Succinct Persistent Adaptive Garbled RAM
or

How To Delegate Your Database

Ran Canetti
TAU and BU

Based on joint works with
Justin Holmgren, Yilei Chen, Mariana Raykova

ePrint reports 2015/388 and 2015/1074

Delegating Computation

ﬁ M

“query” = program+input

~~ : / answer
W\/ ... >
Server
Verifiability + Privacy

Client

Efficiency

Bandwidth
Server

Client

Delegating Computation

“Old-fashioned” Setting: Small input + Big Computations

Verifiable Computation Protocols [Blum-Kannan89, Blum-Luby-Rubinfeld90,

Kilian92,Micali00, Ergun-Kumar-Rubinfeld99, Goldwasser-Kalai-RothblumO08,
Gennaro-Gentry-Parno10...]

* Fully Homomorphic Encryption [Gentry09]

=>» Client work + Bandwidth proportional to input size

Today: Big Data + Small Computations

Delegating Computation

Databases

age |M/F

salary

Database

Verifiability

Server Client
Efficiency
Privacy + Bandwidth
Server
Client

Requirement 1: Verifiability

DB

Is a=C(current-DB) ?

Public

Requirement 1: Verifi

Is a=C(current-DB) ? 7 A

DB

Server

ability

Requirement 2: Privacy

Learn nothing!

DB

Requirement 3: Query delegation

'S

DB <€ > a=C(DB)
@““ “

Server - . C
0™, %
EA C."

% S
S
L
learns only Xy I,f;‘-ﬁ)
c(DB) =

Putting it all together:
Remote Database ideal functionality

Obtain DB from owner, reveal size to adv
Receive (Query, Recipient) from owner:
 Run Query(DB)
(potentially updating DB, disclose size & runtime to adv)
Output answer to Recipient, disclose size to adv
If Recipient corrupted, Adversary learns (only!) the answer

Requirement 4: efficiency & size

Want:

* Size of query & answer proportional to
that of “plaintext query and answer”

* All clients are efficient in size of answer

e Database size is comparable to plaintext

e Server runtime proportional to original

A scheme that UC-realizes the above functionality and has the above
efficiency requirements is s called a secure database delegation scheme.

Existing solutions

Verifiability:

* Memory delegation [Chung-Kalai-Vadhan]

 SNARKS & Proof Carrying Data [Chiesa-Tromer, Bitansky-C-Chiesa-Tromer,...]

* Accumulators & set computations [Tamassia, Triandopoulos, Papadopoulos,...]

* General RAM computations with persistent memory
[Kalai-Paneth,Brakerski-Holmgren-Kalai]
But: no privacy...

Existing solutions

Verifiability:
* Memory delegation [Chung-Kalai-Vadhan]
 SNARKS & Proof Carrying Data [Chiesa-Tromer, Bitansky-C-Chiesa-Tromer,...]
* Accumulators & set computations [Tamassia, Triandopoulos, Papadopoulos,...]
* General RAM computations with persistent memory
[Kalai-Paneth,Brakerski-Holmgren-Kalai]
But: no privacy...

Privacy:
 Homomorphic encryption... but requires Q(DB) work!

* Searchable encryption (order preserving, token based, CryptDB,...)
But: no verifiability...

Main result:
Assuming circuit 10 and const-to-1 CRHFs,
there exist a secure database delegation scheme.

Main result:
Assuming circuit 10 and const-to-1 CRHFs,
there exist a secure database delegation scheme.

Proof:

Use Succinct Persistent Adaptive Garbled RAM...

Main result:
Assuming circuit 10 and const-to-1 CRHFs,
there exist a secure database delegation scheme.

Proof:

Use Succinct Persistent Adaptive Garbled RAM...

[concurrently by Ananth-Chen-Chung-Lin-Lin]

Garbling / Randomized Encoding

[Yao, Ishai-Kushilevitz, Bellare-Hoang-Rogaway]

e Algorithm Garble

 f, % « Garble(f, x):
e Correctness: f(x) = f(%)

e Security: If f(x) = f'(x), then
Garble(f,x) = Garble(f',x")

* Efficiency: Computing f (¥) is as easy as computing f (x)
* Succinctness: sizes of f , ¥ are proportional to the size of f, x

Garbling / Randomized Encoding

[Yao, Ishai-Kushilevitz, Bellare-Hoang-Rogaway]

e Algorithm Garble

 f, % « Garble(f, x):
e Correctness: f(x) = f(%)

e Security: If f(x) = f'(x), then
Garble(f,x) = Garble(f',x")

* Efficiency: Computing f (%) is as easy as f(x)
e Succinctness: sizes of f , ¥ are prop. to x, f(x)

Brief History (partial)

* [Yao]: circuit garbling. No succinctness
* [Goldwasser-Kalai-Poppa-Vinod-Zeldovich]: TM garbling.
Size Proportional to input size

* [Lu-Ostrovsky, Gentry-Halevi-Raykova-Wichs,...]: RAM machine
garbling. Size proportional to runtime.

* [Bellare-Hoang-Rogaway]: adaptive circuit garbling, in ROM

* [Bitansky-Garg-Lin-Pass-Telang, C-Holmgren-Jain-Vinod] :
TM/RAM garbling, semi succinct.

* [Koppula-Lewko-Waters]: TM garbling, fully succinct.

e [C-Holmgren,Chen-Chow-Chung-Lai-Lin]: Fully succinct RAM
garbling.

Garbling with persistent memory
|Gentry-Halevi-Raykova-Wichs]

e Algorithm Garble = (Kgen,Fgarble,lgarble)
« ke Kgen(), * « Igarble(k,x) f,€Fgarble(k, fi), i=12,..
* Correctness: f,(x;) = f,(X,) foralli

e Security: If f.(x;) = f.(x',), foralli, then

~ —~—

% fi, o fi= %, o f
» Efficiency: Computing f (%) is as easy as f(x)
» Succinctness: sizes of f,, X, prop. to size of x.fi(x)

—

* Adaptivity: Adv can choose f; after seeing %, f,,..f._

From
Succinct Persistent Adaptive Garbled RAM (SPAGRAM)

to database delegation

* To delegate database x: Garble x, send to server.
Choose keys (sig, ver) for a signature scheme. Post ver.

* To query program C, garble the program:
“Output C(x), sign using key sig.”
Send to server (or to third party)

From
Succinct Persistent Adaptive Garbled RAM (SPAGRAM)

to database delegation

* To delegate database x: Garble x, send to server.
Choose keys (sig, ver) for a signature scheme. Post ver.

* To query program C, garble the program:
“Output C(x), sign using key sig.”

Send to server (or to third party)

Note: Adaptivity is key!

RAM Garbling with persistent memory:
constructions

[GHRW]: Efficient, non-succinct, non-adaptive, assuming “special
purpose public-coins DIO”.

[C-Holmgren, Chung etal]: Succinct, non-adaptive, from IO+OWFs

[CCHR, ACCLL]: Adaptive
(from 10+const-2-1 CRHFs / DDH)

Indistinguishability Obfuscation (10)

[Barak-Goldreich-Impagliazzo-Sahai-Rudich-Vadhan-Yang 01, Goldwasser-Rothblum 07]

o ~ ot

Several candidate constructions
[Garg-Gentry-Halevi-Raykova-Sahai-Waters 13... Lin 16]

The age of |10

* Amazing concept:
* Extremely powerful, versatile
* A whole set of new techniques
* Elusive... “too good to be true”

* Does it exist? Under what assumptions?
e Can we show impossibility?

e Can we make it more efficient / realistic?
* How to use it?

* Relaxed/stronger notions?

Towards making |0 more realistic
(Towards impossibility of 107)

We Have

Circuit Obfuscation

Real World
\ 4 e comien SECOND EDITION
- e THE
® B
Y
=N\
TTTTTTTTTTTTTT PROGRAMMING
ALGORITHMS | —LANGUAGE
‘ BRIAN W KERNIGHAN
DENNIS M.RITCHIE

ICE HALL SOFTWARE SERIES

Can we obfuscate more realistic computations?

|II

Trivial “Solution”

H{} Ll b &=
TR

BINARY-SEARCH(x, T, p. r) R —;}}'FD’—
I low = p §I - N
2 high = max(p,r + 1) 8
3 while low < high .
4 mid = |(low + high)/2] - > ?‘%}D‘ |
5 if x < T'[mid| _ _ % : B
6 high = mid D [
7 else low = mid + | > ‘%D‘ H%D”J -
8 return high : '

= all'Ns

logn nlogn

What We'd Like

* Indistinguishability Obfuscation for a RAM program
M directly

* {0(M) should itself a RAM program, with almost
the same complexity parameters as M.

* If M(x) = M'(x) for all inputs x, then
i0(M) ~ i0(M")

Progress So Far

e Turing Machine & RAM obfuscation from non-standard
“knowledge assumptions” (DIO and variants)
[BCP14,ABGSZ14,GHRW14,I1PS14]

e “semi-succinct” TM & RAM obfuscation from subexp-10
and IOWFs: size depends on space of computation.
[Bitansky-Garg-Lin-Pass-Telang,C-Holmgren-Jain-Vinod]

* Fully succinct Turing Machine obfuscation from subexp 10
and IOWFs [Koppula-Lewko-Waters 14]

* Fully succinct RAM obfuscation from subexp 10 and IOWFs
[C-H,Chung etal]

* Extension to PRAM [Chung etal]

=>» All recent works obtain succinct garbling as a first step.

Our Techniques

A Naive Attempt at RAM garbling

Memory CPU

Address 93
please

A Naive Attempt at RAM garbling

Memory CPU

Naive Attempt at RAM garbling

din

addr

What’s wrong? Everything

* Doesn’t prevent adversary from giving circuit illegal
Inputs

* Doesn’t hide any intermediate state
* Doesn’t hide memory addresses accessed

We'll address these challenges one by one.

Goal: Succinct Garbling
2-step approach

1. Construct a weaker notion of garbling
2. Compile a weak garbler into a full garbler

Roadmap:
How to compile a stronger garbler

Weaken conditions for indistinguishability:
What needs to be the same?

Addresses Memory
Values

Same-Trace Yes . [KLW14]
Same- Yes Yes No

Address

Full Yes No No

What’s missing?
* Internal RAM state
* Circuit behavior onillegal inputs

Same-Trace Garbling

m
Tr(M,x) &

Theorem: There is an algorithm STGarble such that:

If Tr(M,x) = Tr(M', x"), then
STGarble(M, x) ~ STGarble(M’, x")

Same-Trace Garbler Construction

* Obfuscate CPU; to ensure integrity of computation use:
 signature schemes
* positional accumulators
* iterators.

(Essentially follows [KLW14]’s “Message-hiding encoding”)

Same-Address Garbling

Goal: If (M, x) and (M’', x") access same addresses,
then
SAGarble(M, x) =~ SAGarble(M', x")

Simple Case: Addresses are locally computable.

Strategy: Encrypt memory words and apply Same-
Trace Garbler

Same-Address Garbling (General
Case)

* What if addresses not locally computable?

Value Written
1 aq C1 1

T—j—1 ar_j4 CT—j-1 1t
T _] aT_ 5 ZT— 5

How to access J J

ar—j, -, Qr—1? |
T — 1 aT_l ZT—l 1

T 1 1

Same-Address Garbling (General
Case)

* What if addresses not locally computable?
 Solution: double-execution

Value Written m

C1||d1
T -1 ar—1 cr—1lldr—1
T 1 1
ci= (i, F(illa) @s) FandGare

d; = (i, G(i]|a;) @ s;) puncturable PRFs

(Full) Garbling

RAM machines M,M'; Inputs x,x’

Want: If M(x) = M'(x"), then
Garble(M,x) = Garble(M', x")

Difficulty: Hiding memory addresses accessed

Tools:
- Oblivious RAM with “Randomness Locality

- Same Address Garbler (SAGarble)

”

Oblivious RAM

* Transform RAM machine to have a (distributionally)
fixed memory access pattern

Addresss aq, ..., a; Addresses a'y, ..., a

| |

= —_—> —_—>

Addresses /Tl, v, Ap

Q
S
.
>

Localized Randomness ORAM

* The vectors of accessed addresses depend (as a
function) on small, disjoint subsets of the random
bits

Randomness:

Localized Randomness ORAM

* The vectors of accessed addresses depend (as a
function) on small, disjoint subsets of the random
bits

* Each /Tl- can be efficiently sampled as OSample(i)

Randomness:

Mem. Accesses
a;,as, ...,

Localized Randomness ORAM

* The vectors of accessed addresses depend on
small, disjoint subsets of the random bits

» Each 4, can be efficiently sampled as 0Sample (i)

Satisfied by Chung-Pass ORAM

Randomness:

Mem. Accesses
a;,as, ...,

Full Garbling Construction

Garble(M,x) =

RAM Machine

1. Read initial ORAM state
Qoram from memory

2. Run M obliviously with __+— Puncturable PRF F
randomness F(1), ..., F(T)

3. Output M’s answer

Same Address Garbler

Memory

dorRAM ORAM encoding x

Persistent Memory

* Same construction, except:
* In initial memory garbling, add “step 0”

* Augment the i-th machine to look for “step i-1” in
memory, and overwrite with “step i”.

(all machines use the same parameters for
signature, accumulator, iterator, encryption, oram)

e Simulation strategy the same.

Adaptivity

First issue:

Positional accumulator is a static object:
Guarantees unconditional binding at a single point.
But point needs to be set ahead of time...

Recall: Positional accumulator
[Hubacek-Wichs, KLW, Okamoto-Pietrzak-Waters-Wichs]

* Geygen -> pk

* Accumulate (pk,S,i,x) — S’
e Verify (pk,S,i,x) = yes | no
* Fgen (i, x) = pk;,

Properties:

- Computational binding

- Forced binding

- Indistinguishability of forced keys: pk~ pk;,

=» Forced locations need to be fixed in advance

Solutions

 First attempt: Reduction guesses location

Doesn’t work... Pos. Acc. not strong enough
[doesn’t guarantee consistency with writes]

[ACCLL]: Fix the notion and guess...

Adaptive Positional accumulator

* Geygen -> ak,vk

e Accumulate (ak,S,i,x) —» S’
e Verify (vk,S,i,x) = yes | no
* Fgen (ak,i,x) = vk,

Properties:

- Computational binding

- Forced binding

- Indistinguishability of forced keys: vk~ vk;,

=» Forced locations can be chosen adaptively...

Adaptive Positional accumulator

Construction:

 Define “AP-hash”: same properties as “APA” but for
hash function Use 10

* From AP-hash to APA: Use Merkle paradigm
e Construct AP-hash:
vk: 10[“Check that the input x is consistent with hash value y”]

fvk ., 1 IO[“if inputis i’,xy and either i <> i’ or x <>x’

then reject, else run normal check”]

Adaptivity: ORAM

Second issue:
* ORAM + PPRF is a static object:

Guarantees unconditional secrecy for a single
location.

But location needs to be set ahead of time...

* Solution: Reduction guesses location...

Questions:

|O with persistent memory?
|O with unbounded input?

Succinct garbling without 107

