MASCOT: Faster Malicious Arithmetic Secure Computation with Oblivious Transfer

Tore Frederiksen Marcel Keller
Emmanuela Orsini Peter Scholl

Aarhus University
University of Bristol
31 May 2016

Secure Multiparty Computation

- Computation on secret inputs
- Replace trusted third party

Secure Multiparty Computation

- Computation on secret inputs
- Replace trusted third party
- Formulate f as circuit
- Central questions in MPC
- How many trusted parties?
-What deviation?

Multiparty Computation in This Talk

Security model

How many parties are how corrupted? In this work:

- Malicious adversary: Corrupted parties deviate from protocol.
- Dishonest majority of corrupted parties
- Impossible without computational assumptions (PK crypto)
- Shamir secret sharing does not help
- No guaranteed termination

What Tools Do We Need?

- Linear secret sharing to store intermediate results
- Homomorphic authentication for active security \Rightarrow "Free" linear computation!
- Multiplication is harder. We need public-key crypto.
- Using this on intermediate values is hard.
- How to assure correct behaviour?
- How to avoid leakage if protocol fails?
- Easier: Preprocess correlated randomness

Malicious Offline-Online MPC Protocols

Advantages

- No secret inputs on the line when using crypto \Rightarrow No one gets hurt if protocol aborts!
- Online computation might have many rounds, but preprocessing is constant-round.

Malicious Offline-Online MPC Protocols

SPDZ

[Damgård, Pastro, Smart, Zakarias 2012]
Circuit over \mathbb{F}_{p} (prime) or $\mathbb{F}_{2^{k}}$, preprocessing using somewhat homomorphic encryption TinyOT
[Nielsen, Nordholt, Orlandi, Burra 2012]
Circuit over \mathbb{F}_{2}, preprocessing using oblivious transfer

How to Share a Secret with Authentication

	Shares	MAC shares	MAC key
	X_{1}	$\gamma(x)_{1}$	α_{1}
	x_{2}	$\gamma(x) 2$	α_{2}
	x_{3}	$\gamma(x)_{3}$	α_{3}
	$=\sum_{i}^{x} x_{i}$	$\begin{aligned} & \alpha \cdot x \\ = & \sum_{i} \gamma(x)_{i} \end{aligned}$	$=\sum_{i} \alpha_{i}$
		X	

How to Share a Secret with Authentication

	Shares	MAC shares	MAC key
(3)	$x_{1}+y_{1}$	$\gamma(x)_{1}+\gamma(y)_{1}$	α_{1}
)	$x_{2}+y_{2}$	$\gamma(x)_{2}+\gamma(y)_{2}$	α_{2}
	$x_{3}+y_{3}$	$\gamma(x)_{3}+\gamma(y)_{3}$	α_{3}
	$\begin{gathered} x+y \\ =\sum_{i} x_{i}+y_{i} \end{gathered}$	$\begin{gathered} \alpha \cdot(x+y) \\ =\sum_{i} \gamma(x)_{i}+\gamma(y)_{i} \end{gathered}$	$=\sum_{i}^{\alpha} \alpha_{i}$
		$x+y$	

Multiplication with Random Triple

 (Beaver Randomization)$$
\begin{aligned}
x \cdot y & =(x+a-a) \cdot(y+b-b) \\
& =(x+a) \cdot(y+b)-(y+b) \cdot a-(x+a) \cdot b+a \cdot b
\end{aligned}
$$

Multiplication with Random Triple

 (Beaver Randomization)

Preprocessing — Triple Production

Multiplication of secret values

- Somewhat homomorphic encryption (SPDZ)
- Relatively expensive computation
- Zero-knowledge proofs of correct ciphertext generation
- Oblivious transfer
- Cheap computation with OT extension
- Need to mitigate selective failure
- No multiplicative secret sharing for dishonest majority

1-out-of-2 Oblivious Transfer

Sender

Receiver

- The Sender inputs two strings s_{0} and s_{1} and learns nothing.
- The Receiver inputs a bit b and learns only s_{b}.

1-out-of-2 Oblivious Transfer

Sender

Receiver

Assume s_{0}, s_{1} represent elements in \mathbb{F}, and define $a=s_{1}-s_{0}$:

$$
\begin{aligned}
s_{b}-s_{0} & =(1-b) \cdot s_{0}+b \cdot s_{1}-s_{0} \\
& =b \cdot\left(s_{1}-s_{0}\right) \\
& =b \cdot a
\end{aligned}
$$

OT Multiplication for Field \mathbb{F}

Passive security

Break down $\mathbb{F} \times \mathbb{F}$ multiplication to $\log |\mathbb{F}|$ multiplications of bit and element in \mathbb{F} (previous slide):

$$
x=\sum_{i=0}^{\log |\mathbb{F}|} 2^{i} \cdot x_{i} \Rightarrow x \cdot y=\sum_{0}^{\log |\mathbb{F}|} 2^{i} \cdot\left(x_{i} \cdot y\right)
$$

Selective failure

Parties need to input the same value in several OT instances.
If not, a protocol might fail later depending on secret bits.
Non-failure reveals secret information!

Triple Generation

1. Parties sample random shares of a, b and the MAC key α
2. For additive sharings of $a \cdot b, a \cdot \alpha, b \cdot \alpha$

- Every pair uses OT for secret sharing of product of two shares.
- Compute product of two local shares and sum up.

3. Repeat for additive sharing of $a \cdot b \cdot \alpha$

Active Security

Need to mitigate selective failure attack:

- Check by opening some randomness ("sacrificing" some triples)
- Privacy amplification to dilute information that is revealed if check passes

Secure Triple Generation with OT

Binary circuits, $\mathbb{F}=\mathbb{F}_{2}$

- Generate enough triples
- Check some triples with cut-and-choose
- Recombine random subsets of the rest to remove leakage
- $9 \times$ overhead over passive triple with MAC generation

Arithmetic circuits for \mathbb{F} large enough

- Hard enough to guess a random element of \mathbb{F}
- It suffices to randomly combine and check a few triples
- $3 \times$ overhead over passive triple with MAC generation

Oblivious Transfer Implementation

- Plain OT: 10'000 per second (Chou and Orlandi)
- OT extension: 7 million per second on a 1 Gbit/s link https://github.com/bristolcrypto/apricot
- Cost of active security is negligible
- Essential cost is sending k bits per random OT for computational security k

OT Extension — Basic Idea

OT Extension with Passive Security

1. Base OTs
2. Extend length with PRG
3. Introduce correlation
4. Transpose
5. Hash to break correlation
k random OTs / k bits k random OTs / n bits
k correlated OTs / n bits
n correlated OTs / k bits n random OTs / k bits

Computational security parameter $k=128$
Number of OTs produced $n \geq 128$

OT Extension with Passive Security

1. Base OTs
2. Extend length with PRG
3. Introduce correlation
4. Transpose
5. Hash to break correlation
k random OTs / k bits k random OTs / n bits
k correlated OTs / n bits
n correlated OTs / k bits n random OTs / k bits

Computational security parameter $k=128$
Number of OTs produced $n \geq 128$

OT Extension with Passive Security

1. Base OTs
2. Extend length with PRG
3. Introduce correlation
4. Transpose
5. Hash to break correlation
k random OTs / k bits k random OTs / n bits k correlated OTs / n bits n correlated OTs / k bits n random OTs / k bits

Computational security parameter $k=128$
Number of OTs produced $n \geq 128$

OT Extension with Passive Security

1. Base OTs
2. Extend length with PRG
3. Introduce correlation
4. Transpose
5. Hash to break correlation
k random OTs / k bits k random OTs / n bits k correlated OTs / n bits n correlated OTs / k bits n random OTs / k bits

Computational security parameter $k=128$
Number of OTs produced $n \geq 128$

OT Extension with Passive Security

1. Base OTs
2. Extend length with PRG
3. Introduce correlation
4. Transpose
5. Hash to break correlation
k random OTs / k bits k random OTs / n bits
k correlated OTs / n bits
n correlated OTs / k bits n random OTs / k bits

Computational security parameter $k=128$
Number of OTs produced $n \geq 128$

Another Look at OT

x_{i} : selection bit
$\mathbf{s}_{i, 0}, \mathbf{s}_{i, 1}, \mathbf{t}_{i}, \mathbf{z}_{i}, \mathbf{y}$: strings

Another Look at OT

x_{i} : selection bit
$\mathbf{s}_{i, 0}, \mathbf{s}_{i, 1}, \mathbf{t}_{i}, \mathbf{z}_{i}, \mathbf{y}$: strings

Another Look at OT

x_{i} : selection bit
$\mathbf{s}_{i, 0}, \mathbf{s}_{i, 1}, \mathbf{t}_{i}, \mathbf{z}_{i}, \mathbf{y}$: strings

Another Look at OT

x_{i} : selection bit
$\mathbf{s}_{i, 0}, \mathbf{s}_{i, 1}, \mathbf{t}_{i}, \mathbf{z}_{i}, \mathbf{y}$: strings

Another Look at OT

\mathbf{x}, \mathbf{y} : strings / vectors in $\left(\mathbb{F}_{2}\right)^{k}$ and $\left(\mathbb{F}_{2}\right)^{n}$, respectively
$Q, T, Z: \quad$ matrices in $\left(\mathbb{F}_{2}\right)^{k \times n}$
$\mathbf{x} \otimes \mathbf{y}$: tensor product, matrix of all possible products

Another Look at OT

\mathbf{x}, \mathbf{y} : strings / vectors in $\left(\mathbb{F}_{2}\right)^{k}$ and $\left(\mathbb{F}_{2}\right)^{n}$, respectively
Q, T, Z : matrices in $\left(\mathbb{F}_{2}\right)^{k \times n}$
$\mathbf{x} \otimes \mathbf{y}$: tensor product, matrix of all possible products

OT Extension with Active Security

Problem

- Party responsible for correlation (sender of base OT) can deviate
- $Q=T+\mathbf{x} \otimes \mathbf{y}$ not guaranteed

Solution

- Columns of $\mathbf{x} \otimes \mathbf{y}:\left(y_{1} \cdot \mathbf{x}, \ldots, y_{n} \cdot \mathbf{x}\right)$
- Base OT sender knows T and \mathbf{y}
- Sends random linear combination of columns in T and elements in \mathbf{y} over the extension field $\mathbb{F}_{2^{k}}$

Software Implementation

If you have AES in the processor...

AES-based Cryptography

Pseudorandom generator

- $\operatorname{PRG}(K)=\operatorname{AES}_{K}(0), \operatorname{AES}_{K}(1), \operatorname{AES}_{K}(2), \ldots$
- Need to compute key schedule only once

Hashing

- $H(x)=\operatorname{AES}_{0}(x) \oplus x$
- Simplified version of Matyas-Meyer-Oseas
- Input length is limited to 128 bits
- Unlike $H(x)=\mathrm{AES}_{x}(0) \oplus x$ (Davies-Meyer), the key schedule is always the same.

Results - Triple Generation for 128-bit Fields

- $\mathbb{F}_{2^{128}}$ or \mathbb{F}_{p} for 128 -bit p
- Computational security 128
- Statistical security 64 (128 would cost < 20\%)
- 1 Gbit/s link
- 180'224 bits per triple (max. 5549 triples/s for 2)
- SPDZ: 369 or 24 triples/s (\mathbb{F}_{p}, covert or active)

100-Party Computation Goes Live!

Triple generation

	Triples/s	Triples/\$/party
2 parties	45478	2.6 e 8
100 parties	242	1.0 e 6

amazon webservices"

100-party Vickrey second-price auction

	Time	Cost per party
t2.nano	9.0 s	$\$ 0.000017$
c4.8xlarge	1.4 s	$\$ 0.000741$

Triples cost 18 seconds or $\$ 0.0044$ per party.

Conclusion

For n parties and security k, overall communication per triple:

- $\Omega(n(n-1) k \log |\mathbb{F}|)$ for all protocols in this line of work
- MASCOT: $\leq 13(n(n-1) \max (\log |\mathbb{F}|, k) \log |\mathbb{F}|)$ bits.

Computation insignificant

- Open question: Asymptotic improvement?

