MASCOT: Faster Malicious Arithmetic Secure Computation with Oblivious Transfer

Tore FrederiksenMarcel KellerEmmanuela OrsiniPeter Scholl

Aarhus University University of Bristol

31 May 2016

Secure Multiparty Computation

- Computation on secret inputs
- Replace trusted third party

Secure Multiparty Computation

Wanted: f(x, y, z)

- Computation on secret inputs
- Replace trusted third party
- ► Formulate *f* as circuit
- Central questions in MPC
 - How many trusted parties?
 - What deviation?

Multiparty Computation in This Talk

Security model

How many parties are how corrupted? In this work:

- ► Malicious adversary: Corrupted parties deviate from protocol.
- Dishonest majority of corrupted parties
 - Impossible without computational assumptions (PK crypto)
 - Shamir secret sharing does not help
 - No guaranteed termination

What Tools Do We Need?

- Linear secret sharing to store intermediate results
- ► Homomorphic authentication for active security ⇒ "Free" linear computation!
- Multiplication is harder. We need public-key crypto.
 - Using this on intermediate values is hard.
 - How to assure correct behaviour?
 - How to avoid leakage if protocol fails?
 - Easier: Preprocess correlated randomness

Malicious Offline-Online MPC Protocols

Advantages

- ► No secret inputs on the line when using crypto ⇒ No one gets hurt if protocol aborts!
- Online computation might have many rounds, but preprocessing is constant-round.

Malicious Offline-Online MPC Protocols

SPDZ[Damgård, Pastro, Smart, Zakarias 2012]Circuit over \mathbb{F}_p (prime) or \mathbb{F}_{2^k} , preprocessing using somewhat homomorphic encryptionTinyOT[Nielsen, Nordholt, Orlandi, Burra 2012]

Circuit over $\mathbb{F}_2,$ preprocessing using oblivious transfer

How to Share a Secret with Authentication

	Shares	MAC shares	MAC key
6	<i>x</i> ₁	$\gamma(x)_1$	α_1
Ø	<i>x</i> ₂	$\gamma(x)_2$	α_2
1 Alexandre	<i>x</i> 3	$\gamma(x)_3$	$lpha_{3}$
	Х	$\alpha \cdot x$	α
	$=\sum_{i} x_{i}$	$=\sum_{i}\gamma(x)_{i}$	$=\sum_{i} \alpha_{i}$
	=		

How to Share a Secret with Authentication

	Shares	MAC shares	MAC key
6	$x_1 + y_1$	$\gamma(x)_1 + \gamma(y)_1$	α_1
Ø	$x_2 + y_2$	$\gamma(x)_2 + \gamma(y)_2$	α_2
	$x_3 + y_3$	$\gamma(x)_3 + \gamma(y)_3$	$lpha_{3}$
	x + y	$\alpha \cdot (x + y)$	α
	$=\sum_{i}x_{i}+y_{i}$	$=\sum_{i}\gamma(x)_{i}+\gamma(y)_{i}$	$=\sum_{i} \alpha_{i}$
	=		

Multiplication with Random Triple (Beaver Randomization)

$$\begin{array}{l} x \cdot y \ = (x + a - a) \cdot (y + b - b) \\ \\ = \ (x + a) \ \cdot \ (y + b) \ - \ (y + b) \ \cdot \ a \ - \ (x + a) \ \cdot \ b \ + \ a \cdot b \end{array}$$

Multiplication with Random Triple (Beaver Randomization)

Preprocessing — Triple Production

Multiplication of secret values

- Somewhat homomorphic encryption (SPDZ)
 - Relatively expensive computation
 - Zero-knowledge proofs of correct ciphertext generation
- Oblivious transfer
 - Cheap computation with OT extension
 - Need to mitigate selective failure
- No multiplicative secret sharing for dishonest majority

1-out-of-2 Oblivious Transfer

- The **Sender** inputs two strings s_0 and s_1 and learns nothing.
- The **Receiver** inputs a bit b and learns only s_b .

1-out-of-2 Oblivious Transfer

Assume s_0, s_1 represent elements in \mathbb{F} , and define $a = s_1 - s_0$:

$$egin{aligned} s_b-s_0&=(1-b)\cdot s_0+b\cdot s_1-s_0\ &=b\cdot (s_1-s_0)\ &=b\cdot a \end{aligned}$$

OT Multiplication for Field ${\mathbb F}$

Passive security

Break down $\mathbb{F} \times \mathbb{F}$ multiplication to log $|\mathbb{F}|$ multiplications of bit and element in \mathbb{F} (previous slide):

$$x = \sum_{i=0}^{\log |\mathbb{F}|} 2^i \cdot x_i \quad \Rightarrow \quad x \cdot y = \sum_{0}^{\log |\mathbb{F}|} 2^i \cdot (x_i \cdot y)$$

Selective failure

Parties need to input the same value in several OT instances. If not, a protocol might fail later depending on secret bits. Non-failure reveals secret information!

Triple Generation

- 1. Parties sample random shares of a, b and the MAC key α
- 2. For additive sharings of $a \cdot b$, $a \cdot \alpha$, $b \cdot \alpha$
 - Every pair uses OT for secret sharing of product of two shares.
 - Compute product of two local shares and sum up.
- 3. Repeat for additive sharing of $\mathbf{a} \cdot \mathbf{b} \cdot \alpha$

Active Security

Need to mitigate selective failure attack:

- Check by opening some randomness ("sacrificing" some triples)
- Privacy amplification to dilute information that is revealed if check passes

Secure Triple Generation with OT

Binary circuits, $\mathbb{F}=\mathbb{F}_2$

- Generate enough triples
- Check some triples with cut-and-choose
- Recombine random subsets of the rest to remove leakage
- \blacktriangleright 9× overhead over passive triple with MAC generation

Arithmetic circuits for ${\ensuremath{\mathbb F}}$ large enough

- \blacktriangleright Hard enough to guess a random element of $\mathbb F$
- It suffices to randomly combine and check a few triples
- \blacktriangleright 3× overhead over passive triple with MAC generation

Oblivious Transfer Implementation

- Plain OT: 10'000 per second (Chou and Orlandi)
- OT extension: 7 million per second on a 1 Gbit/s link https://github.com/bristolcrypto/apricot
- Cost of active security is negligible
- Essential cost is sending k bits per random OT for computational security k

OT Extension — Basic Idea

- Base OTs
 Extend length with PRG
 Introduce correlation
 Transpose
 Hash to break correlation
 k random OTs / k bits
 k random OTs / n bits
 k correlated OTs / n bits
 n correlated OTs / k bits
 n random OTs / k bits
 - Computational security parameter k = 128
 - Number of OTs produced $n \ge 128$

- 1. Base OTs
- 2. Extend length with PRG
- 3. Introduce correlation
- 4. Transpose
- 5. Hash to break correlation

- k random OTs / k bits
- k random OTs / n bits
- k correlated OTs / n bits
- n correlated OTs / k bits
 - n random OTs / k bits
- Computational security parameter k = 128
 - Number of OTs produced $n \ge 128$

- Base OTs
 Extend length with PRG
 Introduce correlation
 Transpose
 Hash to break correlation
 k random OTs / k bits
 k correlated OTs / n bits
 n correlated OTs / k bits
 n random OTs / k bits
 - Computational security parameter k = 128
 - Number of OTs produced $n \ge 128$

- Base OTs
 Extend length with PRG
 Introduce correlation
 Transpose
 Hash to break correlation
 k random OTs / k bits
 k correlated OTs / n bits
 n correlated OTs / k bits
 n random OTs / k bits
 - Computational security parameter k = 128
 - Number of OTs produced $n \ge 128$

- Base OTs
 Extend length with PRG
 Introduce correlation
 Transpose
 Hash to break correlation
 k random OTs / k bits
 k correlated OTs / n bits
 n correlated OTs / k bits
 n random OTs / k bits
 - Computational security parameter k = 128
 - Number of OTs produced $n \ge 128$

 $\begin{array}{cc} x_i \colon & \text{selection bit} \\ \textbf{s}_{i,0}, \textbf{s}_{i,1}, \textbf{t}_i, \textbf{z}_i, \textbf{y} \colon & \text{strings} \end{array}$

 $\begin{array}{cc} x_i \colon & \text{selection bit} \\ \mathbf{s}_{i,0}, \mathbf{s}_{i,1}, \mathbf{t}_i, \mathbf{z}_i, \mathbf{y} \colon & \text{strings} \end{array}$

 $\begin{array}{rl} x_i & \text{selection bit} \\ \mathbf{s}_{i,0}, \mathbf{s}_{i,1}, \mathbf{t}_i, \mathbf{z}_i, \mathbf{y} & \text{strings} \end{array}$

 $\begin{array}{rl} x_i & \text{selection bit} \\ \mathbf{s}_{i,0}, \mathbf{s}_{i,1}, \mathbf{t}_i, \mathbf{z}_i, \mathbf{y} & \text{strings} \end{array}$

- **x**, **y**: strings / vectors in $(\mathbb{F}_2)^k$ and $(\mathbb{F}_2)^n$, respectively
- Q, T, Z: matrices in $(\mathbb{F}_2)^{k \times n}$
 - $\textbf{x} \otimes \textbf{y}:~$ tensor product, matrix of all possible products

- **x**, **y**: strings / vectors in $(\mathbb{F}_2)^k$ and $(\mathbb{F}_2)^n$, respectively
- Q, T, Z: matrices in $(\mathbb{F}_2)^{k \times n}$
 - $\textbf{x} \otimes \textbf{y}: ~$ tensor product, matrix of all possible products

OT Extension with Active Security

Problem

- > Party responsible for correlation (sender of base OT) can deviate
- ▶ $Q = T + \mathbf{x} \otimes \mathbf{y}$ not guaranteed

Solution

- Columns of $\mathbf{x} \otimes \mathbf{y}$: $(y_1 \cdot \mathbf{x}, \dots, y_n \cdot \mathbf{x})$
- Base OT sender knows T and y
- ► Sends random linear combination of columns in T and elements in y over the extension field F_{2^k}

Software Implementation

If you have AES in the processor...

AES-based Cryptography

Pseudorandom generator

- $PRG(K) = AES_{K}(0), AES_{K}(1), AES_{K}(2), \ldots$
- Need to compute key schedule only once

Hashing

- ► $H(x) = AES_0(x) \oplus x$
- Simplified version of Matyas–Meyer–Oseas
- Input length is limited to 128 bits
- ► Unlike H(x) = AES_x(0) ⊕ x (Davies-Meyer), the key schedule is always the same.

Results - Triple Generation for 128-bit Fields

- $\mathbb{F}_{2^{128}}$ or \mathbb{F}_p for 128-bit p
- Computational security 128
- Statistical security 64 (128 would cost < 20%)
- ► 1 Gbit/s link
- 180'224 bits per triple (max. 5549 triples/s for 2)
- SPDZ: 369 or 24 triples/s
 (F_p, covert or active)

100-Party Computation Goes Live!

Triple generation

_

	Triples/s	Triples/\$/party
2 parties	45478	2.6e8
100 parties	242	1.0e6

100-party Vickrey second-price auction

	Time	Cost per party
t2.nano	9.0 s	\$0.000017
c4.8xlarge	1.4 s	\$0.000741

Triples cost 18 seconds or \$0.0044 per party.

Conclusion

For n parties and security k, overall communication per triple:

- $\Omega(n(n-1)k \log |\mathbb{F}|)$ for all protocols in this line of work
- ► MASCOT: ≤ 13(n(n − 1) max(log |𝔽|, k) log |𝔽|) bits. Computation insignificant
- Open question: Asymptotic improvement?