## Encryption Switching Protocols

Geoffroy Couteau, Thomas Peters, and David Pointcheval

University of Aarhus
Thursday, June 3

## Two-Party Computation



- Correctness: the output is $f\left(x_{1}, x_{2}\right)$
- Privacy: player $i$ learns nothing on $x_{2-i}$ (except $\left.f\left(x_{1}, x_{2}\right)\right)$


## Two-Party Computation from Homomorphic Encryption

Homomorphic
for product

Homomorphic
for addition

## Two-Party Computation from Homomorphic Encryption



## Two-Party Computation from Homomorphic Encryption



## Two-Party Computation from Homomorphic Encryption



## A Theoretical Example

Consider $f_{t, d}:\left(x_{1}, \cdots, x_{t}\right) \mapsto \sum_{i=1}^{t} x_{i}^{d}$

## A Theoretical Example

Consider $f_{t, d}:\left(x_{1}, \cdots, x_{t}\right) \mapsto \sum_{i=1}^{t} x_{i}^{d}$


- Baur and Strassen (1983): Any circuit computing $f_{t, d}$ has a size lower-bounded by $\Omega(t \log (d))$.
- Most 2-PC protocols securely evaluating $f_{t, d}$ have a communication of $\Omega(t \log (d)$ poly $(\kappa))$. (except FHE)


## A Theoretical Example

Suppose we have:

- An additive scheme and a multiplicative scheme
- An ESP between them

How to evaluate $f_{t, d}$ with $O(t)$ communication?

## A Theoretical Example

Suppose we have:

- An additive scheme and a multiplicative scheme
- An ESP between them

How to evaluate $f_{t, d}$ with $O(t)$ communication?
$x_{2}$
$x_{3}$
$X_{4}$

## A Theoretical Example

Suppose we have:

- An additive scheme and a multiplicative scheme
- An ESP between them

How to evaluate $f_{t, d}$ with $O(t)$ communication?
$x_{0}$


## A Theoretical Example

Suppose we have:

- An additive scheme and a multiplicative scheme
- An ESP between them

How to evaluate $f_{t, d}$ with $O(t)$ communication?


## A Theoretical Example

Suppose we have:

- An additive scheme and a multiplicative scheme
- An ESP between them

How to evaluate $f_{t, d}$ with $O(t)$ communication?


## A Theoretical Example

Suppose we have:

- An additive scheme and a multiplicative scheme
- An ESP between them

How to evaluate $f_{t, d}$ with $O(t)$ communication?


## A Theoretical Example

Suppose we have:

- An additive scheme and a multiplicative scheme
- An ESP between them

How to evaluate $f_{t, d}$ with $O(t)$ communication?


## Homomorphic Cryptosystems

## ElGamal Cryptosystem

- Semantic security: DDH assumption
- Homomorphic for $\times$


## Paillier Cryptosystem

- Semantic security: DCR assumption
- Homomorphic for +


## DDH assumption over $\mathbb{G}$ : <br> Given $\left(g, g^{a}, g^{b}, g^{c}\right) \in \mathbb{G}^{4}$, find out whether $c=a b$.

DCR assumption for $n=p q$, with $(p, q)$ safe primes: Given $x \in \mathbb{Z}_{n^{2}}$ find out whether it is a $n$th power.

## Homomorphic Cryptosystems

## ElGamal Cryptosystem

- Semantic security: DDH assumption
- Homomorphic for $\times$
- Encrypts over any suitable $\mathbb{G}$


## Paillier Cryptosystem

- Semantic security: DCR assumption
- Homomorphic for +
- Encrypts over $\mathbb{Z}_{n}$


## DDH assumption over $\mathbb{G}$ :

Given $\left(g, g^{a}, g^{b}, g^{c}\right) \in \mathbb{G}^{4}$, find out whether $c=a b$.

DCR assumption for $n=p q$, with $(p, q)$ safe primes: Given $x \in \mathbb{Z}_{n^{2}}$ find out whether it is a $n$th power.

## Multiparty Computation from Homomorphic Encryption



## Structure of $\left(\mathbb{Z}_{n}^{*}, \times\right)$

- $n=p \cdot q,(p, q)$ are safe primes.
- 1 has four square roots: $(1,-1, \xi,-\xi)$.



## Structure of $\left(\mathbb{Z}_{n}^{*}, \times\right)$

- $n=p \cdot q,(p, q)$ are safe primes.
- 1 has four square roots: $(1,-1, \xi,-\xi)$.



## An ElGamal Variant over $\mathbb{Z}_{n}^{*}$



How to encrypt $m \in \mathbb{Z}_{n}^{*}$ ?

- $\chi \in \mathbb{Z}_{n} \backslash \mathbb{J}_{n}$
- $g$ is a generator of $\mathbb{J}_{n}$
- $m=\chi^{a} \cdot m_{1}$
- $\operatorname{Enc}(m)=\left(g^{a}, \mathrm{EG}_{\mathbb{J}_{n}}\left(m_{1}\right)\right)$
- Homomorphic for product



## An ElGamal Variant over $\mathbb{Z}_{n}^{*}$

How to encrypt $m \in \mathbb{Z}_{n}^{*}$ ?

- $\chi \in \mathbb{Z}_{n} \backslash \mathbb{J}_{n}$
- $g$ is a generator of $\mathbb{J}_{n}$
- $m=\chi^{a} \cdot m_{1}$
- $\operatorname{Enc}(m)=\left(g^{a}, \mathrm{EG}_{\mathbb{J}_{n}}\left(m_{1}\right)\right)$
- Homomorphic for product



## An ElGamal Variant over $\mathbb{Z}_{n}^{*} \simeq \mathbb{Z}_{p}^{*} \times \mathbb{Z}_{q}^{*}$

How to decrypt $\operatorname{Enc}(m)=\left(g^{a}, \mathrm{EG}_{\mathbb{J}_{n}}\left(m_{1}\right)\right)$, with $m=\chi^{a} m_{1}$ ?

- Use the chinese remainder theorem
- Add discrete logs of $\chi$ in base $g \bmod p$ and $q$ to the secret key

$$
\begin{array}{ll}
1 & -1
\end{array}
$$

| -1 | non-square $\bmod p$ and non-square modq | square $\bmod p$ and non-square $\bmod q$ |
| :---: | :---: | :---: |
| 1 | square <br> $\bmod p$ and square $\bmod q$ | non-square $\bmod p$ and square $\bmod q$ |

## Extending the Variant over $\mathbb{Z}_{n}^{*} \cup\{0\}$

- Encoding $m \in \mathbb{Z}_{n}^{*} \cup\{0\}$ over $\mathbb{Z}_{n}^{*}$
- Preserving the homomorphic properties

0 is absorbant over $\mathbb{Z}_{n}^{*} \cup\{0\}$

$$
0 \times m=0
$$

random is absorbant over $\mathbb{Z}_{n}^{*}$ random $\times m=$ random

$$
\text { Let } b=1 \text { if } m=0, b=0 \text { else. }
$$

$\operatorname{Encoding}(m)=\left(m+r b, R^{b}\right)$

## Putting Pieces Together

- We have an ElGamal-like scheme over $\mathbb{Z}_{n}^{*} \cup\{0\}$
- $\mathbb{Z}_{n}^{*} \cup\{0\}$ is "equivalent" to $\mathbb{Z}_{n}$ if the factorization is unknown
- We can use threshold schemes to ensure it

A toy scheme which does not handle the zero:


## Putting Pieces Together

- We have an ElGamal-like scheme over $\mathbb{Z}_{n}^{*} \cup\{0\}$
- $\mathbb{Z}_{n}^{*} \cup\{0\}$ is "equivalent" to $\mathbb{Z}_{n}$ if the factorization is unknown
- We can use threshold schemes to ensure it

A toy scheme which does not handle the zero:


## Putting Pieces Together

- We have an ElGamal-like scheme over $\mathbb{Z}_{n}^{*} \cup\{0\}$
- $\mathbb{Z}_{n}^{*} \cup\{0\}$ is "equivalent" to $\mathbb{Z}_{n}$ if the factorization is unknown
- We can use threshold schemes to ensure it

A toy scheme which does not handle the zero:


## Putting Pieces Together

- We have an ElGamal-like scheme over $\mathbb{Z}_{n}^{*} \cup\{0\}$
- $\mathbb{Z}_{n}^{*} \cup\{0\}$ is "equivalent" to $\mathbb{Z}_{n}$ if the factorization is unknown
- We can use threshold schemes to ensure it

A toy scheme which does not handle the zero:


## What Do We Do Next?

- Deal with the other direction
- Extend the construction to handle zeros
- Prove formally that it implies general 2-PC
- Add security against malicious adversaries


## What Do We Do Next?

- Deal with the other direction
- Extend the construction to handle zeros
- Prove formally that it implies general 2-PC
- Add security against malicious adversaries

Requires new techniques for ZK

## Twin Ciphertext Proof

- The core of the problem is a non-algebraic statement.



## Twin Ciphertext Proof

- The core of the problem is a non-algebraic statement.
- However, there is some common algebraic structure.



## Twin Ciphertext Proof

- The core of the problem is a non-algebraic statement.
- However, there is some common algebraic structure.



## Twin Ciphertext Proof

- The core of the problem is a non-algebraic statement.
- However, there is some common algebraic structure.

- Reveal the random coins
- Reveal $m / r_{i}$ and play two plaintext-equality proofs
$\hookrightarrow$ Colinearity proof

Pool of Twin-Ciphertext Pairs


## Applications

Given access to a pool of preproven twin-ciphertext pairs, the players can very efficiently perform various ZK proofs:

- Double-logarithms proofs
- Proofs of exponential relations (known or unknown exponents)
- Proofs that a committed number is a prime
- And so on...


## Thank you for your attention

