
Verifiable ASICs

Michael Walfish

Dept. of Computer Science, Courant Institute, NYU

Aarhus Workshop on Secure Multiparty Computation
1 June 2016

This is joint work with:

Riad S. Wahby (Stanford), Max Howald (Cooper Union and
NYU), Siddharth Garg (NYU), abhi shelat (U. of Virginia)

Riad recently presented this work at IEEE S&P (Oakland).

Problem: the manufacturer (“foundry” or “fab”) of a custom
chip (“ASIC”) can undermine the chip’s execution.

principal
(govt, chip vendor, …)

chip manufacturer
(“foundry” or “fab”)

chip design

eavesdropper

encrypted
phone

encrypted
phone

Response: control the manufacturing chain with a trusted foundry

But trusted fabrication is not a panacea:

§  Only 5 countries have cutting-edge fabs on shore

§  Building a new fab takes $billions and years of R&D

§  With semiconductor technology, area and energy reduce with
square and cube of transistor dimension

§  So: old fabs means enormous penalty. Example of India: 108×.

Trusted fabrication is the only solution with strong guarantees.

§  For example, post-fab detection can be thwarted
[A2: Analog Malicious Hardware. Yang et al., IEEE S&P 2016]

We thought: probabilistic proofs might let us get trust more cheaply!

An alternative: Verifiable ASICs

principal

F → designs for
P, V

integrator

untrusted
fab (fast)
builds P

trusted
fab (slow)
builds V

P V

V

operator

P
x
y

proof that
F(x) = y

input

output

Makes sense if V + P cheaper than trusted F

Reasons for hope:

§  Running time of V < F (asymptotically)

§  Implementations exist, and …

§  … though their costs for P are absurd,
advanced fab might make P cheaper than F (!)

V P
x
y

proof that
F(x) = y

input

output

vs. F

GMR85
Babai85
BCC86
BFLS91
FGLSS91
Kilian92
ALMSS92
AS92
Micali94
BG02
GOS06
IKO07
GKR08
KR09
GGP10
Groth10
GLR11
Lipmaa11
BCCT12
GGPR12
BCCT13
KRR14
…

SBW11
CMT12

SMBW12
TRMP12

SVPBBW12
SBVBPW13

VSBW13
PGHR13

Thaler13
BCGTV13

BFRSBW13
BFR13

DFKP13
BCTV14a
BCTV14b

 BCGGMTV14
FL14

KPPSST14
FGP14

WSRHBW15
BBFR15

CFHKKNPZ15
CTV15

KZMQCPPsS15

Reasons for hope caution:

§  The theory is silent about feasibility (and the
onus here is heavier than in prior work)

§  Costs must reflect hardware: energy, area, ….

§  We need physically realizable designs and
plausible computation sizes

Makes sense if V + P cheaper than trusted F

V P
x
y

proof that
F(x) = y

input

output

vs. F
SBW11
CMT12

SMBW12
TRMP12

SVPBBW12
SBVBPW13

VSBW13
PGHR13

Thaler13
BCGTV13

BFRSBW13
BFR13

DFKP13
BCTV14a
BCTV14b

 BCGGMTV14
FL14

KPPSST14
FGP14

WSRHBW15
BBFR15

CFHKKNPZ15
CTV15

KZMQCPPsS15

GMR85
Babai85
BCC86
BFLS91
FGLSS91
Kilian92
ALMSS92
AS92
Micali94
BG02
GOS06
IKO07
GKR08
KR09
GGP10
Groth10
GLR11
Lipmaa11
BCCT12
GGPR12
BCCT13
KRR14
…

Zebra: a system that saves costs

… sometimes

(1)

(2)

probabilistic proof protocol
(back-end)

program translator
(front-end)

Implementations of probabilistic proofs:

arithmetic circuit
(AC) over 𝔽p

x y, proof

main(){
 ...
}

C program

prover

verifier

interactive proof [GKR08]

interactive argument [IKO07]

non-interactive argument
(CS proof, SNARG, SNARK)
[Micali94, Groth10, Lipmaa12, GGPR12]

P V

arguments
(interactive, SNARK, CS proof, etc.)

•  non-deterministic ACs

•  arbitrary AC geometry

•  1-round, 2-round protocols

•  deterministic ACs only

•  layered, low-depth ACs

•  lots of rounds, communication

interactive proofs
[GGPR12, PGHR13, SBVBPW13, BCTV14] [GKR08, CMT12, VSBW13]

x

y, proof

unsuited to hardware suited to hardware

Zebra builds on the GKR interactive proof [GKR08, CMT12, VSBW13];
computations are expressed as layered arithmetic circuits over 𝔽p

verifier prover

x
y

…

ACCEPT/
REJECT

x

y

sum-check
invocation

[LFKN90]

…
 sum-check invocation

sum-check invocation

Zebra builds on the GKR interactive proof [GKR08, CMT12, VSBW13];
computations are expressed as layered arithmetic circuits over 𝔽p

V’s sequential running time:
O(depth · log width + |x| + |y|),
assuming precomputation of queries

Cost to execute F directly:
O(depth · width)

Soundness error:
miniscule for large p

Zebra builds on the GKR interactive proof [GKR08, CMT12, VSBW13];
computations are expressed as layered arithmetic circuits over 𝔽p

V’s sequential running time:
O(depth · log width + |x| + |y|),
assuming precomputation of queries

Cost to execute F directly:
O(depth · width)

Soundness error:
miniscule for large p

verifier prover

x
y

…
 sum-check

invocation
[LFKN90]

…
 sum-check invocation

sum-check invocation

P’s sequential running time:
O(depth · width · log width)

Zebra extracts parallelism

Execution step: layers are sequential,
but gates can be executed in parallel.

Proving step: can P and V parallelize
the interaction?

§  No. V must ask questions in order

§  But. Parallelism is still available

V questions P about F(x1)’s
output layer

Simultaneously, P returns F(x2)

F(x2)
F(x1)

F(x3)

F(x1)

F(x2)

V questions P about F(x1)’s next
layer and F(x2)’s output layer

Meanwhile, P returns F(x3)

F(x4)

F(x1)

F(x2)

F(x3)

This process continues

F(x5)

F(x1)

F(x2)

F(x3)

F(x4)

This process continues

F(x7)

F(x1)

F(x2)

F(x3)

F(x4)

F(x5)

F(x6)

This process continues until
V and P are completing one
proof in each time step.

sub-prover, layer 0

prover

…

sub-prover, layer d-1

This is nothing other than pipelining, a classic hardware technique.

It applies because layering organizes the work into stages.

There are other opportunities along these lines.

sub-prover, layer 1

sub-prover, layer i

for k in {0,1,2}:
 H[k] ← 0
 for all gates g:
 H[k] ← H[k] + u[g]*v(g,k)

for all gates g:
 u[g] ← u[g]*v(g,rj)

Sub-prover’s obligation in round j
of sum-check invocation: return
Hj(0), Hj(1), Hj(2), where

Hj(k) = ∑ uj(g)⋅vj(g, k)
gates g

uj+1(g) = uj(g)⋅vj(g, rj)

rj

Hj(0), Hj(1), Hj(2)

…

load u[1]
u[1]*v(1, k=0)
u[1]*v(1, k=1)
u[1]*v(1, k=2)
store new u[1]

load u[g]
u[g]*v(g, k=0)
u[g]*v(g, k=1)
u[g]*v(g, k=2)
store new u[g]

…

adder tree

gate module 1 gate module g

RAM

sub-prover, layer i

for k in {0,1,2}:
 H[k] ← 0
 for all gates g:
 H[k] ← H[k] + u[g]*v(g,k)

for all gates g:
 u[g] ← u[g]*v(g,rj)

Sub-prover’s obligation in round j
of sum-check invocation: return
Hj(0), Hj(1), Hj(2), where

Hj(k) = ∑ uj(g)⋅vj(g, k)
gates g

uj+1(g) = uj(g)⋅vj(g, rj)

rj

Hj(0), Hj(1), Hj(2)

… load u[1]
u[1]*v(1, k=0)
u[1]*v(1, k=1)
u[1]*v(1, k=2)
store new u[1]

load u[g]
u[g]*v(g, k=0)
u[g]*v(g, k=1)
u[g]*v(g, k=2)
store new u[g]

…

adder tree

u[1] u[g]

gate module 1 gate module g

sub-prover, layer i

for k in {0,1,2}:
 H[k] ← 0
 for all gates g:
 H[k] ← H[k] + u[g]*v(g,k)

for all gates g:
 u[g] ← u[g]*v(g,rj)

Sub-prover’s obligation in round j
of sum-check invocation: return
Hj(0), Hj(1), Hj(2), where

Hj(k) = ∑ uj(g)⋅vj(g, k)
gates g

uj+1(g) = uj(g)⋅vj(g, rj)

rj

Hj(0), Hj(1), Hj(2)

adder tree

u[1] u[g]

u[1]*v(1, k=1)
u[1]*v(1, k=2)

u[1]*v(1, k=0)

gate module 1 gate module g

§  Extract parallelism
§  Pipelined proving, adder tree, gate proving, etc.

§  Exploit locality: distribute state and control

§  Custom registers (no RAM): “data” wires are few and short

§  Latency-insensitive design: few “control” wires

§  Reduce and reuse

Summary of Zebra’s design approach:

sub-prover, layer i

adder tree

gate module 1 gate module g

u[1] u[g]

u[1]*v(1, k=1)
u[1]*v(1, k=2)

u[1]*v(1, k=0)

§  Extract parallelism
§  Pipelined proving, adder tree, gate proving, etc.

§  Exploit locality: distribute state and control

§  Custom registers (no RAM): “data” wires are few and short

§  Latency-insensitive design: few “control” wires

§  Reuse and recycle

§  Recycle hardware circuitry for different tasks

§  Save energy by adding memoization to P

§  Reuse block designs; optimizations thus have high pay-off

Summary of Zebra’s design approach:

Architectural and operational challenges for Zebra

1. Communication between V and P is high bandwidth

§  V and P on circuit board? Too much energy, circuit area

§  Zebra’s response: use 3D packaging

2. Protocol requires input-independent precomputation

§  Zebra’s response: amortize precomputations over many V-P pairs

3. Trusted storage would be prohibitive

§  Zebra’s response: use untrusted storage, with auth-encryption

§  An arithmetic circuit to synthesizable Verilog compiler for P
§  Composes with existing C to arithmetic circuit compilers

§  Two V implementations:
§  hardware (Verilog)

§  software (C++)

§  Library to generate V’s precomputations

§  Verilog simulator extensions to model software or hardware
V’s interactions with P and with storage

The implementation of Zebra includes:

This implementation seemed to work great.

Zebra: 104 or 105 proofs per second

Existing implementations: 10 seconds per proof, at least

But that isn’t a serious evaluation …

§  Baseline: direct implementation of F in same technology as V

§  Metrics: energy, chip size per throughput (in paper)

§  Assessed with circuit synthesis and simulation, published chip
designs, and CMOS scaling models

§  Charge for V, P, communication; retrieving and decrypting
precomputations; PRNG; operator communicating with V

§  Constraints: trusted fab = 350 nm; untrusted fab = 7 nm;
max chip area = 200 mm2; max total power = 150 W

Evaluation method

V P
x
y

proof

input

output

vs. F

§  Baseline: direct implementation of F in same technology as V

§  Metrics: energy, chip size per throughput (in paper)

§  Assessed with circuit synthesis and simulation, published chip
designs, and CMOS scaling models

§  Charge for V, P, communication; retrieving and decrypting
precomputations; PRNG; operator communicating with V

§  Constraints: trusted fab = 350 nm; untrusted fab = 7 nm;
max chip area = 200 mm2; max total power = 150 W

Evaluation method

V P
x
y

proof

input

output

vs. F

1997

350 nm

2017

7 nm
[TSMC]

Application #1: number theoretic transform

NTT: a Fourier transform over 𝔽p

Used in signal processing, computer algebra, etc.

Application #1: number theoretic transform

6 7 8 9 10 11 12 13
0.1

0.3

1

3

log
2
(NTT size)

b
a
se

lin
e
 v

s.
 Z

e
b

ra
 (

h
ig

h
e

r
is

 b
e

tt
e

r)
Ratio of baseline energy to Zebra energy

Application #2: Curve25519 point multiplication

Curve25519: a commonly-used elliptic curve

Point multiplication: primitive used for ECDH

84 170 340 682 1147
0.1

0.3

1

3

Parallel Curve25519 point multiplications

b
a

se
lin

e
 v

s.
 Z

e
b

ra
 (

h
ig

h
e

r
is

 b
e

tt
e

r)

Ratio of baseline energy to Zebra energy

Application #2: Curve25519 point multiplication

(1) Zebra: a system that saves costs

(2) … sometimes

Summary of Zebra’s applicability:

1.  Computation F must have a layered, shallow, deterministic AC

2.  Need wide gap between (fast) fab for P and (trusted) fab for V

3.  Computation F must be relatively large for V to save work

4.  Computation F must be efficient as an arithmetic circuit (AC)

5.  Must amortize precomputations over many chips

restriction of the interactive proof (IP) setup

Why did we build Zebra atop IPs instead of arguments?

Design principle
interactive proofs

[GKR08, CMT12, VSBW13]

arguments
(interactive, SNARK, CS proof, etc.)
[GGPR12, PGHR13, SBVBPW13, BCTV14]

Extract parallelism ✓ ✓

Exploit locality ✓ ✗

Reduce and reuse ✓ ✗

In arguments, P computes over entire AC at once ⟶ need RAM

P does crypto for every gate in AC ⟶ special crypto circuits needed

We hope these issues are surmountable!

Because argument protocols seem unfriendly to hardware:

Reality check on the restrictions:

1.  Computation F must have a layered, shallow, deterministic AC

2.  Need wide gap between (fast) fab for P and (trusted) fab for V

3.  Computation F must be relatively large for V to save work

4.  Computation F must be efficient as an arithmetic circuit (AC)

5.  Must amortize precomputations over many chips

applies to interactive proofs (IPs) but not arguments

common to all implementations of probabilistic proofs

A limitation that is endemic to the area:
Need wide gap between (fast) fab for P and (trusted) fab for V

101

105

0

109

103

107

1011
w

or
ke

r’
s

co
st

no

rm
al

iz
ed

 to
 n

at
iv

e
C

matrix multiplication (m=128) PAM clustering (m=20, d=128)

N/A

1013

Pe
pp

er
G

in
ge

r

P
in

oc
ch

io

Z
aa

ta
r

C
M

T

na
tiv

e
C

A
lls

pi
ce

T
in

yR
A

M

T
ha

le
r

Pe
pp

er
G

in
ge

r

P
in

oc
ch

io

Z
aa

ta
r

C
M

T

na
tiv

e
C

A
lls

pi
ce

T
in

yR
A

M

T
ha

le
r

Limitations that are endemic to the area:

Computation F must be relatively large for V to save work

Computation F must be efficient as an arithmetic circuit

§  Example: libsnark’s [BCTV14] optimized implementation of
GGPR/Pinocchio [GGPR12, PGHR13]. Great work, but:

§  Verification time: 6 ms + (|x| + |y|)･3 µs on 2.7 Ghz CPU

§  That time is >16 million CPU ops, which is a break-even point

§  libsnark handles ≤ 16 million gates (with 32 GB of RAM), so
to break even, F also needs on average CPU_ops/AC_gate > 1.
§  Example: addition over 𝔽p instead of over fixed-width integers

Built probabilistic proof protocols amortize precomputations*

*Exception: CMT [CMT12] applied to highly regular arithmetic circuits

System amortize precomputation over size of advice

Zebra multiple V-P pairs short

Allspice [VSBW13] over a batch of instances of a given F short

Bootstrapped SNARKs
[BCTV14a, CTV15]

over all computations long

BCTV [BCTV14b] over all computations of the same length long

Pinocchio [PGHR13] over all future uses of a given F long

Pepper [SMBW12],
Ginger [SVPBBW12],
Zaatar [SBVBPW13]

over a batch of instances of a given F long

Lessons (re)learned:

§  Do careful feasibility studies first!

§  Hardware is a powerful tool for acceleration …

§  ... but only if data flows are amenable

§  Theory of computation versus application of physics

§  General-purpose verifiable computation and succinct arguments
are still far from practical

Summary and take-aways

§  Verifiable ASICs: a new approach to building trustworthy
hardware under a strong threat model

§  First hardware design for a probabilistic proof protocol; first
work to capture cost of prover, verifier together

§  Improves performance compared to trusted baseline

§  Improvement compared to baseline is modest

§  Applicability is limited
§  Amortization, arithmetic circuits, “big enough” computations,

large gap between trusted and untrusted technology, etc.

§  Zebra is plausibly deployable (!), but work remains for this area

http://www.pepper-project.org

