
MASCOT: Faster Malicious Arithmetic Secure Computation
with Oblivious Transfer

Tore Frederiksen Marcel Keller
Emmanuela Orsini Peter Scholl

Aarhus University
University of Bristol

31 May 2016

Secure Multiparty Computation

A

B

z

y

x

Wanted: f (x , y , z)

I Computation on secret inputs

I Replace trusted third party

I Formulate f as circuit
I Central questions in MPC

I How many trusted parties?
I What deviation?

Secure Multiparty Computation

A

B

z

y

x

Wanted: f (x , y , z)

I Computation on secret inputs

I Replace trusted third party

I Formulate f as circuit
I Central questions in MPC

I How many trusted parties?
I What deviation?

Multiparty Computation in This Talk

Security model

How many parties are how corrupted? In this work:

I Malicious adversary: Corrupted parties deviate from protocol.
I Dishonest majority of corrupted parties

I Impossible without computational assumptions (PK crypto)
I Shamir secret sharing does not help
I No guaranteed termination

What Tools Do We Need?

I Linear secret sharing to store intermediate results

I Homomorphic authentication for active security
⇒ “Free” linear computation!

I Multiplication is harder. We need public-key crypto.
I Using this on intermediate values is hard.

I How to assure correct behaviour?
I How to avoid leakage if protocol fails?

I Easier: Preprocess correlated randomness

Malicious Offline-Online MPC Protocols

Preprocessing Online

PKC Inputs

Output
correlated randomness

Advantages

I No secret inputs on the line when using crypto
⇒ No one gets hurt if protocol aborts!

I Online computation might have many rounds,
but preprocessing is constant-round.

Malicious Offline-Online MPC Protocols

Preprocessing Online

PKC Inputs

Output
correlated randomness

SPDZ [Damg̊ard, Pastro, Smart, Zakarias 2012]

Circuit over Fp (prime) or F2k , preprocessing using somewhat homomorphic encryption

TinyOT [Nielsen, Nordholt, Orlandi, Burra 2012]

Circuit over F2, preprocessing using oblivious transfer

How to Share a Secret with Authentication

Shares MAC shares MAC key

x1 γ(x)1 α1

x2 γ(x)2 α2

x3 γ(x)3 α3

x α · x α
=

∑
i xi =

∑
i γ(x)i =

∑
i αi

= x

How to Share a Secret with Authentication

Shares MAC shares MAC key

x1 + y1 γ(x)1 + γ(y)1 α1

x2 + y2 γ(x)2 + γ(y)2 α2

x3 + y3 γ(x)3 + γ(y)3 α3

x + y α · (x + y) α
=

∑
i xi + yi =

∑
i γ(x)i + γ(y)i =

∑
i αi

= x + y

Multiplication with Random Triple
(Beaver Randomization)

x · y = (x + a− a) · (y + b − b)

= (x + a) · (y + b) − (y + b) · a − (x + a) · b + a · b

Masked and opened Random secret triple

Multiplication with Random Triple
(Beaver Randomization)

x · y = (x + a− a) · (y + b − b)

= (x + a) · (y + b) − (y + b) · a − (x + a) · b + a · b

Masked and opened Random secret triple

Preprocessing — Triple Production

Multiplication of secret values

I Somewhat homomorphic encryption (SPDZ)
I Relatively expensive computation
I Zero-knowledge proofs of correct ciphertext generation

I Oblivious transfer
I Cheap computation with OT extension
I Need to mitigate selective failure

I No multiplicative secret sharing for dishonest majority

1-out-of-2 Oblivious Transfer

Sender

OT

s0

s1

b

sb

Receiver

I The Sender inputs two strings s0 and s1 and learns nothing.

I The Receiver inputs a bit b and learns only sb.

1-out-of-2 Oblivious Transfer

Sender

OT

s0

s1

b

sb

Receiver

Assume s0, s1 represent elements in F, and define a = s1 − s0:

sb − s0 = (1− b) · s0 + b · s1 − s0

= b · (s1 − s0)

= b · a

⇒ sb,−s0 form an additive secret sharing of a · b.

OT Multiplication for Field F

Passive security

Break down F× F multiplication to log |F| multiplications of bit and element in F
(previous slide):

x =

log |F|∑
i=0

2i · xi ⇒ x · y =

log |F|∑
0

2i · (xi · y)

Selective failure
Parties need to input the same value in several OT instances.
If not, a protocol might fail later depending on secret bits.
Non-failure reveals secret information!

Triple Generation

1. Parties sample random shares of a, b and the MAC key α

2. For additive sharings of a · b, a · α, b · α
I Every pair uses OT for secret sharing of product of two shares.
I Compute product of two local shares and sum up.

3. Repeat for additive sharing of a · b · α

Active Security

Need to mitigate selective failure attack:

I Check by opening some randomness (“sacrificing” some triples)

I Privacy amplification to dilute information that is revealed if check passes

Secure Triple Generation with OT

Binary circuits, F = F2

I Generate enough triples

I Check some triples with cut-and-choose

I Recombine random subsets of the rest to remove leakage

I 9× overhead over passive triple with MAC generation

Arithmetic circuits for F large enough

I Hard enough to guess a random element of F
I It suffices to randomly combine and check a few triples

I 3× overhead over passive triple with MAC generation

Oblivious Transfer Implementation

I Plain OT: 10’000 per second (Chou and Orlandi)

I OT extension: 7 million per second on a 1 Gbit/s link
https://github.com/bristolcrypto/apricot

I Cost of active security is negligible

I Essential cost is sending k bits per random OT
for computational security k

https://github.com/bristolcrypto/apricot

OT Extension — Basic Idea

Few OTs

Cheap symmetric crypto

Many OTs

go fast go slow

OT Extension with Passive Security

1. Base OTs k random OTs / k bits

2. Extend length with PRG k random OTs / n bits

3. Introduce correlation k correlated OTs / n bits

4. Transpose n correlated OTs / k bits

5. Hash to break correlation n random OTs / k bits

Computational security parameter k = 128
Number of OTs produced n ≥ 128

OT Extension with Passive Security

1. Base OTs k random OTs / k bits

2. Extend length with PRG k random OTs / n bits

3. Introduce correlation k correlated OTs / n bits

4. Transpose n correlated OTs / k bits

5. Hash to break correlation n random OTs / k bits

Computational security parameter k = 128
Number of OTs produced n ≥ 128

OT Extension with Passive Security

1. Base OTs k random OTs / k bits

2. Extend length with PRG k random OTs / n bits

3. Introduce correlation k correlated OTs / n bits

4. Transpose n correlated OTs / k bits

5. Hash to break correlation n random OTs / k bits

Computational security parameter k = 128
Number of OTs produced n ≥ 128

OT Extension with Passive Security

1. Base OTs k random OTs / k bits

2. Extend length with PRG k random OTs / n bits

3. Introduce correlation k correlated OTs / n bits

4. Transpose n correlated OTs / k bits

5. Hash to break correlation n random OTs / k bits

Computational security parameter k = 128
Number of OTs produced n ≥ 128

OT Extension with Passive Security

1. Base OTs k random OTs / k bits

2. Extend length with PRG k random OTs / n bits

3. Introduce correlation k correlated OTs / n bits

4. Transpose n correlated OTs / k bits

5. Hash to break correlation n random OTs / k bits

Computational security parameter k = 128
Number of OTs produced n ≥ 128

Another Look at OT

Standard
OT

s0,0, s0,1

= s0,0 ⊕ z0

s1,0, s1,1

= s1,0 ⊕ z1

s2,0, s2,1

= s2,0 ⊕ z2

s0,x0

= s0,0 + x0 · z0

s1,x1

= s1,0 + x1 · z1

s2,x2

= s2,0 + x2 · z2

x0

x1

x2

xi : selection bit
si ,0, si ,1, ti , zi , y: strings

Another Look at OT

Standard
OT

s0,0, s0,1 = s0,0 ⊕ z0

s1,0, s1,1 = s1,0 ⊕ z1

s2,0, s2,1 = s2,0 ⊕ z2

s0,x0 = s0,0 + x0 · z0

s1,x1 = s1,0 + x1 · z1

s2,x2 = s2,0 + x2 · z2

x0

x1

x2

xi : selection bit
si ,0, si ,1, ti , zi , y: strings

Another Look at OT

Standard
OT

t0, z0

t1, z1

t2, z2

t0 + x0 · z0

t1 + x1 · z1

t2 + x2 · z2

x0

x1

x2

xi : selection bit
si ,0, si ,1, ti , zi , y: strings

Another Look at OT

Correlated
OT

t0, y

t1, y

t2, y

t0 + x0 · y

t1 + x1 · y

t2 + x2 · y

x0

x1

x2

xi : selection bit
si ,0, si ,1, ti , zi , y: strings

Another Look at OT

Correlated
OT

T , y

Q = T + x⊗ y

x

x, y: strings / vectors in (F2)k and (F2)n, respectively
Q,T ,Z : matrices in (F2)k×n

x⊗ y: tensor product, matrix of all possible products

Another Look at OT

Correlated
OT

y

Q = T + x⊗ y

x

T

x, y: strings / vectors in (F2)k and (F2)n, respectively
Q,T ,Z : matrices in (F2)k×n

x⊗ y: tensor product, matrix of all possible products

OT Extension with Active Security

Problem

I Party responsible for correlation (sender of base OT) can deviate

I Q = T + x⊗ y not guaranteed

Solution

I Columns of x⊗ y: (y1 · x, . . . , yn · x)

I Base OT sender knows T and y

I Sends random linear combination of columns in T and elements in y
over the extension field F2k

Software Implementation

If you have AES in the processor...

AES-based Cryptography

Pseudorandom generator

I PRG(K) = AESK (0),AESK (1),AESK (2), . . .

I Need to compute key schedule only once

Hashing

I H(x) = AES0(x)⊕ x

I Simplified version of Matyas–Meyer–Oseas

I Input length is limited to 128 bits

I Unlike H(x) = AESx(0)⊕ x (Davies–Meyer),
the key schedule is always the same.

Results – Triple Generation for 128-bit Fields

2 3 4 5

1,000

2,000

3,000

4,000

5,000

Number of parties

T
ri

p
le

s
p

er
se

co
n

d

I F2128 or Fp for 128-bit p

I Computational security 128

I Statistical security 64
(128 would cost < 20%)

I 1 Gbit/s link

I 180’224 bits per triple
(max. 5549 triples/s for 2)

I SPDZ: 369 or 24 triples/s
(Fp, covert or active)

100-Party Computation Goes Live!

Triple generation

Triples/s Triples/$/party

2 parties 45478 2.6e8
100 parties 242 1.0e6

100-party Vickrey second-price auction

Time Cost per party

t2.nano 9.0 s $0.000017
c4.8xlarge 1.4 s $0.000741

Triples cost 18 seconds or $0.0044 per party.

Conclusion

For n parties and security k, overall communication per triple:

I Ω(n(n − 1)k log |F|) for all protocols in this line of work

I MASCOT: ≤ 13(n(n − 1) max(log |F|, k) log |F|) bits.
Computation insignificant

I Open question: Asymptotic improvement?

