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Problem: the manufacturer (“foundry” or “fab”) of  a custom 
chip (“ASIC”) can undermine the chip’s execution. 
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Response: control the manufacturing chain with a trusted foundry 



But trusted fabrication is not a panacea: 

§  Only 5 countries have cutting-edge fabs on shore 

§  Building a new fab takes $billions and years of  R&D 

§  With semiconductor technology, area and energy reduce with 
square and cube of  transistor dimension  

§  So: old fabs means enormous penalty. Example of  India: 108×. 

Trusted fabrication is the only solution with strong guarantees. 

§  For example, post-fab detection can be thwarted 
[A2: Analog Malicious Hardware. Yang et al., IEEE S&P 2016] 

We thought: probabilistic proofs might let us get trust more cheaply! 



An alternative: Verifiable ASICs 
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Makes sense if   V + P cheaper than trusted F 

Reasons for hope: 

§  Running time of  V < F (asymptotically) 

§  Implementations exist, and … 

§  … though their costs for P are absurd, 
advanced fab might make P cheaper than F (!) 
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Reasons for hope caution: 

§  The theory is silent about feasibility (and the 
onus here is heavier than in prior work) 

§  Costs must reflect hardware: energy, area, …. 

§  We need physically realizable designs and 
plausible computation sizes 

Makes sense if   V + P cheaper than trusted F 
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Zebra: a system that saves costs 
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Implementations of  probabilistic proofs: 
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arguments 
(interactive, SNARK, CS proof, etc.) 

•  non-deterministic ACs 

•  arbitrary AC geometry  

•  1-round, 2-round protocols 

•  deterministic ACs only  

•  layered, low-depth ACs 

•  lots of  rounds, communication 

interactive proofs 
[GGPR12, PGHR13, SBVBPW13, BCTV14] [GKR08, CMT12, VSBW13] 
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unsuited to hardware suited to hardware 



Zebra builds on the GKR interactive proof  [GKR08, CMT12, VSBW13]; 
computations are expressed as layered arithmetic circuits over 𝔽p  
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Zebra builds on the GKR interactive proof  [GKR08, CMT12, VSBW13]; 
computations are expressed as layered arithmetic circuits over 𝔽p  

 

V’s sequential running time: 
O(depth · log width + |x| + |y|), 
assuming precomputation of  queries  

Cost to execute F directly: 
O(depth · width) 

Soundness error: 
miniscule for large p 
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P’s sequential running time: 
O(depth · width · log width) 



Zebra extracts parallelism 

 

Execution step: layers are sequential, 
but gates can be executed in parallel. 

 

Proving step: can P and V parallelize 
the interaction? 

§  No. V must ask questions in order 

§  But. Parallelism is still available 



V questions P about F(x1)’s 
output layer 

Simultaneously, P returns F(x2) 
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This process continues until 
V and P are completing one 
proof  in each time step. 
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sub-prover, layer d-1 

This is nothing other than pipelining, a classic hardware technique. 

It applies because layering organizes the work into stages. 

There are other opportunities along these lines. 

sub-prover, layer 1 



sub-prover, layer i 

for k in {0,1,2}:
  H[k] ← 0
  for all gates g:
    H[k] ← H[k] + u[g]*v(g,k)
  
for all gates g:
  u[g] ← u[g]*v(g,rj)
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gate module 1 gate module g 

RAM 
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§  Extract parallelism 
§  Pipelined proving, adder tree, gate proving, etc. 

§  Exploit locality: distribute state and control 

§  Custom registers (no RAM): “data” wires are few and short 

§  Latency-insensitive design: few “control” wires 

§  Reduce and reuse 

Summary of  Zebra’s design approach: 
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§  Extract parallelism 
§  Pipelined proving, adder tree, gate proving, etc. 

§  Exploit locality: distribute state and control 

§  Custom registers (no RAM): “data” wires are few and short 

§  Latency-insensitive design: few “control” wires 

§  Reuse and recycle 

§  Recycle hardware circuitry for different tasks 

§  Save energy by adding memoization to P 

§  Reuse block designs; optimizations thus have high pay-off   

Summary of  Zebra’s design approach: 



Architectural and operational challenges for Zebra 

1.  Communication between V and P is high bandwidth 

§  V and P on circuit board? Too much energy, circuit area 

§  Zebra’s response: use 3D packaging 

2.  Protocol requires input-independent precomputation  

§  Zebra’s response: amortize precomputations over many V-P pairs 

3.  Trusted storage would be prohibitive 

§  Zebra’s response: use untrusted storage, with auth-encryption 



§  An arithmetic circuit to synthesizable Verilog compiler for P 
§  Composes with existing C to arithmetic circuit compilers 

§  Two V implementations: 
§  hardware (Verilog) 

§  software (C++) 

§  Library to generate V’s precomputations 

§  Verilog simulator extensions to model software or hardware 
V’s interactions with P and with storage 

The implementation of  Zebra includes: 



This implementation seemed to work great. 

Zebra: 104 or 105 proofs per second 

Existing implementations: 10 seconds per proof, at least 

But that isn’t a serious evaluation … 



§  Baseline: direct implementation of  F in same technology as V 

§  Metrics: energy, chip size per throughput (in paper) 

§  Assessed with circuit synthesis and simulation, published chip 
designs, and CMOS scaling models 

§  Charge for V, P, communication; retrieving and decrypting 
precomputations; PRNG; operator communicating with V 

§  Constraints:  trusted fab = 350 nm; untrusted fab = 7 nm; 
max chip area = 200 mm2; max total power = 150 W 

Evaluation method 
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Application #1: number theoretic transform 

NTT: a Fourier transform over 𝔽p 

Used in signal processing, computer algebra, etc.  



Application #1: number theoretic transform 
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Application #2: Curve25519 point multiplication 

Curve25519: a commonly-used elliptic curve 

Point multiplication: primitive used for ECDH 
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Application #2: Curve25519 point multiplication 



(1)  Zebra: a system that saves costs 

(2)  … sometimes 



Summary of  Zebra’s applicability: 

1.  Computation F must have a layered, shallow, deterministic AC 

2.  Need wide gap between (fast) fab for P and (trusted) fab for V 

3.  Computation F must be relatively large for V to save work 

4.  Computation F must be efficient as an arithmetic circuit (AC) 

5.  Must amortize precomputations over many chips 

restriction of the interactive proof (IP) setup 



Why did we build Zebra atop IPs instead of  arguments? 

Design principle 
interactive proofs 

[GKR08, CMT12, VSBW13] 

arguments 
(interactive, SNARK, CS proof, etc.) 
[GGPR12, PGHR13, SBVBPW13, BCTV14] 

Extract parallelism ✓ ✓ 

Exploit locality ✓ ✗ 

Reduce and reuse ✓ ✗ 

In arguments, P computes over entire AC at once ⟶ need RAM 

P does crypto for every gate in AC ⟶ special crypto circuits needed 

We hope these issues are surmountable! 

Because argument protocols seem unfriendly to hardware: 



Reality check on the restrictions: 

1.  Computation F must have a layered, shallow, deterministic AC 

2.  Need wide gap between (fast) fab for P and (trusted) fab for V 

3.  Computation F must be relatively large for V to save work 

4.  Computation F must be efficient as an arithmetic circuit (AC) 

5.  Must amortize precomputations over many chips 

applies to interactive proofs (IPs) but not arguments 

common to all implementations of probabilistic proofs 



A limitation that is endemic to the area: 
Need wide gap between (fast) fab for P and (trusted) fab for V 

101

105

0

109

103

107

1011
w

or
ke

r’
s 

co
st

 
no

rm
al

iz
ed

 to
 n

at
iv

e 
C

matrix multiplication (m=128) PAM clustering (m=20, d=128)

N/A

1013

Pe
pp

er
G

in
ge

r

P
in

oc
ch

io

Z
aa

ta
r

C
M

T

na
tiv

e 
C

A
lls

pi
ce

T
in

yR
A

M

T
ha

le
r

Pe
pp

er
G

in
ge

r

P
in

oc
ch

io

Z
aa

ta
r

C
M

T

na
tiv

e 
C

A
lls

pi
ce

T
in

yR
A

M

T
ha

le
r



Limitations that are endemic to the area: 

Computation F must be relatively large for V to save work 

Computation F must be efficient as an arithmetic circuit 
 

§  Example: libsnark’s [BCTV14] optimized implementation of  
GGPR/Pinocchio [GGPR12, PGHR13]. Great work, but: 

§  Verification time: 6 ms + (|x| + |y|)･3 µs on 2.7 Ghz CPU 

§  That time is >16 million CPU ops, which is a break-even point 

§  libsnark handles ≤ 16 million gates (with 32 GB of  RAM), so 
to break even, F also needs on average CPU_ops/AC_gate > 1.  
§  Example: addition over 𝔽p instead of  over fixed-width integers 



Built probabilistic proof  protocols amortize precomputations* 

*Exception: CMT [CMT12] applied to highly regular arithmetic circuits 

System amortize precomputation over size of advice 

Zebra multiple V-P pairs short 

Allspice [VSBW13] over a batch of  instances of  a given F short 

Bootstrapped SNARKs 
[BCTV14a, CTV15] 

over all computations long 

BCTV [BCTV14b] over all computations of  the same length long 

Pinocchio [PGHR13] over all future uses of  a given F long 

Pepper [SMBW12], 
Ginger [SVPBBW12], 
Zaatar [SBVBPW13] 

over a batch of  instances of  a given F long 



Lessons (re)learned: 

§  Do careful feasibility studies first! 

§  Hardware is a powerful tool for acceleration … 

§  ... but only if  data flows are amenable 

§  Theory of  computation versus application of  physics 

§  General-purpose verifiable computation and succinct arguments 
are still far from practical 



Summary and take-aways 

§  Verifiable ASICs: a new approach to building trustworthy 
hardware under a strong threat model 

§  First hardware design for a probabilistic proof  protocol; first 
work to capture cost of  prover, verifier together 

§  Improves performance compared to trusted baseline 

§  Improvement compared to baseline is modest 

§  Applicability is limited 
§  Amortization, arithmetic circuits, “big enough” computations, 

large gap between trusted and untrusted technology, etc. 

§  Zebra is plausibly deployable (!), but work remains for this area   

http://www.pepper-project.org


