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Two-Party Computation

x1

x2

f (·, ·)

I Correctness: the output is f (x1, x2)

I Privacy: player i learns nothing on x2−i (except f (x1, x2))
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A Theoretical Example

Consider ft,d : (x1, · · · , xt) 7→
∑t

i=1 x
d
i

×

x1 x1

×

x1 x1

×

×

x2 x2

×

x2 x2

×

+
x4
1 + x4

2

I Baur and Strassen (1983): Any circuit computing ft,d has a
size lower-bounded by Ω(t log(d)).

I Most 2-PC protocols securely evaluating ft,d have a
communication of Ω(t log(d)poly(κ)). (except FHE)
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Suppose we have:
I An additive scheme and a multiplicative scheme
I An ESP between them
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Homomorphic Cryptosystems

ElGamal Cryptosystem
I Semantic security: DDH

assumption
I Homomorphic for ×

I Encrypts over any suitable G

Paillier Cryptosystem
I Semantic security: DCR

assumption
I Homomorphic for +

I Encrypts over Zn

DDH assumption over G:
Given (g , ga, gb, g c) ∈ G4, find out whether c = ab.

DCR assumption for n = pq, with (p, q) safe primes:
Given x ∈ Zn2 find out whether it is a nth power.
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Structure of (Z∗n,×)
I n = p · q, (p, q) are safe primes.
I 1 has four square roots: (1,−1, ξ,−ξ).
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An ElGamal Variant over Z∗n

How to encrypt m ∈ Z∗
n?

I χ ∈ Zn \ Jn
I g is a generator of Jn
I m = χa ·m1

I Enc(m) = (ga,EGJn(m1))

I Homomorphic for product
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An ElGamal Variant over Z∗n ' Z∗p × Z∗q

How to decrypt Enc(m) = (ga,EGJn(m1)), with m = χam1?
I Use the chinese remainder theorem
I Add discrete logs of χ in base g mod p and q to the secret key
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Extending the Variant over Z∗n ∪ {0}

I Encoding m ∈ Z∗
n ∪ {0} over Z∗

n

I Preserving the homomorphic properties

0 is absorbant over Z∗
n ∪ {0}

0×m = 0
random is absorbant over Z∗

n

random ×m = random

Let b = 1 if m = 0, b = 0 else.

Encoding(m) = (m + rb,Rb)



Putting Pieces Together
I We have an ElGamal-like scheme over Z∗

n ∪ {0}
I Z∗

n ∪ {0} is “equivalent” to Zn if the factorization is unknown
I We can use threshold schemes to ensure it

A toy scheme which does not handle the zero:

m

R ·m R−1

R ·m

m R−1= R ·m •

m

sk1 sk2
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What Do We Do Next?

I Deal with the other direction
I Extend the construction to handle zeros
I Prove formally that it implies general 2-PC
I Add security against malicious adversaries

Requires new techniques for ZK
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Twin Ciphertext Proof

I The core of the problem is a non-algebraic statement.

I However, there is some common algebraic structure.

m+ m×

m+ =? m×

λ• •λ

Square and multiply Encrypt λ

r0+ r0× r1+ r1× r2+ r2× r3+ r3×

I Reveal the random coins
I Reveal m/ri and play two plaintext-equality proofs

↪→ Colinearity proof
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Pool of Twin-Ciphertext Pairs

1

2

3

r0+ r0× r1+ r1× r2+ r2× r3+ r3×

Local
computation

Multi
exponentiation

ZK proof ∏
i (r

i
+)λi

∏
i (r

i
×)λi

cut-and-choose

mi
+

mi
×

r i+

r i×

colinearity proof



Applications

Given access to a pool of preproven twin-ciphertext pairs, the
players can very efficiently perform various ZK proofs:

I Double-logarithms proofs
I Proofs of exponential relations (known or unknown exponents)
I Proofs that a committed number is a prime
I And so on...



Thank you for your attention


