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 ORAM first introduced by Goldreich in 87 further enhanced by Goldreich and Ostrovsky in 
96
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5Picture from http://radix-communications.com/randomness/



𝑎𝑐𝑐𝑒𝑠𝑠1, … , 𝑎𝑐𝑐𝑒𝑠𝑠𝑛

𝑎𝑐𝑐𝑒𝑠𝑠′1, … , 𝑎𝑐𝑐𝑒𝑠𝑠′𝑛

𝑎𝑝1 = 𝐴(𝑎𝑐𝑐𝑒𝑠𝑠1), … , 𝐴(𝑎𝑐𝑐𝑒𝑠𝑠𝑛)

𝑎𝑝2 = 𝐴(𝑎𝑐𝑐𝑒𝑠𝑠′1), … , 𝐴(𝑎𝑐𝑐𝑒𝑠𝑠′𝑛)

• An access is either Read or Write

• For any probabilistic polynomial time adversary, the sequence 𝑎𝑝1and 𝑎𝑝2 are indistinguishable

• We say that ORAM hides the access pattern 
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* Joint work with Shruti Tople, Yaoji Jia and Prateek Saxena to appear at USENIX’16

Software Protection

G87

Cloud Storage

SS13a, SS13b

Secure RAM computation, MPC

OS97, GKKKMRV12, 

GGHJRW13

Garbled RAM

LO13

Privacy-preserving

WNLCSSH14, JMTS16*



 Computational/non-computational (e.g., Onion ORAM, C-ORAM)

 One-server/Multi-servers (e.g., Multi Cloud SS13, Oblivious Network RAM DLPSV15, 
Private information Storage OS97)
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Access

Access

(possible like in PIS)



 One-CPU/Multiple CPUs (e.g., Oblivious Parallel RAM BCP16, CLT16)

 Computational HA / Information-theoretic secure (DMN11, A10)
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Multiple CPUs

Shared Memory



Worst-case communication overhead

Private Storage

Minimum Block Size

Number of rounds

MEM storage overhead

Computational overhead
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 We want:

 Constant Communication ORAM

 Constant number of rounds

 Very small Block Size

 No Computation on the server Size

 Constant Private Storage
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𝑂(1)
private 

storage

𝑂(1) constant number of blocks



Unfortunately not possible

 Goldreich and Ostrovsky (GO96) lower bound of at least log𝑁 blocks

 In a one-server setting and without computation:

13

𝑂(log𝑁)
private 

storage

𝑂(log𝑁) number of blocks

…

Ring/Path ORAM
Block size in 

Ω(log2𝑁)



 GO lower bounds is based on Balls/bins and does not capture:

 Encoding stored data and performing computation on outsourced data BN’15
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𝑂(1)
private 

storage

𝑂(1) number of blocks

Onion ORAM
Block size in 

Ω(log5𝑁)

Very slow

Can we reduce computational overhead and block size?
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𝑂(1)
private 

storage

𝑂(1) number of blocks

C-ORAM
Block size in 

Ω(log4𝑁)

10 times 

faster



 GO lower bound does not capture multiple servers

16

𝑂(1)
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𝑂(log𝑁) number of blocks

Lu and Ostrovsky 13

…
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Shi and Stefanov 13
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 GO lower bounds does not capture multiple servers, Great! 
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 We want:

 Constant Communication ORAM

 Constant number of rounds

 Very small Block Size

 No Computation on the server Size

 Constant Private Storage
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Maybe, TWORAM, Bucket ORAM

Computation should not annihilate constant communication



Tree-based ORAM

SCSL’11
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● Read and Write operations

– Every element is defined by a leaf identifier

– Every element read/updated is written in the root

● Eviction (Memory shuffle) process to percolate 
elements towards the leaves

● Recursive position Map

Position Map recursively stored

Bucket e2 leaf1

e1 leaf2

e3 leaf4

e4 leaf3

• Search complexity is polylog

• Bucket size is a security parameter

Leaf 

bucket
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e2 leaf1
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e4 leaf3

Step 1

e3

e2

e1

e4

e2 leaf1

e1 leaf1
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Step 2

e3

e2
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e4 leaf3

Step 3
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Meta - information

blocks

ORAM tree

We say that an ORAM is a constant communication ORAM if:

• Constant number of blocks

• Meta-information is dominated asymptotically by the size of constant number blocks

The server in this model is a computational server rather than a storage-only server
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 Recent ORAM offers sublinear communication overhead

 Onion ORAM by Devadas et al. (TCC’16) first solution offering constant communication 
overhead, but

 With a large block size and a high number of homomorphic multiplications

 Onion ORAM block size example:

 For N = 220, the block size equals 33Mbit

 Total data set size: 34 Tbit
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 Components and primitives:

 Tree based ORAM 

 Additive homomorphic encryption such as Pailler or Damgard-Jurik

 Private Information Retrieval (Kushilivitz et al.’97)

 Select

 Eviction without downloading the bucket
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Bucket 1 Bucket 2

headers

PIR query

𝑬(𝒆𝟑) ∙ 𝑬(𝟏)

𝑬(𝒆𝟒)

Header

• Onion layers

• Select operation is the most 

expensive operation in Onion ORAM

𝑬(𝒆𝟑)

𝑬(𝟎) ∙ 𝑬(𝟎) 𝑬(𝒆𝟒) ∙ 𝑬(𝟎) 𝑬(𝟎) ∙ 𝑬(𝟎)

Header

𝑬(𝑬 𝒆𝟏 )

𝑬(𝑬 𝒆𝟐 )

𝑬(𝑬 𝒆𝟑 ) 𝑬(𝑬 𝟎 )

Bucket 2

Header

𝑬(𝑬 𝒆𝟏 )

𝑬(𝑬 𝒆𝟐 )

𝑬(𝑬 𝒆𝟑 )

𝑬(𝑬 𝒆𝟒 )

𝑬(𝟏), 𝑬(𝟎), 𝑬(𝟎), 𝑬(𝟎)
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Bucket 1 Bucket 2
Headers

Header

Merged bucket

headers

Permutation 𝜋

Homomorphic 

Addition

𝑬(𝒆𝟒)

𝑬(𝒆𝟑)
1 0 1 0

0 1 1 0

Generate 𝜋

𝑬(𝒆𝟒)

𝑬(𝒆𝟑)

Headers

𝑬(𝒆𝟏)

𝑬(𝒆𝟐)

Headers

𝑬(𝒆𝟏)

𝑬(𝒆𝟐)

Apply 𝜋 on 

bucket 2

𝑬(𝒆𝟒)

𝑬(𝒆𝟑)

Header

𝑬(𝒆𝟐)

𝑬(𝒆𝟏)
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• Oblivious merge saves a log2𝑁 multiplicative factor over Onion ORAM’s select 

permutation

• From log𝑁 PIR operation to 1 PIR operation

• Main challenges: Security and correctness

1

0

1

1

0

0

1

0

0

1

0

1

1-positions:  1, 3, 4
0-positions:  2, 5, 6

1-positions:   1, 4, 6
0-positions: 2, 3, 5

1, 3, 4 2, 3, 5

2, 5, 6 1, 4, 6

Bucket 1 Bucket 2 Bucket 1

Bucket 2

Random 

mapping

Random 

mapping

1 3 4

2 3 5

2 5 6

1 4 6

3 1 5 2 6 4

𝜋
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Headers of root 

PIR vector

Headers of bucket1

PIR vector

Headers of leaf node

PIR vector
1 23 4
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1 23 4

Block

Adding the block to the root with PIR-Write
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Headers of root 

Permutation 

Headers of bucket 1 and 2

Permutation

Headers of leaf nodes 1 and 3

Permutation

Oblivious 

merging
Copy bucket
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• Adversary, given 𝜋, does not get any additional knowledge over

• load of a bucket

• distribution of real, empty blocks

• Permutation outputted by oblivious merging is indistinguishable

from a random permutation
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 Noisy blocks

 Increasing bucket size by factor 𝜑

 Oblivious merge fails if at a given level and eviction

#empty blocks of parent <  #real blocks of child

#empty blocks of child   <  #real blocks of parent

Headers

𝑬(𝒆𝟒)

𝑬(𝒆𝟑)

Headers

𝑬(𝒆𝟐)

𝑬(𝒆𝟏)

Headers

𝑬(𝒆𝟒)

𝑬(𝒆𝟑)

Headers

𝑬(𝒆𝟏)

𝑬(𝒆𝟐)

Headers

𝑬(𝒆𝟒)

𝑬(𝒆𝟑)

𝑬(𝒆𝟐)

𝑬(𝒆𝟏)

Additional 

blocks

33𝜑 is constant equal to 4 (empirically 2.2)



Simplified block size Homomorphic additions Homomorphic scalar

multiplications

Onion ORAM Ω(log5 N) 𝚯(𝐥𝐨𝐠𝟖𝑵) 𝚯(𝐥𝐨𝐠𝟖𝑵)

C-ORAM Ω(log4 N) 𝚯(𝐥𝐨𝐠𝟔𝑵) 𝚯(𝐥𝐨𝐠𝟓𝑵)
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𝑂(log4𝑁 + 𝐵)

Meta-information: |PIR vectors| + |headers|+ |Permutations|



Computation Storage

4000 % smaller block 

size for the same dataset

10 000 % fewer 

homomorphic operations
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However C-ORAM still needs 5~10 minutes per access?
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37

How can we get rid of the very expensive Homomorphic 

encryption?
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1. Replace Homomorphic encryption with secret shared block

2. Replace computational PIR with Information-theoretic PIR



 We use secret sharing and replace a homomorphically encrypted block by two shares:
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𝑬(𝒆𝟐)

𝑬(𝒆𝟏)

Bucket

𝒆𝟐⊕ r2

𝒆𝟏⊕ r1

r2

r1

Share 2

Share 1



Bucket 1 Bucket 2
Headers

𝒆𝟒 ⊕ r4

𝒆𝟑 ⊕ r3

Headers

𝒆𝟏 ⊕ r1

𝒆𝟐 ⊕ r2
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r’1

r’2

r’3

r’4Server 1

Bucket 1 Bucket 2
Headers

r4

r3

Headers

r1

r2r’1

r’2

r’3

r’4Server 2

Headers

𝒆𝟏 ⊕ r1 ⊕ r’2

𝒆𝟐 ⊕ r2 ⊕ r’1

𝒆𝟑 ⊕ r3 ⊕ r’4

𝒆𝟑 ⊕ r3 ⊕ r’3

Permutation 𝜋

Headers

r1 ⊕ r’2

r2 ⊕ r’1

r3 ⊕ r’4

r3 ⊕ r’3

Same Permutation 𝜋



41

Download all headers of 

the selected path

Determine the exact 

position of the block

𝑉1 =
0,1, 0,0,
1,0,1,1,
0,1,1,1

𝑉2 =
0,1, 0,0,
1,1,1,1,
0,1,1,1
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Compute Result1 ⊕ Result2

Result2 = σ𝑖=1
log 𝑁

𝑉2 [𝑖]⊕BiResult1 = σ
𝑖=1
log 𝑁

𝑉1 [𝑖]⊕Bi



 Replace C-PIR with IT-PIR while taking advantage of the obliviousness of tree-based ORAM
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For any constant #𝑺𝒆𝒓𝒗𝒆𝒓 ≥ 𝟐 and for any 𝑩 ≥ 𝒌 ∙ 𝑵, there exists 

an IT-PIR construction with communication complexity O(B) bit.

For any constant #𝑺𝒆𝒓𝒗𝒆𝒓 ≥ 𝟐 and for any 𝑩 ≥ 𝒌 ∙ 𝒍𝒐𝒈 𝑵, there 

exists an IT-PIR construction with communication complexity O(B) bit.
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Tree 1 Tree 2 Tree 3 Tree 4

• Tree 1 and Tree 2 are secret 

shared (block per block)

• Tree 3 is a replica of Tree 1

• Tree 4 is a replica of Tree 2



C-ORAM

 O(log2𝑁) homomorphic multiplications

 O(log𝑁) C-PIR query generation

 Encrypt the block homomorphically

 Computational HA

CHf-ORAM

 O(log𝑁) XOR operations

 O(log𝑁) Random bit generations

 Secret share the block

 IT-secure
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CHf-ORAM is as good as PIS in communication enjoying a polylog in 

computation (rather than linear)



46

1. block size of 1 MB. 

2. network speed of 20 Mbps. 

3. XOR of two 1 MB blocks in 1 ms

(2012 Macbook Pro with 2.4 Ghz

Intel i7)



 In SCORAM, eviction circuit size in tree-based ORAM is a bottleneck for secure RAM 
computation

 Best ORAM for secure RAM computation are those with constant private storage

 Tree-based ORAM with stash are not good for secure RAM computation due to the 
oblivious sorting
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CHf-ORAM has constant circuit size, with constant private storage 

with no need for OS
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Scheme Circuit Size

SCSL’11 𝑂(log4𝑁 + 𝐵 ∙ log2𝑁)

CLP’14 𝑂(log4𝑁 + 𝐵 ∙ log2𝑁)

Path SC ORAM 𝑂(log logN (log3𝑁 + 𝐵 ∙ log𝑁))

LO’13 𝑂(log𝑁 ∙ 𝐶𝑃𝑅𝐹 + 𝐵 ∙ log𝑁)

Circuit ORAM 𝑂(log3𝑁 + 𝐵 ∙ log𝑁)

CHf-ORAM 𝑂(log4𝑁 + 𝐵)

If 𝐵 is larger than log4𝑁, then circuit size is constant in B



Simplified 

block size in 

bits

Private 

Storage in 

block 

Communicat

ion in block

Homomorphic

additions

Homomorphic 

scalar

multiplications

#Servers

C-ORAM Ω(log4 N) 𝑶(𝟏) 𝑶(𝟏) 𝚯(𝐥𝐨𝐠𝟔𝑵) 𝚯(𝐥𝐨𝐠𝟓𝑵) 1

CHf-ORAM Ω(log3 N) 𝑶(𝟏) 𝑶(𝟏) − − 4
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 We have:

 Constant Communication ORAM

 Constant number of rounds

 Very small Block Size

 No Computation on the server Size

 Constant Private Storage

 One-server
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Reduce the block size to be in 𝑂(log2𝑁)
(No heavy computation)



Simplified 

block size in 

bits

Private 

Storage in 

block 

Communica

tion in block

Homomorphic

additions

Homomorphic 

scalar

multiplications

#Servers

C-ORAM Ω(log4 N) 𝑶(𝟏) 𝑶(𝟏) 𝚯(𝐥𝐨𝐠𝟔𝑵) 𝚯(𝐥𝐨𝐠𝟓𝑵) 1

CHf-ORAM Ω(log3 N) 𝑶(𝟏) 𝑶(𝟏) − − 4

Ω(log N) or

Ω(log2 N)  

𝑶(𝟏) 𝑶(𝟏) − − 1

51Picture from http://www.deviantart.com/browse/all/fanart/?q=super-sheep&order=9



Thanks!
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