
From	Mercury	Delay	Lines	to	Magnetic	Core	Memories:	

Progress	in	Oblivious	Memories

David	Evans
University	of	Virginia
www.cs.virginia.edu/evans
oblivc.org

Theory	and	Practice	of	Secure	Multiparty	Computation	2016
Aarhus	University
1	June	2016

Building	MPC	Applications
Application-Specific

Custom	Protocols

Custom	Data	Structures

Data-Oblivious	
Algorithms

General	Purpose

Generic	Protocols (e.g.,	Yao’s)

Library	Data	Structures
General-Purpose	ORAM

Standard	Algorithms

Setting
Semi-honest	model
Two-party	computation
Mostly	standard	assumptions	

(although	implementation	uses	Free-XOR)

Oblivious	Data	Structures

Samee Zahur and	David	Evans.	Circuit	Structures	
for	Improving	Efficiency	of	Security	&	Privacy	Tools.	
IEEE	Security	and	Privacy	(Oakland)	2013.

Crazy	Things	in	Typical	Code

5

a[i] = x

Circuit	for	Array	Update

6

i ==	0

a[0] x

a'[0]

i ==	1

a[1] x

a'[1]

i ==	2

a[2] x

a'	[2]

…

Easy	(and	Common)	Case

7

for (i = 0; i < n; i++)
a[i] += 1

a[0] a[1] a[2] a[n-1]…

+1 +1 +1 +1

Locality:	Stacks	and	Queues

8

if (x != 0)
a[i] += 1
if (a[i] > 10)

i += 1
a[i] = 5

t := a.top() + 1
a.cond_update(x != 0, t)
a.cond_push(x != 0 && t > 10, *)
a.cond_update(x != 0, 5)

Data-oblivious	code
No	branching	allowed

Naïve	Conditional	Push

9

…p

x a[0] a[1] a[2] …

a’[0] a’[1] a’[2] …

Naïve	Conditional	Push

10

…True

7 2 9 3 …

7 2 9 …

More	Efficient	Stack

11

Level	0: 2 9 3
t	=	3

Level	1: 4 7
t	=	2

5 4

Level	2: 8 8 2 3 8 6

…

Block	size	=	2level
Each	level	has	5	blocks,	at	least	2	full	and	2	empty

t	=	3

Efficient	queue	operations

Spatial	Locality
Not	just	for	stacks	and	queues

Access	cost	Θ log	𝑛

Temporal	
Batching

Θ(n	log2 n)

Example	Application:	DBScan

15

Density-based	clustering:	
depth-first	search	to	find	dense	clusters	

Martin	Ester,	Hans-Peter	Kriegel,	
Jörg Sander,	Xiaowei Xu.	KDD 1996

Alice’s	Data Bob’s	Data Joint	Clusters

16

Private	Input:P – array	of	points	
(combines	private	points	from	both	parties)

Public	inputs:minpts,	radius
Output: cluster	number	for	each	point	

Conditional	Push!

Array	update!

17

0

5000

10000

15000

20000

25000

30000

35000

40000

60 120 240 480

Ex
ec
ut
io
n	
Ti
m
e	
(s
ec
on

ds
)

Data	Size

Optimized	Structures

Normal	Data	Structures

9.7	hours

55	minutes

Data-Oblivious	Memory
Specialized	memory	access
Circuit	structures,	protocol	agnostic
Stacks,	queues,	batched	map	operations

General	random	access
Oblivious	RAM

But	first…Obliv-C

Tools	for	Building	Secure	Computations

Library-based	
frameworks:
Circuit-level	
programs

Full	control
Low-level	programming

Little	type	safety

High-level	
Languages

Little	control
High-level	programming
Strong	type	safety

Library-based	
frameworks:
Circuit-level	
programs

Full	control
Low-level	programming

Little	type	safety

High-level	
Languages

Little	control
High-level	programming
Strong	type	safety

High-level	programming
Low-level	customizability

Helpful,	escapable type	checking

Tools	for	Building	Secure	Computations

Obliv-C

Obliv-C
#include <million.h>

int main (int argc, char ∗argv[]) {
ProtocolDesc pd;
ProtocolIO io;
int p = (argv[1] == ’1’ ? 1 : 2);
sscanf(argv[2], "%d", &io.myinput);
// ... set up TCP connections
setCurrentParty(&pd, p);
execYaoProtocol(&pd, millionaire, &io);
printf("Result: %d\n", io->cmp);
// ... cleanup }

Oblivious	Conditionals

from	obinary_search

Actual	code…with	all	the	ugly	parts

Escaping

~obliv(var) {
…

}

Code	inside	~obliv always	executes
regardless	of	oblivious	condition

var is	Boolean:	oblivious	condition	

Programmer	has	control!		But,	not	security	risk:	all	private	data	is	still	encrypted

Implementing	Oblivious	Queue

http://oblivc.org/

Historical	
Excursion

Journal	of	the	ACM,	
January	1968

30

(In	same	Jan	1968	JACM	as	Waksman	Network!)

Delay	
Lines

31

Mercury	Delay	Lines

32

0/1

Why	Mercury?

33

Speed	of	Sound
Air 343	m/s

Mercury 1450	m/s	(40° C)
Water 1500	m/s	(25° C)

34

35

36

MIT	Project	Whirlwind,	1951
2K	16-bit	words

with	“no	waiting”!	

Magnetic	
Core	

Memory

Oblivious	RAM

Linear	Scan	Doesn’t	Scale
Writing	a	single	32-bit	integer:	32	logic	gates
Raw	Yao’s	performance	≈	3M	gates	per	second
Write	speed	≈	100,000	elements	per	second

(not	hiding	access	pattern)

For	hiding	access	pattern,	N	=	217 elements	
requires	>	1 second	per	access

Traditional	ORAM

Client Untrusted	Server

[Goldreich 1987]

Security	property:	all	initialization	and	access	sequences	
of	the	same	length	are	indistinguishable	to	server.

Sublinear	
client-side	

state

Linear	
server-side	
encrypted	
state

Initialize

Access

RAM-SC
[Gordon,	Katz,	Kolesnikov,	Krell,	Malkin,	Raykova,	Vahlis 2012]

Alice Bob

MPC	ProtocolPublic	
ORAM	
state

Public	
ORAM	
state

Encrypted	
Results

Oblivious	
ORAM	state

Initialize

Access

Circuit	ORAM	Access	time

Xiao	Wang,	Hubert	
Chan,	and	Elaine	Shi.	
Circuit	ORAM:	On	
Tightness	of	the	
Goldreich-Ostrovsky
Lower	Bound.	In	
ACM	CCS	2015.

State-of-
the-ORAM-
Art	in	2015

Θ log3𝑛

Linear	scan

Re
su
lts
	S
um

m
ar
y

(Not including
initialization cost)

+ ~ 1 week to initialize

Classical	Square-Root	ORAM

Problems	with	SQ-ORAM	Design
• Requires	a	PRF	for	each	ORAM	access	
– PRF	is	a	big	circuit	in	MPC

• Initialization	requires																PRF	evaluations
• Requires		 oblivious	sort	twice:
– Shuffling	memory	according	to	PRF
– Removing	dummy	blocks

Solution	strategy:	use	random	permutation	instead	of	PRF

Shuffling	Network		[Waksman	1968]

Cost	per	shuffle:	5B

4-Block	ORAM

4-Block	ORAM

Cost:	5B +		B +2B +3B +	…	
=	11B every	3	accesses

Linear	scan

Cost:	4B = 12B/3

Our	scheme

Cost:	11B/3

Less	expensive	than	linear	scan	for	4	blocks	(8	with	overhead)

Logical index/4

Logical index/2

Logical index/4

Logical index/2

read	a[8]
First	Access

Logical index/4

Logical index/2

read	a[8]
First	Access

Logical index/4

Logical index/2

read	a[8]
First	Access

Logical index/4

Logical index/2

read	a[8]
First	Access

Logical index/4

Logical index/2

read	a[8]
First	Access

After	First	Access
Used	(Public)

Second	Access
read	a[9]

Second	Access
read	a[9]

Randomly	select	unused	element

Second	Access
read	a[9]

Randomly	select	unused	element

Randomly	select	unused	element

Second	Access
read	a[9]

Randomly	select	unused	element

Randomly	select	unused	element

Second	Access
read	a[9]

Randomly	select	unused	element

Randomly	select	unused	element

After	Second	Access

Position	map

3 0 2 1

0 1 2 3

1 3 0 2

0 1 2 3

Creating	position	map

Creating	position	map

Inverse	permutation

𝜋8

𝑝

𝜋8 ⋅ 𝑝
𝜋; = 𝜋8 ⋅ 𝑝

Alice	picks	a	
random	masking	
permutation

Composed	
permutation	
revealed	to	Bob

Inverse	permutation

𝜋8
Bob	computes
𝜋;=> = 𝑝=> ⋅ 𝜋8=>

𝜋8

𝜋;=> ⋅ 𝜋8
= 𝑝=> ⋅ 𝜋8=> ⋅ 𝜋8
= 𝑝=>

𝜋; = 𝜋8 ⋅ 𝑝

𝜋;=>

Scheme

1. Shuffle	elements
2. Recreate	position	map

3. Service	𝑇 = 𝑛 log 𝑛	accesses

Amortized	cost:	Θ 𝐵 𝑛 logA 𝑛 	 per	access

In
iti
al
iza

tio
n	
co
st

16-byte	blocks
32-byte	blocks

Pre-Access	Cost	(not	counting	initialization)

Have	we	reached	
the	magnetic	core	
memory	era	yet?	

16-byte	blocks
32-byte	blocks

Whirlwind	I	(1951)	
30	𝜇s,	2048	x	16-bit	words

16-byte	blocks
32-byte	blocks

Z3	(1941)

Whirlwind	I	(1951)	
30	𝜇s,	2048	x	16-bit	words

Wall-clock	time	in	seconds	for	full	protocol	between	two	EC2	C4.2xlarge	nodes	(1.03	Gbps)

∼32	minutes
55,000x standard	execution

Wall-clock	time	in	seconds	for	full	protocol	between	two	EC2	C4.2xlarge	nodes	(1.03	Gbps)

∼33	hours	(“wikipedia”	version)
Improved	to	∼1	hour	with	custom	structures	

Wall-clock	time	in	seconds	for	full	protocol	between	two	EC2	C4.2xlarge	nodes	(1.0	Gbps)

Open	Problems
• Scalability:	poly-logarithmic	
hierarchical	ORAM	design

• Automatic	optimization:	using	
custom	data	structures	when	
memory	access	predictable

• Stronger	security	models:	active	
security
– All	results	are	semi-honest	model	

• Establishing	Meaningful	Trust
64	KB	memory
1	𝜇s	access

(∼2000x improvement)	

Collaborators

Samee	Zahur
Jack	Doerner
David	Evans

Xiao	Wang
Jonathan	Katz

Mariana	Raykova Adrià Gascón

Code	and	Paper:	oblivc.org/sqoram

David	Evans
evans@virginia.edu

www.cs.virginia.edu/evans
OblivC.org

mightBeEvil.org

