions 

[Garg-Gentry-Halevi-Raykova-Sahai-Waters 13… … … Lin 16] 



The age of IO 

• Amazing concept: 
•  Extremely powerful, versatile  

•  A whole set of new techniques 

•  Elusive…  “too good to be true” 

• Does it exist?   Under what assumptions? 

•  Can we show impossibility?  

• Can we make it more efficient / realistic? 

• How to use it? 

• Relaxed/stronger notions? 
 



Towards making  IO more realistic 
(Towards impossibility of IO?) 

We Have 

Circuit Obfuscation 

 

Real World 

Can we obfuscate more realistic computations? 



Trivial “Solution” 

𝑛 log 𝑛 
log 𝑛 



What We’d Like 

• Indistinguishability Obfuscation for a RAM program 
𝑀 directly 

• 𝑖𝑂(𝑀) should itself a RAM program, with almost 
the same complexity parameters as 𝑀. 

• If 𝑀 𝑥 = 𝑀′ 𝑥  for all inputs 𝑥, then  
𝑖𝑂 𝑀 ≈ 𝑖𝑂(𝑀′) 



Progress So Far 

• Turing Machine & RAM obfuscation from non-standard 
“knowledge assumptions” (DIO and variants) 
[BCP14,ABGSZ14,GHRW14,IPS14] 

• “semi-succinct” TM & RAM obfuscation from subexp-IO 
and IOWFs: size depends on space of computation. 
[Bitansky-Garg-Lin-Pass-Telang,C-Holmgren-Jain-Vinod]  

• Fully succinct Turing Machine obfuscation from subexp IO 
and IOWFs [Koppula-Lewko-Waters 14] 

• Fully succinct RAM obfuscation from subexp IO and IOWFs 
[C-H,Chung etal] 

• Extension to PRAM [Chung etal] 
 
 All recent works obtain succinct garbling as a first step.  



Our Techniques 



A Naïve Attempt at RAM garbling 

Memory CPU 

Address 17 
please 

Address 93 
please 

𝑥17 
𝑥′17 

𝑥93 

𝑥′93 



A Naïve Attempt at RAM garbling 

Memory CPU 

Address 61 
please 

𝑥61 

Answer: 42 



Naïve Attempt at RAM garbling 

𝑞𝑖𝑛 

𝑠𝑖𝑛 

𝑞𝑜𝑢𝑡 

𝑠𝑜𝑢𝑡 

𝑎𝑑𝑑𝑟 



What’s wrong? Everything 

• Doesn’t prevent adversary from giving circuit illegal 
inputs 

• Doesn’t hide any intermediate state 

• Doesn’t hide memory addresses accessed 

 

We’ll address these challenges one by one. 



Goal: Succinct Garbling 
2-step approach 

1. Construct a weaker notion of garbling 

2. Compile a weak garbler into a full garbler 
  

 



Roadmap:  
How to compile a stronger garbler 
Weaken conditions for indistinguishability: 

What needs to be the same? 

Final Output Addresses Memory 
Values 

Same-Trace Yes Yes Yes 

Same-
Address 

Yes Yes No 

Full Yes No No 

[KLW14] 

What’s missing? 
• Internal RAM state 
• Circuit behavior on illegal inputs 



Same-Trace Garbling 

𝑇𝑟 𝑀, 𝑥 ≝ 

 

Time Address Value Written Answer 

1 𝑎1 𝑠1 ⊥ 

⋮ ⋮ ⋮ ⋮ 

𝑇 − 1 𝑎𝑇−1 𝑠𝑇−1 ⊥ 

𝑇 ⊥ ⊥ 𝑦 

Theorem: There is an algorithm STGarble such that: 
 
If Tr 𝑀, 𝑥 = Tr 𝑀′, 𝑥′ , then 
 

STGarble 𝑀, 𝑥 ≈ STGarble 𝑀′, 𝑥′  



Same-Trace Garbler Construction 

• Obfuscate CPU; to ensure integrity of computation use: 
• signature schemes 

• positional accumulators 

•  iterators. 

(Essentially follows [KLW14]’s “Message-hiding encoding”) 

 



Same-Address Garbling 

Goal: If (𝑀, 𝑥) and (𝑀′, 𝑥′) access same addresses, 
then 

SAGarble 𝑀, 𝑥 ≈ SAGarble 𝑀′, 𝑥′  

Simple Case: Addresses are locally computable. 

Strategy: Encrypt memory words and apply Same-
Trace Garbler 

 



Same-Address Garbling (General 
Case) 
• What if addresses not locally computable? 

 
 
 
 
 
 
 
 
 
 

Time Address Value Written Answer 

1 𝑎1 𝑐1 ⊥ 

⋮ ⋮ ⋮ ⋮ 

𝑇 − 𝑗 − 1 𝑎𝑇−𝑗−1 𝑐𝑇−𝑗−1 ⊥ 

𝑇 − 𝑗 𝑎𝑇−𝑗 𝑧𝑇−𝑗 ⊥ 

⋮ ⋮ ⋮ ⋮ 

𝑇 − 1 𝑎𝑇−1 𝑧𝑇−1 ⊥ 

𝑇 ⊥ ⊥ 𝑦 

How to access 
𝑎𝑇−𝑗 , … , 𝑎𝑇−1? 



Same-Address Garbling (General 
Case) 
• What if addresses not locally computable? 

• Solution: double-execution 
 
 
 

𝑀 = 
 
 

 
 

Time Address Value Written Answer 

1 𝑎1 𝑐1||𝑑1 ⊥ 

⋮ ⋮ ⋮ ⋮ 

𝑇 − 1 𝑎𝑇−1 𝑐𝑇−1||𝑑𝑇−1 ⊥ 

𝑇 ⊥ ⊥ 𝑦 

𝑐𝑖 = 𝑖, 𝐹 𝑖||𝑎𝑖 ⊕ 𝑠𝑖  
𝑑𝑖 = (𝑖, 𝐺 𝑖||𝑎𝑖 ⊕ 𝑠𝑖) 

𝐹 and 𝐺 are 
puncturable PRFs 



(Full) Garbling 

RAM machines 𝑀,𝑀′;            Inputs 𝑥,𝑥′ 
 

Want: If 𝑀 𝑥 = 𝑀′(𝑥′), then 
 

𝐺𝑎𝑟𝑏𝑙𝑒 𝑀, 𝑥 ≈ 𝐺𝑎𝑟𝑏𝑙𝑒(𝑀′, 𝑥′) 

 

Difficulty: Hiding memory addresses accessed 

Tools:  

     - Oblivious RAM with “Randomness Locality” 

     - Same Address Garbler (𝑆𝐴𝐺𝑎𝑟𝑏𝑙𝑒) 



Oblivious RAM 

• Transform RAM machine to have a (distributionally) 
fixed memory access pattern 

Addresses 𝑎′1, … , 𝑎′𝑡 
 

Addresss 𝑎1, … , 𝑎𝑡 
 

Addresses 𝐴 1, … , 𝐴 𝑡 
 

𝐴′
1, … , 𝐴′

𝑡 ≈ 



Localized Randomness ORAM 

• The vectors of accessed addresses depend (as a 
function) on small, disjoint subsets of the random 
bits 

Mem. Accesses 
𝑎1, 𝑎2, … , 𝑎𝑡 𝐴 1, 𝐴 2, … , 𝐴 𝑡 

Randomness: 



Localized Randomness ORAM 

• The vectors of accessed addresses depend (as a 
function) on small, disjoint subsets of the random 
bits 
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Localized Randomness ORAM 

• The vectors of accessed addresses depend on 
small, disjoint subsets of the random bits 

• Each 𝐴 𝑖 can be efficiently sampled as 𝑂𝑆𝑎𝑚𝑝𝑙𝑒 𝑖  

 
Satisfied by Chung-Pass ORAM 

Mem. Accesses 
𝑎1, 𝑎2, … , 𝑎𝑡 𝐴 1, 𝐴 2, … , 𝐴 𝑡 

Randomness: 



Full Garbling Construction 

RAM Machine 

1. Read initial ORAM state 
𝑞𝑂𝑅𝐴𝑀 from memory 

2. Run 𝑀 obliviously with 
randomness 𝐹 1 ,… , 𝐹(𝑇) 

3. Output 𝑀’s answer 

Memory 

ORAM encoding 𝑥 𝑞𝑂𝑅𝐴𝑀 

𝐺𝑎𝑟𝑏𝑙𝑒(𝑀, 𝑥) ≝ 

Same Address Garbler 

Puncturable PRF 𝐹 



Persistent Memory 

• Same construction, except: 

• In initial memory garbling, add “step 0” 

• Augment the i-th machine to look for “step i-1” in 
memory, and overwrite with  “step i”. 

   (all machines use the same parameters for 
signature, accumulator, iterator, encryption, oram) 

• Simulation strategy the same. 



Adaptivity 

First issue: 

Positional accumulator is a static object: 

      Guarantees unconditional binding at a single point. 

      But point needs to be set ahead of time… 

 

 

 



Recall: Positional accumulator 
[Hubacek-Wichs, KLW, Okamoto-Pietrzak-Waters-Wichs] 

• Geygen -> pk 
• Accumulate 𝑝𝑘, 𝑆, 𝑖, 𝑥  → 𝑆′ 
• Verify 𝑝𝑘, 𝑆, 𝑖, 𝑥  → 𝑦𝑒𝑠 | 𝑛𝑜 
• Fgen 𝑖, 𝑥  = pki,x 
 
Properties: 
- Computational binding 
- Forced binding   
- Indistinguishability of forced keys:   pk ~ pki,x     

 

  Forced locations need to be fixed in advance 
 
 

 
 



Solutions 

• First attempt:    Reduction guesses location 

 

Doesn’t work…   Pos. Acc. not strong enough       
[doesn’t guarantee consistency with writes] 

 

[ACCLL]:  Fix the  notion  and guess… 

 



Adaptive Positional accumulator 

• Geygen -> ak,vk 
• Accumulate 𝑎𝑘, 𝑆, 𝑖, 𝑥  → 𝑆′ 
• Verify 𝑣𝑘, 𝑆, 𝑖, 𝑥  → 𝑦𝑒𝑠 | 𝑛𝑜 
• Fgen 𝑎𝑘, 𝑖, 𝑥  = vki,x 
 
Properties: 
- Computational binding 
- Forced binding   
- Indistinguishability of forced keys:   vk ~ vki,x     

 

  Forced locations can be chosen adaptively… 
 
 

 
 



Adaptive Positional accumulator 

Construction:   

•  Define  “AP-hash”:   same properties as “APA” but for 
hash function Use IO 

• From AP-hash to APA:  Use Merkle paradigm 

• Construct AP-hash:   

    vk:  IO[“Check that the input x is consistent with hash value y”] 

    fvki,x,y : IO[“if  input is i’,x’,y and either i <> i’ or x <>x’ 

   then reject, else run normal check”]  

 

 

 

 



Adaptivity: ORAM 

Second issue: 

• ORAM + PPRF is a static object: 

      Guarantees unconditional secrecy for a single      
 location. 

      But location needs to be set ahead of time… 

 

• Solution: Reduction guesses location… 

 



IO with persistent memory? 
 
IO with unbounded input?  
 
Succinct garbling without IO? 
 

Questions: 


