
 Succinct Persistent Adaptive Garbled RAM

or

How To Delegate Your Database

Ran Canetti

TAU and BU

Based on joint works with

Justin Holmgren, Yilei Chen, Mariana Raykova

ePrint reports 2015/388 and 2015/1074

Delegating Computation

“query” = program+input

Verifiability

answer

Server Client

Efficiency

Bandwidth

Server

Client

Privacy + +

Delegating Computation
“Old-fashioned” Setting: Small input + Big Computations

• Verifiable Computation Protocols [Blum-Kannan89, Blum-Luby-Rubinfeld90,
Kilian92,Micali00, Ergun-Kumar-Rubinfeld99, Goldwasser-Kalai-Rothblum08,
Gennaro-Gentry-Parno10…]

• Fully Homomorphic Encryption [Gentry09 … … …]

 Today: Big Data + Small Computations

 Client work + Bandwidth proportional to input size

Delegating Computation

ID age M/F salary

Database

“query” = circuit/program

answer

Server Client

update

Verifiability

Efficiency

Bandwidth

Server

Client

Privacy + +

Requirement 1: Verifiability

Server

DB a=C(DB)

Is a=C(current-DB) ?

User

 C

“pay-per-bit” channel
 a

Requirement 1: Verifiability

Server

DB a=C(DB)

User

 C

“pay-per-bit” channel
 a

Is a=C(current-DB) ?

 a

Requirement 2: Privacy

C, answer a

Server

DB
a=C(DB)

Learn nothing!

“pay-per-bit” channel

User

 C

“pay-per-bit” channel

Requirement 3: Query delegation

Server

a=C(DB)

learns only
c(DB)

 C
 C

DB

Putting it all together:

Remote Database ideal functionality

• Obtain DB from owner, reveal size to adv
• Receive (Query, Recipient) from owner:

• Run Query(DB)
 (potentially updating DB, disclose size & runtime to adv)

• Output answer to Recipient, disclose size to adv
• If Recipient corrupted, Adversary learns (only!) the answer

Requirement 4: efficiency & size

Want:

• Size of query & answer proportional to

 that of “plaintext query and answer”

• All clients are efficient in size of answer

• Database size is comparable to plaintext

• Server runtime proportional to original

A scheme that UC-realizes the above functionality and has the above
efficiency requirements is s called a secure database delegation scheme.

Existing solutions

Verifiability:
• Memory delegation [Chung-Kalai-Vadhan]
• SNARKS & Proof Carrying Data [Chiesa-Tromer, Bitansky-C-Chiesa-Tromer,…]
• Accumulators & set computations [Tamassia, Triandopoulos, Papadopoulos,…]
• General RAM computations with persistent memory
 [Kalai-Paneth,Brakerski-Holmgren-Kalai]
 But: no privacy…

Existing solutions

Verifiability:
• Memory delegation [Chung-Kalai-Vadhan]
• SNARKS & Proof Carrying Data [Chiesa-Tromer, Bitansky-C-Chiesa-Tromer,…]
• Accumulators & set computations [Tamassia, Triandopoulos, Papadopoulos,…]
• General RAM computations with persistent memory
 [Kalai-Paneth,Brakerski-Holmgren-Kalai]

 But: no privacy…

Privacy:
• Homomorphic encryption… but requires Ω(DB) work!
• Searchable encryption (order preserving, token based, CryptDB,…)
 But: no verifiability…

Main result:
Assuming circuit IO and const-to-1 CRHFs,
there exist a secure database delegation scheme.

Main result:
Assuming circuit IO and const-to-1 CRHFs,
there exist a secure database delegation scheme.

Proof:

Use Succinct Persistent Adaptive Garbled RAM…

Main result:
Assuming circuit IO and const-to-1 CRHFs,
there exist a secure database delegation scheme.

Proof:

Use Succinct Persistent Adaptive Garbled RAM…

 [concurrently by Ananth-Chen-Chung-Lin-Lin]

Garbling / Randomized Encoding
[Yao, Ishai-Kushilevitz, Bellare-Hoang-Rogaway]

• Algorithm 𝐺𝑎𝑟𝑏𝑙𝑒

• 𝑓 , 𝑥 ← 𝐺𝑎𝑟𝑏𝑙𝑒(𝑓, 𝑥):
• Correctness: 𝑓 𝑥 = 𝑓 (𝑥)

• Security: If 𝑓 𝑥 = 𝑓′(𝑥′), then
𝐺𝑎𝑟𝑏𝑙𝑒 𝑓, 𝑥 ≈ 𝐺𝑎𝑟𝑏𝑙𝑒(𝑓′, 𝑥′)

• Efficiency: Computing 𝑓 (𝑥) is as easy as computing 𝑓(𝑥)

• Succinctness: sizes of 𝑓 , 𝑥 are proportional to the size of 𝑓, 𝑥

Garbling / Randomized Encoding
[Yao, Ishai-Kushilevitz, Bellare-Hoang-Rogaway]

• Algorithm 𝐺𝑎𝑟𝑏𝑙𝑒 (Kgen,Fgarble,Igarble)

• 𝑓 , 𝑥 ← 𝐺𝑎𝑟𝑏𝑙𝑒(𝑓, 𝑥): k Kgen(), 𝑓 Fgarbl𝑒(𝑘, 𝑓), 𝑥 Igarbl𝑒(𝑘, 𝑥)

• Correctness: 𝑓 𝑥 = 𝑓 (𝑥)

• Security: If 𝑓 𝑥 = 𝑓′(𝑥), then
𝐺𝑎𝑟𝑏𝑙𝑒 𝑓, 𝑥 ≈ 𝐺𝑎𝑟𝑏𝑙𝑒(𝑓′, 𝑥′)

• Efficiency: Computing 𝑓 (𝑥) is as easy as 𝑓(𝑥)

• Succinctness: sizes of 𝑓 , 𝑥 are prop. to 𝑥, 𝑓(𝑥)

• Adaptivity: Adv can choose f

𝑎𝑠 𝑎 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑥 , and 𝑥 as a function of 𝑓 .

Brief History (partial)

• [Yao]: circuit garbling. No succinctness

• …

• [Goldwasser-Kalai-Poppa-Vinod-Zeldovich]: TM garbling.
Size Proportional to input size

• [Lu-Ostrovsky, Gentry-Halevi-Raykova-Wichs,…]: RAM machine
garbling. Size proportional to runtime.

• [Bellare-Hoang-Rogaway]: adaptive circuit garbling, in ROM

• [Bitansky-Garg-Lin-Pass-Telang, C-Holmgren-Jain-Vinod] :
TM/RAM garbling, semi succinct.

• [Koppula-Lewko-Waters]: TM garbling, fully succinct.

• [C-Holmgren,Chen-Chow-Chung-Lai-Lin]: Fully succinct RAM
garbling.

Garbling with persistent memory
[Gentry-Halevi-Raykova-Wichs]

• Algorithm 𝐺𝑎𝑟𝑏𝑙𝑒 = (Kgen,Fgarble,Igarble)

• k Kgen(), 𝑥 ← 𝐼𝑔𝑎𝑟𝑏𝑙𝑒(𝑘, 𝑥) 𝑓𝑖
 𝐹𝑔𝑎𝑟𝑏𝑙𝑒 𝑘, 𝑓𝑖 , i=1,2,…

• Correctness: 𝑓𝑖 𝑥𝑖 = 𝑓𝑖
 (𝑥𝑖) for all i

• Security: If 𝑓𝑖 𝑥𝑖 = 𝑓𝑖′(𝑥′𝑖), for all i, then
 𝑥 , 𝑓1

 , … 𝑓𝑖
 ≈ 𝑥 ′, 𝑓′1

 , … 𝑓′𝑖

• Efficiency: Computing 𝑓 (𝑥) is as easy as 𝑓(𝑥)

• Succinctness: sizes of 𝑓𝑖
 , 𝑥𝑖 prop. to size of 𝑥

𝑖
′𝑓𝑖 𝑥𝑖

• Adaptivity: Adv can choose fi after seeing 𝑥 , 𝑓1
 , … 𝑓𝑖 − 1

From
Succinct Persistent Adaptive Garbled RAM (SPAGRAM)

to database delegation

• To delegate database x: Garble x, send to server.
 Choose keys (sig, ver) for a signature scheme. Post ver.

• To query program C, garble the program:
 “Output C(x), sign using key sig.”
 Send to server (or to third party)

From
Succinct Persistent Adaptive Garbled RAM (SPAGRAM)

to database delegation

• To delegate database x: Garble x, send to server.
 Choose keys (sig, ver) for a signature scheme. Post ver.

• To query program C, garble the program:
 “Output C(x), sign using key sig.”
 Send to server (or to third party)

Note: Adaptivity is key!

RAM Garbling with persistent memory:
constructions

[GHRW]: Efficient, non-succinct, non-adaptive, assuming “special
purpose public-coins DIO”.

[C-Holmgren, Chung etal]: Succinct, non-adaptive, from IO+OWFs

[CCHR, ACCLL]: Adaptive

(from IO+const-2-1 CRHFs / DDH)

𝐶1

𝒪(𝐶1)

𝐶2

𝒪(𝐶2)

≡

≈𝑐

Indistinguishability Obfuscation (IO)
[Barak-Goldreich-Impagliazzo-Sahai-Rudich-Vadhan-Yang 01, Goldwasser-Rothblum 07]

Several candidate constructions

[Garg-Gentry-Halevi-Raykova-Sahai-Waters 13… … … Lin 16]

The age of IO

• Amazing concept:
• Extremely powerful, versatile

• A whole set of new techniques

• Elusive… “too good to be true”

• Does it exist? Under what assumptions?

• Can we show impossibility?

• Can we make it more efficient / realistic?

• How to use it?

• Relaxed/stronger notions?

Towards making IO more realistic
(Towards impossibility of IO?)

We Have

Circuit Obfuscation

Real World

Can we obfuscate more realistic computations?

Trivial “Solution”

𝑛 log 𝑛
log 𝑛

What We’d Like

• Indistinguishability Obfuscation for a RAM program
𝑀 directly

• 𝑖𝑂(𝑀) should itself a RAM program, with almost
the same complexity parameters as 𝑀.

• If 𝑀 𝑥 = 𝑀′ 𝑥 for all inputs 𝑥, then
𝑖𝑂 𝑀 ≈ 𝑖𝑂(𝑀′)

Progress So Far

• Turing Machine & RAM obfuscation from non-standard
“knowledge assumptions” (DIO and variants)
[BCP14,ABGSZ14,GHRW14,IPS14]

• “semi-succinct” TM & RAM obfuscation from subexp-IO
and IOWFs: size depends on space of computation.
[Bitansky-Garg-Lin-Pass-Telang,C-Holmgren-Jain-Vinod]

• Fully succinct Turing Machine obfuscation from subexp IO
and IOWFs [Koppula-Lewko-Waters 14]

• Fully succinct RAM obfuscation from subexp IO and IOWFs
[C-H,Chung etal]

• Extension to PRAM [Chung etal]

 All recent works obtain succinct garbling as a first step.

Our Techniques

A Naïve Attempt at RAM garbling

Memory CPU

Address 17
please

Address 93
please

𝑥17
𝑥′17

𝑥93

𝑥′93

A Naïve Attempt at RAM garbling

Memory CPU

Address 61
please

𝑥61

Answer: 42

Naïve Attempt at RAM garbling

𝑞𝑖𝑛

𝑠𝑖𝑛

𝑞𝑜𝑢𝑡

𝑠𝑜𝑢𝑡

𝑎𝑑𝑑𝑟

What’s wrong? Everything

• Doesn’t prevent adversary from giving circuit illegal
inputs

• Doesn’t hide any intermediate state

• Doesn’t hide memory addresses accessed

We’ll address these challenges one by one.

Goal: Succinct Garbling
2-step approach

1. Construct a weaker notion of garbling

2. Compile a weak garbler into a full garbler

Roadmap:
How to compile a stronger garbler
Weaken conditions for indistinguishability:

What needs to be the same?

Final Output Addresses Memory
Values

Same-Trace Yes Yes Yes

Same-
Address

Yes Yes No

Full Yes No No

[KLW14]

What’s missing?
• Internal RAM state
• Circuit behavior on illegal inputs

Same-Trace Garbling

𝑇𝑟 𝑀, 𝑥 ≝

Time Address Value Written Answer

1 𝑎1 𝑠1 ⊥

⋮ ⋮ ⋮ ⋮

𝑇 − 1 𝑎𝑇−1 𝑠𝑇−1 ⊥

𝑇 ⊥ ⊥ 𝑦

Theorem: There is an algorithm STGarble such that:

If Tr 𝑀, 𝑥 = Tr 𝑀′, 𝑥′ , then

STGarble 𝑀, 𝑥 ≈ STGarble 𝑀′, 𝑥′

Same-Trace Garbler Construction

• Obfuscate CPU; to ensure integrity of computation use:
• signature schemes

• positional accumulators

• iterators.

(Essentially follows [KLW14]’s “Message-hiding encoding”)

Same-Address Garbling

Goal: If (𝑀, 𝑥) and (𝑀′, 𝑥′) access same addresses,
then

SAGarble 𝑀, 𝑥 ≈ SAGarble 𝑀′, 𝑥′

Simple Case: Addresses are locally computable.

Strategy: Encrypt memory words and apply Same-
Trace Garbler

Same-Address Garbling (General
Case)
• What if addresses not locally computable?

Time Address Value Written Answer

1 𝑎1 𝑐1 ⊥

⋮ ⋮ ⋮ ⋮

𝑇 − 𝑗 − 1 𝑎𝑇−𝑗−1 𝑐𝑇−𝑗−1 ⊥

𝑇 − 𝑗 𝑎𝑇−𝑗 𝑧𝑇−𝑗 ⊥

⋮ ⋮ ⋮ ⋮

𝑇 − 1 𝑎𝑇−1 𝑧𝑇−1 ⊥

𝑇 ⊥ ⊥ 𝑦

How to access
𝑎𝑇−𝑗 , … , 𝑎𝑇−1?

Same-Address Garbling (General
Case)
• What if addresses not locally computable?

• Solution: double-execution

𝑀 =

Time Address Value Written Answer

1 𝑎1 𝑐1||𝑑1 ⊥

⋮ ⋮ ⋮ ⋮

𝑇 − 1 𝑎𝑇−1 𝑐𝑇−1||𝑑𝑇−1 ⊥

𝑇 ⊥ ⊥ 𝑦

𝑐𝑖 = 𝑖, 𝐹 𝑖||𝑎𝑖 ⊕ 𝑠𝑖
𝑑𝑖 = (𝑖, 𝐺 𝑖||𝑎𝑖 ⊕ 𝑠𝑖)

𝐹 and 𝐺 are
puncturable PRFs

(Full) Garbling

RAM machines 𝑀,𝑀′; Inputs 𝑥,𝑥′

Want: If 𝑀 𝑥 = 𝑀′(𝑥′), then

𝐺𝑎𝑟𝑏𝑙𝑒 𝑀, 𝑥 ≈ 𝐺𝑎𝑟𝑏𝑙𝑒(𝑀′, 𝑥′)

Difficulty: Hiding memory addresses accessed

Tools:

 - Oblivious RAM with “Randomness Locality”

 - Same Address Garbler (𝑆𝐴𝐺𝑎𝑟𝑏𝑙𝑒)

Oblivious RAM

• Transform RAM machine to have a (distributionally)
fixed memory access pattern

Addresses 𝑎′1, … , 𝑎′𝑡

Addresss 𝑎1, … , 𝑎𝑡

Addresses 𝐴 1, … , 𝐴 𝑡

𝐴′
1, … , 𝐴′

𝑡 ≈

Localized Randomness ORAM

• The vectors of accessed addresses depend (as a
function) on small, disjoint subsets of the random
bits

Mem. Accesses
𝑎1, 𝑎2, … , 𝑎𝑡 𝐴 1, 𝐴 2, … , 𝐴 𝑡

Randomness:

Localized Randomness ORAM

• The vectors of accessed addresses depend (as a
function) on small, disjoint subsets of the random
bits

• Each 𝐴 𝑖 can be efficiently sampled as 𝑂𝑆𝑎𝑚𝑝𝑙𝑒(𝑖)

Mem. Accesses
𝑎1, 𝑎2, … , 𝑎𝑡 𝐴 1, 𝐴 2, … , 𝐴 𝑡

Randomness:

Localized Randomness ORAM

• The vectors of accessed addresses depend on
small, disjoint subsets of the random bits

• Each 𝐴 𝑖 can be efficiently sampled as 𝑂𝑆𝑎𝑚𝑝𝑙𝑒 𝑖

Satisfied by Chung-Pass ORAM

Mem. Accesses
𝑎1, 𝑎2, … , 𝑎𝑡 𝐴 1, 𝐴 2, … , 𝐴 𝑡

Randomness:

Full Garbling Construction

RAM Machine

1. Read initial ORAM state
𝑞𝑂𝑅𝐴𝑀 from memory

2. Run 𝑀 obliviously with
randomness 𝐹 1 ,… , 𝐹(𝑇)

3. Output 𝑀’s answer

Memory

ORAM encoding 𝑥 𝑞𝑂𝑅𝐴𝑀

𝐺𝑎𝑟𝑏𝑙𝑒(𝑀, 𝑥) ≝

Same Address Garbler

Puncturable PRF 𝐹

Persistent Memory

• Same construction, except:

• In initial memory garbling, add “step 0”

• Augment the i-th machine to look for “step i-1” in
memory, and overwrite with “step i”.

 (all machines use the same parameters for
signature, accumulator, iterator, encryption, oram)

• Simulation strategy the same.

Adaptivity

First issue:

Positional accumulator is a static object:

 Guarantees unconditional binding at a single point.

 But point needs to be set ahead of time…

Recall: Positional accumulator
[Hubacek-Wichs, KLW, Okamoto-Pietrzak-Waters-Wichs]

• Geygen -> pk
• Accumulate 𝑝𝑘, 𝑆, 𝑖, 𝑥 → 𝑆′
• Verify 𝑝𝑘, 𝑆, 𝑖, 𝑥 → 𝑦𝑒𝑠 | 𝑛𝑜
• Fgen 𝑖, 𝑥 = pki,x

Properties:
- Computational binding
- Forced binding
- Indistinguishability of forced keys: pk ~ pki,x

 Forced locations need to be fixed in advance

Solutions

• First attempt: Reduction guesses location

Doesn’t work… Pos. Acc. not strong enough
[doesn’t guarantee consistency with writes]

[ACCLL]: Fix the notion and guess…

Adaptive Positional accumulator

• Geygen -> ak,vk
• Accumulate 𝑎𝑘, 𝑆, 𝑖, 𝑥 → 𝑆′
• Verify 𝑣𝑘, 𝑆, 𝑖, 𝑥 → 𝑦𝑒𝑠 | 𝑛𝑜
• Fgen 𝑎𝑘, 𝑖, 𝑥 = vki,x

Properties:
- Computational binding
- Forced binding
- Indistinguishability of forced keys: vk ~ vki,x

 Forced locations can be chosen adaptively…

Adaptive Positional accumulator

Construction:

• Define “AP-hash”: same properties as “APA” but for
hash function Use IO

• From AP-hash to APA: Use Merkle paradigm

• Construct AP-hash:

 vk: IO[“Check that the input x is consistent with hash value y”]

 fvki,x,y : IO[“if input is i’,x’,y and either i <> i’ or x <>x’

 then reject, else run normal check”]

Adaptivity: ORAM

Second issue:

• ORAM + PPRF is a static object:

 Guarantees unconditional secrecy for a single
 location.

 But location needs to be set ahead of time…

• Solution: Reduction guesses location…

IO with persistent memory?

IO with unbounded input?

Succinct garbling without IO?

Questions:

