&

TELECOM
Bretagne

Co rédo

University

Tarik Moataz
June 2" 2016
Aarhus MPC workshop 2016

*Joint work with Travis Mayberry and Erik-Oliver Blass

Part |

ORAM Overview

Part Il

C-ORAM*: Constant Communication ORAM with homomorphic Encryption

Part Il

CH™-ORAM* *: Constant Communication ORAM without homomorphic Encryption

* published at CCS’15
** Work in progress

Oblivious RAM (ORAM)

= ORAM first introduced by Goldreich in 87 further enhanced by Goldreich and Ostrovsky in

&

=
+
MEM

Instruction 1
RAM O
program ,
Program m,

CPU =

|

Set of registers Instruction t

: Set of memory
(Private Storage)

blocks (Public
Storage)

|

Oblivious RAM (ORAM)

Access pattern

Accessed

blocks 1,4, 5
+

Their Values !

Write(D)

What is an ORAM?

Picture from http://radix-communications.com/randomness/

Security Definition of ORAM

> ap, = A(access,), ..., A(accessy)

> ap, = A(access'y), ..., A(access',)
* An access is either Read or Write

* For any probabilistic polynomial time adversary, the sequence ap;and ap, are indistinguishable
 We say that ORAM hides the access pattern

G accessy, ..., Access,

O access'y, ...,access',

) HiD)

Oblivious RAM (ORAM)

Oblivious
simulation of RAM

Access

ORAM applications

Software Protection
G887

Cloud Storage

SS13a, SS13b
Garbled RAM

LO13

Secure RAM computation, MPC

Privacy-preserving

0S97, GKKKMRV12, WNLCSSH14,J TS16*
GGHJRW13

* Joint work with Shruti Tople, Yaoji Jia and Prateek Saxena to appear at USENIX’16

ORAM settings

= Computational/non-computational (e.g., Onion ORAM, C-ORAM)

O Access Q

G
— =

%

= One-server/Multi-servers (e.g., Multi Cloud SS13, Oblivious Network RAM DLPSV15,
Private information Storage 0S97)

o —
ah \

OO (possible like in PIS)

i))

e

ORAM settings

. One-CPU/MuItipIe CPUs (e.g., Oblivious Parallel RAM BCP16, CLT16)

A
/

Multiple CPUs

+

= Computational HA / Information-theoretic secure (DMN11, A10)

Shared Memory

e

ORAM Main Metrics

=Worst-case communication overhead
= Private Storage

=Minimum Block Size

=Number of rounds

= MEM storage overhead
=Computational overhead

Ideally

= We want:

Constant Communication ORAM
Constant number of rounds

Very small Block Size

No Computation on the server Size
Constant Private Storage

0 (1) constant number of blocks

™ B

“—

0(1)
private
storage

@

" -
+

Unfortunately this is not possible

= Goldreich and Ostrovsky (GO96) lower bound of at least log N blocks

= [n a one-server setting and without computation:

O(log N) number of blocks
Ring/Path ORAM a - [m “

O(logN)
private
storage

Block size in
Q(log? N)

Fortunately

= GO lower bounds is based on Balls/bins and does not capture:
= Encoding stored data and performing computation on outsourced data BN’15

0 (1) number of blocks

® . @ O Block size in
Onion ORAM “ S E 0 Q(logS N)
0(1)
private +
storage Very slow

Can we reduce computational overhead and block size?

C-ORAM

C-ORAM

0 (1) number of blocks

® ||

“—

0(1)
private
storage

i)

Block size in
Q(log* N)
2

10 times
faster

©

Impact of Multi-servers?

= GO lower bound does not capture multiple servers
O(log N) number of blocks

~ - B

Lu and Ostrovsky 13 () ¢————)
o(1)
private
storage OO

0 (1) number of blocks

O

&

=
+

No blocks

® L] = < N =
Shiand Stefanov 13 G E—————) =5 _—

O(logN)
number of blocks

©

CH-ORAM

= GO lower bounds does not capture multiple servers, Great!

OO
0 (1) number of blocks
o B w9
“ S ——

0(1)
private No blocks

storage

(‘3

* =
" =
.

Block size in
Q(log3 N)

What we can achieve so far

= We want:
= Constant Communication ORAM Qf
= Constant number of rounds Maybe, TWORAM, Bucket ORAM
= Very small Block Size Qf
= No Computation on the server Size $§
= Constant Private Storage M

Computation should not annihilate constant communication

Tree-based ORAM
SCsSI11

Tree-based ORAM: SCSL'11

Structure and features

Bucket {

— —
Leaf : { — =

bucke

Read and Write operations
- Everyelement is defined by a leaf identifier
- Every element read/updated is written in the root

Eviction (Memory shuffle) process to percolate
elements towards the leaves

Recursive position Map

e, leaf,
e, leaf,
+ €3 leaf,
e, leaf,

Position Map recursively stored

Search complexity is polylog
Bucket size is a security parameter

Tree-based ORAM: SCSL11

Read and Write operations

Step 3

e, leaf, e, leaf, e, leaf,
e leaf, e, leaf, e, leaf,
€3 leaf, es leaf, es leaf,
€, leaf €, leaf, €, leaf,

Part |
ORAM Overview

Part Il

C-ORAM*: Constant Communication ORAM with homomorphic Encryption

Part Il

CH-ORAM**: Constant Communication ORAM without homomorphic Encryption

o

What do we mean by “constant
communication” ORAM?

Meta - information

o '

“ blocks

T

We say that an ORAM is a constant communication ORAM if:
* Constant number of blocks

Py

* -
" -
+

ORAM tree

* Meta-information is dominated asymptotically by the size of constant number blocks
The server in this model is a computational server rather than a storage-only server

(&)

Why C-ORAM was needed?

= Recent ORAM offers sublinear communication overhead
= Onion ORAM by Devadas et al. (TCC’16) first solution offering constant communication
overhead, but
= With a large block size and a high number of homomorphic multiplications

= Onion ORAM block size example:
= For N = 229 the block size equals 33Mbit
= Total data set size: 34 Thit

(x)

Onion ORAM

High ievel

= Components and primitives:
= Tree based ORAM

= Additive homomorphic encryption such as Pailler or Damgard-Jurik

= Private Information Retrieval (Kushilivitz et al.”97)

O Q = (E(0), E(1), E(O))
= Select
= Eviction without downloading the bucket

i)

Onion ORAM

Select Bucket 1

E(es)

E(e,)

4

Bucket 2
headers
— O
E(E(e;)) PIR query .
E(E(ey) — “
E(1), E(0), E(0), E(0)

E(e;)-E(1) * E(0)-EW0) % E(e)-E) % E(0)-E(0)

¥

 E(E(e3))

Bucket 2

¥
+ ~ E(E(0)

E(E

EEEEZS;; * Onion layers

E(E(ez)) * Select operation is the most
E(E(e)) expensive operation in Onion ORAM

C-ORAM

Obiivious mierge algorithm

Bucket 1 Bucket 2
E(e;3)
E(e,)
E(e,) E(e,)

E(e3)
E(e;)
E(e,) CE(31)
Apply on
bucket 2

headers

|

Permutation

Homomorphic
Addition

|

5N
o

=
o

E(es)
E(e,)
E(e,)
E(e,)

Merged bucket

Generate

®
hd

Bucket 1 Bucket 2 Bucket 1

OO |, |[FH]|O

C-ORAM

Obiivious merge

1

1-positions: {1, 3,4}

O-positions: {2,5, 6}

) gcket2 g

1-positions: {1, 4,6}

ROk |[O]0O

O-positions: {2, 3,5}

Oblivious merge saves alog? N multiplicative factor over Onion ORAM'’s select

permutation
From log N PIR operation to 1 PIR operation
Main challenges: Security and correctness

Random
mapping

»
»

Random

mapping

C-ORAM: Access

illustration

Headers of root

|

PIR vector

|

Headers of bucketl

|

PIR vector

®
hd

|

Headers of leaf node

|

PIR vector

|

C-ORAM: Access

illustration

[
O Block H
hd ANV
1 3 2 4

Adding the block to the root with PIR-Write

C-ORAM: Triplet-Eviction oo

illustration = merging = Copy bucket
C —

Headers of root H

. Headers of bucket 1 and 2

|

|

Permutation

>

Headers of leaf nodes 1 and 3

|

Permutation

|

Oblivious merging
Security

* Adversary, given 1, does not get any additional knowledge over
* load of a bucket
 distribution of real, empty blocks
* Permutation outputted by oblivious merging is indistinguishable
from a random permutation

(&)

C-ORAM

Correctness

7/
/
/7

E(e,)

= Noisy blocks E(e,)

= Increasing bucket size by factor ¢

£ies)
E(e3)

E(e,)
E(e,)
E(e,) /

Additional - /
blocks

= Oblivious merge fails if at a given level and eviction

#empty blocks of parent < #real blocks of child
#empty blocks of child < #real blocks of parent

@ is constant equal to 4 (empirically 2.2)

—

/
/
/

C-ORAM features

O(log*N + B)

|

Meta-information: | PIR vectors| + |headers|+ |Permutations|

Simplified block size

Homomorphic additions

Homomorphic scalar
multiplications

Onion ORAM

Q(log® N)

O(logdN)

O(logdN)

C-ORAM

Q(log* N)

O(log®N)

O(log>N)

(¢

Number of operations

C-ORAM

_ 10 000 % fewer
Evaluation homomorphic operations
1 ! ' A AV 10000
100000 % >+ _ -/
10000 Fm g 1000
1000 F <
S 100
: e}
100 . ©
CORAM Mults —— | £ 10
10 CORAM Adds —x— __ O
Onion Ad{:is/l\f‘lults; —¥— |
: ?. ?. E ' 1
10 11 12 13 14 15 16

L

Computation

4000 % smaller block
size for the same dataset

CORAM —+—]
Onion ORAM —>—
16 17 18 19 20 21 22
log N
Storage

However C-ORAM still needs 5~10 minutes per access?

o

Part |
ORAM Overview

Part Il

C-ORAM: Constant Communication ORAM with homomorphic Encryption

Part Il

CH™-ORAM: Constant Communication ORAM without homomorphic Encryption

(&)

CH-ORAM

Motivation

How can we get rid of the VEry €XPensive Homomorphic

encryption?

CH-ORAM

Intuition

1. Replace Homomorphic encryption with secret shared block

2. Replace computational PIR with Information-theoretic PIR

CH-ORAM

Muiti-servers: 1%* Step

= We use secret sharing and replace a homomorphically encrypted block by two shares:

E(e,)

Bucket

e,dr,

e, r,

— >
E(e,)

Share 1

Share 2

CH-ORAM

Obiivious mierge algorithm

Bucket 1

e3®r3

Bucket 2

s

e, Dr,

e;Dry

I,

Permutation ’

Bucket 1

Bucket 2

s

Same Permutation

CH-ORAM

Read operation

Determine the exact
position of the block

Download all headers of
the selected path

0,1,0,0,
V, = (1,0,1,1,> b (illi)i)
01111;1 2 L4

0,1,1,1

—
N

—

—
ZN

CH-ORAM
Read operation O

Compute Result, @ Result, /

Result, = Y-8y [i]DB,

.
.= -

Result,= Y128V v, [i]@®B,

—
N

—

CH-ORAM

Muiti-servers: 2" Step

For any constant #Server = 2 and forany B = k - N, there exists

an IT-PIR construction with communication complexity O(B) bit.

= Replace C-PIR with IT-PIR while taking advantage of the obliviousness of tree-based ORAM

For any constant #Server = 2 andforan B = k- log N, Jihere

exists an IT-PIR construction with communicatior=eengiexity O(B) bit.

CH-ORAM

Muiti-servers

Tree 1 and Tree 2 are secret
shared (block per block)
Tree 3 is a replica of Tree 1
Tree 4 is a replica of Tree 2

CHf-ORAM

Gain over C-ORAM

C-ORAM CH-ORAM

= O(log? N) homomorphic multiplications = = O(log N) XOR operations

= O(log N) C-PIR query generation) . O(log N) Random bit generations
= Encrypt the block homomorphically ‘ = Secret share the block

= Computational HA mm) - |T-secure

CHf-ORAM is as good as PIS in communication enjoying a polylog in
computation (rather than linear)

CH-ORAM

Evaluation
80
,f’/ﬁ
70 C-ORAM:-7-mintutes
60
@
2 50 : 1. block size of 1 MB.
3 F{mgf ORAM 2. network speed of 20 Mbps.
ﬁ 40 CHfORAM <] 3. XOR of two 1 MB blocks in 1 ms
2 39 CH' Online —%— (2012 Macbook Pro with 2.4 Ghz
i— JNIeE Intel i7)
|_
20 ., >, Y kA e @ /Wiﬂd—i f/
% 7 r’;_:-"‘_\#_;i#_i_ﬁ_____
10 "1
O e i S A MR >

(&)

CH-ORAM

Eviction Circuit

= |In SCORAM, eviction circuit size in tree-based ORAM is a bottleneck for secure RAM
computation

= Best ORAM for secure RAM computation are those with constant private storage

= Tree-based ORAM with stash are not good for secure RAM computation due to the
oblivious sorting

CHf-ORAM has constant circuit size, with constant private storage

with no need for OS

CH-ORAM

Eviction Circuit (more details)

scsl11 O(log* N + B -1og2 N)
CLP’'14 O(log*N + B -1log?N)
Path SC ORAM O(loglogN (log>N + B -logN))
LO'13 O(logN - Cprr + B -logN)
Circuit ORAM O(log®N + B -logN)
CH-ORAM O(log* N + B)

If B is larger than log* N, then circuit size is constant in B

Conclusion

Simplified Private Communicat | Homomorphic Homomorphic #Servers
block size in | Storage in ion in block | additions scalar
bits block multiplications
C-ORAM Q(log* N) 0(1) 0(1) @(log® N) @(logs N) 1
CH-ORAM | Q(log? N) 0(1) 0(1) - - 4

To do

= We have:
= Constant Communication ORAM

Constant number of rounds

Very small Block Size

No Computation on the server Size
Constant Private Storage
One-server

QLR SR L8R

>

Reduce the block size to be in O(log? N)
(No heavy computation)

i)
i)

To do

Simplified Private Communica | Homomorphic | Homomorphic | #Servers
block size in | Storage in tion in block | additions scalar
bits block multiplications
C-ORAM Q(log? N) 0(1) 0(1) @(log® N) @(log N) 1
CH-ORAM | Q(log®N) | 0(1) 0(1) -~ -~ 4
X W QlogN)or| 0(1) 0(1) - —~ 1
Q(log2 N)

Picture from http://www.deviantart.com/browse/all/fanart/?q=super-sheep&order=9

Thanks!

