Encryption Switching Protocols

Geoffroy Couteau, Thomas Peters, and David Pointcheval

École Normale Supérieure, CNRS, INRIA, PSL

University of Aarhus Thursday, June 3

Two-Party Computation

- ► *Correctness:* the output is *f*(*x*₁, *x*₂)
- *Privacy:* player *i* learns nothing on x_{2-i} (except $f(x_1, x_2)$)

Homomorphic for product

Consider $f_{t,d}: (x_1, \cdots, x_t) \mapsto \sum_{i=1}^t x_i^d$

- Baur and Strassen (1983): Any circuit computing f_{t,d} has a size lower-bounded by Ω(t log(d)).
- Most 2-PC protocols securely evaluating f_{t,d} have a communication of Ω(t log(d)poly(κ)). (except FHE)

Suppose we have:

- ► An additive scheme and a multiplicative scheme
- An ESP between them

Suppose we have:

- ► An additive scheme and a multiplicative scheme
- An ESP between them

<i>x</i> 0	x_1	<i>x</i> ₂	<i>x</i> 3	<i>X</i> 4
•	-	_	u	

Suppose we have:

- An additive scheme and a multiplicative scheme
- An ESP between them

Suppose we have:

- An additive scheme and a multiplicative scheme
- An ESP between them

Suppose we have:

- An additive scheme and a multiplicative scheme
- An ESP between them

Suppose we have:

- An additive scheme and a multiplicative scheme
- An ESP between them

Suppose we have:

- An additive scheme and a multiplicative scheme
- An ESP between them

Homomorphic Cryptosystems

ElGamal Cryptosystem

- Semantic security: DDH assumption
- ► Homomorphic for ×

Paillier Cryptosystem

- Semantic security: DCR assumption
- ► Homomorphic for +

DDH assumption over \mathbb{G} : Given $(g, g^a, g^b, g^c) \in \mathbb{G}^4$, find out whether c = ab.

DCR assumption for n = pq, with (p, q) safe primes: Given $x \in \mathbb{Z}_{n^2}$ find out whether it is a *n*th power.

Homomorphic Cryptosystems

ElGamal Cryptosystem

- Semantic security: DDH assumption
- ► Homomorphic for ×
- ► Encrypts over any suitable G

Paillier Cryptosystem

- Semantic security: DCR assumption
- ► Homomorphic for +
- Encrypts over \mathbb{Z}_n

DDH assumption over \mathbb{G} : Given $(g, g^a, g^b, g^c) \in \mathbb{G}^4$, find out whether c = ab.

DCR assumption for n = pq, with (p, q) safe primes: Given $x \in \mathbb{Z}_{n^2}$ find out whether it is a *n*th power.

Structure of (\mathbb{Z}_n^*, \times)

- $n = p \cdot q, (p, q)$ are safe primes.
- 1 has four square roots: $(1, -1, \xi, -\xi)$.

Structure of (\mathbb{Z}_n^*, \times)

- $n = p \cdot q, (p, q)$ are safe primes.
- 1 has four square roots: $(1, -1, \xi, -\xi)$.

An ElGamal Variant over \mathbb{Z}_n^*

An ElGamal Variant over \mathbb{Z}_n^*

An ElGamal Variant over $\mathbb{Z}_n^* \simeq \mathbb{Z}_p^* \times \mathbb{Z}_q^*$

How to decrypt $Enc(m) = (g^a, EG_{J_n}(m_1))$, with $m = \chi^a m_1$?

- Use the chinese remainder theorem
- Add discrete logs of χ in base $g \mod p$ and q to the secret key

Extending the Variant over $\mathbb{Z}_n^* \cup \{0\}$

- Encoding $m \in \mathbb{Z}_n^* \cup \{0\}$ over \mathbb{Z}_n^*
- Preserving the homomorphic properties

0 is absorbant over $\mathbb{Z}_n^* \cup \{0\}$ $0 \times m = 0$ random is *absorbant* over \mathbb{Z}_n^* random $\times m =$ random

Let
$$b = 1$$
 if $m = 0$, $b = 0$ else.

$$Encoding(m) = (m + rb, R^b)$$

- We have an ElGamal-like scheme over $\mathbb{Z}_n^* \cup \{0\}$
- $\mathbb{Z}_n^* \cup \{0\}$ is "equivalent" to \mathbb{Z}_n if the factorization is unknown
- We can use threshold schemes to ensure it

A toy scheme which does not handle the zero:

- We have an ElGamal-like scheme over $\mathbb{Z}_n^* \cup \{0\}$
- $\mathbb{Z}_n^* \cup \{0\}$ is "equivalent" to \mathbb{Z}_n if the factorization is unknown
- We can use threshold schemes to ensure it
- A toy scheme which does not handle the zero:

- We have an ElGamal-like scheme over $\mathbb{Z}_n^* \cup \{0\}$
- $\mathbb{Z}_n^* \cup \{0\}$ is "equivalent" to \mathbb{Z}_n if the factorization is unknown
- We can use threshold schemes to ensure it
- A toy scheme which does not handle the zero:

- We have an ElGamal-like scheme over $\mathbb{Z}_n^* \cup \{0\}$
- $\mathbb{Z}_n^* \cup \{0\}$ is "equivalent" to \mathbb{Z}_n if the factorization is unknown
- We can use threshold schemes to ensure it
- A toy scheme which does not handle the zero:

What Do We Do Next?

- Deal with the other direction
- Extend the construction to handle zeros
- Prove formally that it implies general 2-PC
- Add security against malicious adversaries

What Do We Do Next?

- Deal with the other direction
- Extend the construction to handle zeros
- Prove formally that it implies general 2-PC
- Add security against malicious adversaries

Requires new techniques for ZK

• The core of the problem is a non-algebraic statement.

- The core of the problem is a non-algebraic statement.
- However, there is some common algebraic structure.

- The core of the problem is a non-algebraic statement.
- However, there is some common algebraic structure.

- The core of the problem is a non-algebraic statement.
- However, there is some common algebraic structure.

- Reveal the random coins
- ► Reveal m/r_i and play two plaintext-equality proofs \hookrightarrow Colinearity proof

Pool of Twin-Ciphertext Pairs

Given access to a pool of preproven twin-ciphertext pairs, the players can very efficiently perform various ZK proofs:

- Double-logarithms proofs
- Proofs of exponential relations (known or unknown exponents)
- Proofs that a committed number is a prime
- And so on...

Thank you for your attention