
Tarik Moataz

June 2nd 2016

Aarhus MPC workshop 2016

*Joint work with Travis Mayberry and Erik-Oliver Blass

Part I
ORAM Overview

Part II
C-ORAM*: Constant Communication ORAM with homomorphic Encryption

Part III
CHf-ORAM**: Constant Communication ORAM without homomorphic Encryption

2

* published at CCS’15

** Work in progress

 ORAM first introduced by Goldreich in 87 further enhanced by Goldreich and Ostrovsky in
96

3

CPU MEM
…

Set of registers

(Private Storage)

Instruction 1

Instruction t

Program 𝜋𝑡

Set of memory

blocks (Public

Storage)

RAM

program

4

Read(1)

Write(4)

Write(5)

Access pattern

=

Accessed

blocks 1,4, 5

+

Their Values !

5Picture from http://radix-communications.com/randomness/

𝑎𝑐𝑐𝑒𝑠𝑠1, … , 𝑎𝑐𝑐𝑒𝑠𝑠𝑛

𝑎𝑐𝑐𝑒𝑠𝑠′1, … , 𝑎𝑐𝑐𝑒𝑠𝑠′𝑛

𝑎𝑝1 = 𝐴(𝑎𝑐𝑐𝑒𝑠𝑠1), … , 𝐴(𝑎𝑐𝑐𝑒𝑠𝑠𝑛)

𝑎𝑝2 = 𝐴(𝑎𝑐𝑐𝑒𝑠𝑠′1), … , 𝐴(𝑎𝑐𝑐𝑒𝑠𝑠′𝑛)

• An access is either Read or Write

• For any probabilistic polynomial time adversary, the sequence 𝑎𝑝1and 𝑎𝑝2 are indistinguishable

• We say that ORAM hides the access pattern

6

7

Access

…

AccessOblivious

simulation of RAM

8

* Joint work with Shruti Tople, Yaoji Jia and Prateek Saxena to appear at USENIX’16

Software Protection

G87

Cloud Storage

SS13a, SS13b

Secure RAM computation, MPC

OS97, GKKKMRV12,

GGHJRW13

Garbled RAM

LO13

Privacy-preserving

WNLCSSH14, JMTS16*

 Computational/non-computational (e.g., Onion ORAM, C-ORAM)

 One-server/Multi-servers (e.g., Multi Cloud SS13, Oblivious Network RAM DLPSV15,
Private information Storage OS97)

9

Access

Access

(possible like in PIS)

 One-CPU/Multiple CPUs (e.g., Oblivious Parallel RAM BCP16, CLT16)

 Computational HA / Information-theoretic secure (DMN11, A10)

10

Multiple CPUs

Shared Memory

Worst-case communication overhead

Private Storage

Minimum Block Size

Number of rounds

MEM storage overhead

Computational overhead

11

 We want:

 Constant Communication ORAM

 Constant number of rounds

 Very small Block Size

 No Computation on the server Size

 Constant Private Storage

12

𝑂(1)
private

storage

𝑂(1) constant number of blocks

Unfortunately not possible

 Goldreich and Ostrovsky (GO96) lower bound of at least log𝑁 blocks

 In a one-server setting and without computation:

13

𝑂(log𝑁)
private

storage

𝑂(log𝑁) number of blocks

…

Ring/Path ORAM
Block size in

Ω(log2𝑁)

 GO lower bounds is based on Balls/bins and does not capture:

 Encoding stored data and performing computation on outsourced data BN’15

14

𝑂(1)
private

storage

𝑂(1) number of blocks

Onion ORAM
Block size in

Ω(log5𝑁)

Very slow

Can we reduce computational overhead and block size?

15

𝑂(1)
private

storage

𝑂(1) number of blocks

C-ORAM
Block size in

Ω(log4𝑁)

10 times

faster

 GO lower bound does not capture multiple servers

16

𝑂(1)
private

storage

𝑂(log𝑁) number of blocks

Lu and Ostrovsky 13

…

𝑂(𝑁)

𝑂(1) number of blocks

Shi and Stefanov 13
𝑂(log𝑁)
number of blocks

No blocks

…

 GO lower bounds does not capture multiple servers, Great!

17

𝑂(1)
private

storage

𝑂(1) number of blocks

…

No blocks

Block size in

Ω(log3𝑁)

 We want:

 Constant Communication ORAM

 Constant number of rounds

 Very small Block Size

 No Computation on the server Size

 Constant Private Storage

18

Maybe, TWORAM, Bucket ORAM

Computation should not annihilate constant communication

Tree-based ORAM

SCSL’11

19

● Read and Write operations

– Every element is defined by a leaf identifier

– Every element read/updated is written in the root

● Eviction (Memory shuffle) process to percolate
elements towards the leaves

● Recursive position Map

Position Map recursively stored

Bucket e2 leaf1

e1 leaf2

e3 leaf4

e4 leaf3

• Search complexity is polylog

• Bucket size is a security parameter

Leaf

bucket

20

e3

e2

e1

e4

e2 leaf1

e1 leaf2

e3 leaf4

e4 leaf3

Step 1

e3

e2

e1

e4

e2 leaf1

e1 leaf1

e3 leaf4

e4 leaf3

Step 2

e3

e2
e1

e4

e2 leaf1

e1 leaf1

e3 leaf4

e4 leaf3

Step 3

21

Part I

ORAM Overview

Part II

C-ORAM*: Constant Communication ORAM with homomorphic Encryption

Part III

CHf-ORAM**: Constant Communication ORAM without homomorphic Encryption

22

Meta - information

blocks

ORAM tree

We say that an ORAM is a constant communication ORAM if:

• Constant number of blocks

• Meta-information is dominated asymptotically by the size of constant number blocks

The server in this model is a computational server rather than a storage-only server

23

 Recent ORAM offers sublinear communication overhead

 Onion ORAM by Devadas et al. (TCC’16) first solution offering constant communication
overhead, but

 With a large block size and a high number of homomorphic multiplications

 Onion ORAM block size example:

 For N = 220, the block size equals 33Mbit

 Total data set size: 34 Tbit

24

 Components and primitives:

 Tree based ORAM

 Additive homomorphic encryption such as Pailler or Damgard-Jurik

 Private Information Retrieval (Kushilivitz et al.’97)

 Select

 Eviction without downloading the bucket

25

123

10

Q = (E(0), E(1), E(0))

E(123)

123. E(1)

10 . E(0)

E(123)

E(0)

Bucket 1 Bucket 2

headers

PIR query

𝑬(𝒆𝟑) ∙ 𝑬(𝟏)

𝑬(𝒆𝟒)

Header

• Onion layers

• Select operation is the most

expensive operation in Onion ORAM

𝑬(𝒆𝟑)

𝑬(𝟎) ∙ 𝑬(𝟎) 𝑬(𝒆𝟒) ∙ 𝑬(𝟎) 𝑬(𝟎) ∙ 𝑬(𝟎)

Header

𝑬(𝑬 𝒆𝟏)

𝑬(𝑬 𝒆𝟐)

𝑬(𝑬 𝒆𝟑) 𝑬(𝑬 𝟎)

Bucket 2

Header

𝑬(𝑬 𝒆𝟏)

𝑬(𝑬 𝒆𝟐)

𝑬(𝑬 𝒆𝟑)

𝑬(𝑬 𝒆𝟒)

𝑬(𝟏), 𝑬(𝟎), 𝑬(𝟎), 𝑬(𝟎)

26

Bucket 1 Bucket 2
Headers

Header

Merged bucket

headers

Permutation 𝜋

Homomorphic

Addition

𝑬(𝒆𝟒)

𝑬(𝒆𝟑)
1 0 1 0

0 1 1 0

Generate 𝜋

𝑬(𝒆𝟒)

𝑬(𝒆𝟑)

Headers

𝑬(𝒆𝟏)

𝑬(𝒆𝟐)

Headers

𝑬(𝒆𝟏)

𝑬(𝒆𝟐)

Apply 𝜋 on

bucket 2

𝑬(𝒆𝟒)

𝑬(𝒆𝟑)

Header

𝑬(𝒆𝟐)

𝑬(𝒆𝟏)

27

• Oblivious merge saves a log2𝑁 multiplicative factor over Onion ORAM’s select

permutation

• From log𝑁 PIR operation to 1 PIR operation

• Main challenges: Security and correctness

1

0

1

1

0

0

1

0

0

1

0

1

1-positions: 1, 3, 4
0-positions: 2, 5, 6

1-positions: 1, 4, 6
0-positions: 2, 3, 5

1, 3, 4 2, 3, 5

2, 5, 6 1, 4, 6

Bucket 1 Bucket 2 Bucket 1

Bucket 2

Random

mapping

Random

mapping

1 3 4

2 3 5

2 5 6

1 4 6

3 1 5 2 6 4

𝜋

28

Headers of root

PIR vector

Headers of bucket1

PIR vector

Headers of leaf node

PIR vector
1 23 4

29

1 23 4

Block

Adding the block to the root with PIR-Write

30

Headers of root

Permutation

Headers of bucket 1 and 2

Permutation

Headers of leaf nodes 1 and 3

Permutation

Oblivious

merging
Copy bucket

31

• Adversary, given 𝜋, does not get any additional knowledge over

• load of a bucket

• distribution of real, empty blocks

• Permutation outputted by oblivious merging is indistinguishable

from a random permutation

32

 Noisy blocks

 Increasing bucket size by factor 𝜑

 Oblivious merge fails if at a given level and eviction

#empty blocks of parent < #real blocks of child

#empty blocks of child < #real blocks of parent

Headers

𝑬(𝒆𝟒)

𝑬(𝒆𝟑)

Headers

𝑬(𝒆𝟐)

𝑬(𝒆𝟏)

Headers

𝑬(𝒆𝟒)

𝑬(𝒆𝟑)

Headers

𝑬(𝒆𝟏)

𝑬(𝒆𝟐)

Headers

𝑬(𝒆𝟒)

𝑬(𝒆𝟑)

𝑬(𝒆𝟐)

𝑬(𝒆𝟏)

Additional

blocks

33𝜑 is constant equal to 4 (empirically 2.2)

Simplified block size Homomorphic additions Homomorphic scalar

multiplications

Onion ORAM Ω(log5 N) 𝚯(𝐥𝐨𝐠𝟖𝑵) 𝚯(𝐥𝐨𝐠𝟖𝑵)

C-ORAM Ω(log4 N) 𝚯(𝐥𝐨𝐠𝟔𝑵) 𝚯(𝐥𝐨𝐠𝟓𝑵)

34

𝑂(log4𝑁 + 𝐵)

Meta-information: |PIR vectors| + |headers|+ |Permutations|

Computation Storage

4000 % smaller block

size for the same dataset

10 000 % fewer

homomorphic operations

35

However C-ORAM still needs 5~10 minutes per access?

Part I

ORAM Overview

Part II

C-ORAM: Constant Communication ORAM with homomorphic Encryption

Part III

CHf-ORAM: Constant Communication ORAM without homomorphic Encryption

36

37

How can we get rid of the very expensive Homomorphic

encryption?

38

1. Replace Homomorphic encryption with secret shared block

2. Replace computational PIR with Information-theoretic PIR

 We use secret sharing and replace a homomorphically encrypted block by two shares:

39

𝑬(𝒆𝟐)

𝑬(𝒆𝟏)

Bucket

𝒆𝟐⊕ r2

𝒆𝟏⊕ r1

r2

r1

Share 2

Share 1

Bucket 1 Bucket 2
Headers

𝒆𝟒 ⊕ r4

𝒆𝟑 ⊕ r3

Headers

𝒆𝟏 ⊕ r1

𝒆𝟐 ⊕ r2

40

r’1

r’2

r’3

r’4Server 1

Bucket 1 Bucket 2
Headers

r4

r3

Headers

r1

r2r’1

r’2

r’3

r’4Server 2

Headers

𝒆𝟏 ⊕ r1 ⊕ r’2

𝒆𝟐 ⊕ r2 ⊕ r’1

𝒆𝟑 ⊕ r3 ⊕ r’4

𝒆𝟑 ⊕ r3 ⊕ r’3

Permutation 𝜋

Headers

r1 ⊕ r’2

r2 ⊕ r’1

r3 ⊕ r’4

r3 ⊕ r’3

Same Permutation 𝜋

41

Download all headers of

the selected path

Determine the exact

position of the block

𝑉1 =
0,1, 0,0,
1,0,1,1,
0,1,1,1

𝑉2 =
0,1, 0,0,
1,1,1,1,
0,1,1,1

42

Compute Result1 ⊕ Result2

Result2 = σ𝑖=1
log 𝑁

𝑉2 [𝑖]⊕BiResult1 = σ
𝑖=1
log 𝑁

𝑉1 [𝑖]⊕Bi

 Replace C-PIR with IT-PIR while taking advantage of the obliviousness of tree-based ORAM

43

For any constant #𝑺𝒆𝒓𝒗𝒆𝒓 ≥ 𝟐 and for any 𝑩 ≥ 𝒌 ∙ 𝑵, there exists

an IT-PIR construction with communication complexity O(B) bit.

For any constant #𝑺𝒆𝒓𝒗𝒆𝒓 ≥ 𝟐 and for any 𝑩 ≥ 𝒌 ∙ 𝒍𝒐𝒈 𝑵, there

exists an IT-PIR construction with communication complexity O(B) bit.

44

Tree 1 Tree 2 Tree 3 Tree 4

• Tree 1 and Tree 2 are secret

shared (block per block)

• Tree 3 is a replica of Tree 1

• Tree 4 is a replica of Tree 2

C-ORAM

 O(log2𝑁) homomorphic multiplications

 O(log𝑁) C-PIR query generation

 Encrypt the block homomorphically

 Computational HA

CHf-ORAM

 O(log𝑁) XOR operations

 O(log𝑁) Random bit generations

 Secret share the block

 IT-secure

45

CHf-ORAM is as good as PIS in communication enjoying a polylog in

computation (rather than linear)

46

1. block size of 1 MB.

2. network speed of 20 Mbps.

3. XOR of two 1 MB blocks in 1 ms

(2012 Macbook Pro with 2.4 Ghz

Intel i7)

 In SCORAM, eviction circuit size in tree-based ORAM is a bottleneck for secure RAM
computation

 Best ORAM for secure RAM computation are those with constant private storage

 Tree-based ORAM with stash are not good for secure RAM computation due to the
oblivious sorting

47

CHf-ORAM has constant circuit size, with constant private storage

with no need for OS

48

Scheme Circuit Size

SCSL’11 𝑂(log4𝑁 + 𝐵 ∙ log2𝑁)

CLP’14 𝑂(log4𝑁 + 𝐵 ∙ log2𝑁)

Path SC ORAM 𝑂(log logN (log3𝑁 + 𝐵 ∙ log𝑁))

LO’13 𝑂(log𝑁 ∙ 𝐶𝑃𝑅𝐹 + 𝐵 ∙ log𝑁)

Circuit ORAM 𝑂(log3𝑁 + 𝐵 ∙ log𝑁)

CHf-ORAM 𝑂(log4𝑁 + 𝐵)

If 𝐵 is larger than log4𝑁, then circuit size is constant in B

Simplified

block size in

bits

Private

Storage in

block

Communicat

ion in block

Homomorphic

additions

Homomorphic

scalar

multiplications

#Servers

C-ORAM Ω(log4 N) 𝑶(𝟏) 𝑶(𝟏) 𝚯(𝐥𝐨𝐠𝟔𝑵) 𝚯(𝐥𝐨𝐠𝟓𝑵) 1

CHf-ORAM Ω(log3 N) 𝑶(𝟏) 𝑶(𝟏) − − 4

49

 We have:

 Constant Communication ORAM

 Constant number of rounds

 Very small Block Size

 No Computation on the server Size

 Constant Private Storage

 One-server

50

Reduce the block size to be in 𝑂(log2𝑁)
(No heavy computation)

Simplified

block size in

bits

Private

Storage in

block

Communica

tion in block

Homomorphic

additions

Homomorphic

scalar

multiplications

#Servers

C-ORAM Ω(log4 N) 𝑶(𝟏) 𝑶(𝟏) 𝚯(𝐥𝐨𝐠𝟔𝑵) 𝚯(𝐥𝐨𝐠𝟓𝑵) 1

CHf-ORAM Ω(log3 N) 𝑶(𝟏) 𝑶(𝟏) − − 4

Ω(log N) or

Ω(log2 N)

𝑶(𝟏) 𝑶(𝟏) − − 1

51Picture from http://www.deviantart.com/browse/all/fanart/?q=super-sheep&order=9

Thanks!

52

