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Outsourcing	Computations	on	Sensitive	Data	(I)
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x f(x)
privacy? correctness?



Outsourcing	Computations	on	Sensitive	Data	(I)
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𝑥 " 𝑥 #𝑥 $

secure	multiparty	computation

𝑓(𝑥) $
𝑓(𝑥) #𝑓(𝑥) "

Jakobsen,	Nielsen,
Orlandi (CCSW	’14):

privacy	and	correctness
with	𝑛 − 1 actively
corrupted	workers

Can	we	achieve	correctness	even
if	all	workers	are	corrupted?



Outsourcing	&	Correctness	(But	No	Privacy)
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Privacy	+	Correctness:	A	Generic	Construction
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𝑥 " 𝑥 #𝑥 $

𝑦 = 𝑓(𝑥) $
𝑦 = 𝑓(𝑥) #𝑦 = 𝑓(𝑥) "𝑦,Proof(𝑦= 𝑓 𝑥 ) $
𝑦, Proof(𝑦 = 𝑓 𝑥 ) #𝑦, Proof(𝑦 = 𝑓 𝑥 ) "

Question:	can	we	efficiently
construct	these	proofs with
multi-party	computation?

Privacy: same	as	MPC
protocol	used

Correctness: always!



Privacy	+	Correctness:	Previous	Work
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openings

Publicly	Auditable SPDZ
(Baum/Damgård/Orlandi)

Preprocessing

𝑥 , 𝑦 , 𝑥𝑦
+𝑔3, 𝑔4 , 𝑔34

Universally	Verifiable	CDN
(de	Hoogh/Schoenmakers/V.)

ZK

NIZK

Certificate	Validation	…
(de	Hoogh/Schoenmakers/V.)

Paillier

ElGamal

Verification	effort	scales	in	computation	size!
Reason:	existing	work	takes	MPC	as	starting	point!



Privacy	+	Correctness:	Previous	Work
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• Instead	of	 𝑦, Proof(𝑦 = 𝑓 𝑥 ) ":
– Baum/Damgård/Orlandi: SPDZ	+	Pedersen	commitments	=	SPDZ’
– de	Hoogh/Schoenmakers/Veeningen:	CDN	+	non-interactive	proofs	=	CDN’
– de	Hoogh/Schoenmakers/Veeningen:	CDN’	+	ElGamal encryption	=	CDN’’

• Because	of	MPC	starting	point,	no	efficient	verification!



Today:	 𝑦, Proof(𝑦 = 𝑓 𝑥 ) can	be	efficient!
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𝑥 " 𝑥 #𝑥 $

𝑦, PinocchioVC(𝑦 = 𝑓 𝑥 ) $

𝑦, PinocchioVC(𝑦 = 𝑓 𝑥 ) #

𝑦, PinocchioVC(𝑦 = 𝑓 𝑥 ) "

Theorem. (Schoenmakers/V/de
Vreede,	ACNS	‘16)	Privacy-preserving
computation	of	Pinocchio	VC:	three
workers	each	perform	essentially	the
work of	the	original	prover.

Corollary. Verifiable	Multi-Party
Computation	with	constant-time
verification!



Outline

• Secret	sharing	MPC
• Pinocchio	VC

• Secret	sharing	MPC	+	Pinocchio	VC
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Secret	sharing	MPC



Shamir	secret	sharing	(2-out-of-3)

Philips	Research16

(3,𝑦< + 𝑧<)

(2,𝑦@ + 𝑧@)

(1,𝑦A + 𝑧A)

𝑠$ + 𝑠"

0

𝑠$

𝑦A

𝑦@

𝑦<

1 2 3

𝑠"

(1,𝑦A)

(2,𝑦@)

(3, 𝑦<)

(1, 𝑧A)

(2, 𝑧@)

(3, 𝑧<)

(1,𝑦A𝑧A)

(2,𝑦@𝑧@)

(3,𝑦<𝑧<)

𝛼𝑠$

(1,𝛼𝑦D)

(2,𝛼𝑦E)

(3,𝛼𝑦F)

𝑦 = 𝑎𝑥 + 𝑠$ 𝑏𝑥 + 𝑠" = 𝑎𝑏 𝑥" + 𝑎𝑠" + 𝑏𝑠$ 𝑥 + 𝑠$𝑠"
	s$s" = 3(𝑦D𝑧D) − 3(𝑦E𝑧E) + (𝑦F𝑧F) (3-out-of-3	sharing!)

Animation:	Sebastiaan	de	Hoogh



, 𝑠𝑡(𝑠 + 𝑡)

𝑠𝑡(𝑠 + 𝑡) $

𝑠𝑡(𝑠 + 𝑡) "

𝑠𝑡(𝑠 + 𝑡) #

𝑠𝑡(𝑠 + 𝑡) $

𝑠𝑡(𝑠 + 𝑡) "

𝑠𝑡(𝑠 + 𝑡) #

𝑠 + 𝑡 $

𝑠 + 𝑡 "

𝑠 + 𝑡 #

𝑠𝑡 $

𝑠𝑡 "

𝑠𝑡 #

𝑠𝑡 # "

𝑠𝑡 # $

𝑠𝑡 " $ 𝑠𝑡 " $

𝑠𝑡 $ "

𝑠𝑡 $ #
𝑠𝑡 $

𝑠𝑡 "

𝑠𝑡 #

𝑠 $, 𝑡 $

𝑠 ", 𝑡 "

𝑠 #, 𝑡 #

𝑠 $, 𝑡 $

𝑠 ", 𝑡 "

𝑠 #, 𝑡 #

Goal:	compute	𝑦 = 𝑠 ⋅ 𝑡 ⋅ (𝑠 + 𝑡)

𝑥 :	2-out-of-3	sharing	of	𝑥
𝑥 :	3-out-of-3	sharing	of	𝑥

𝑠, 𝑡Philips	Research17

MPC	based	on	Shamir	secret	sharing

𝑠𝑡 = 3 𝑠𝑡 $ − 3 𝑠𝑡 " + 𝑠𝑡 #
𝑠𝑡 M = 3 𝑠𝑡 $ M − 3 𝑠𝑡 " M + 𝑠𝑡 # M
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Pinocchio	VC



Pinocchio:	Quadratic	Arithmetic	Programs

Prove	that	committed	 𝑥⃗ satisfies	 equations

𝑉 ⋅ 𝑥⃗ ∗ 𝑊 ⋅ 𝑥⃗ = (𝑌 ⋅ 𝑥⃗)

Example: 𝑦 = 𝑠 ⋅ 𝑡 ⋅ 𝑠 + 𝑡 if	and	only	if:

∃𝑧 ∶ 	 U
𝑠 ⋅ 𝑡 = 𝑧
𝑧 ⋅ (𝑠 + 𝑡) = 𝑦	

1 0 0 0
0 0 1 0 ⋅

𝑠
𝑡
𝑧
𝑦

∗ 0 1 0 0
1 1 0 0 ⋅

𝑠
𝑡
𝑧
𝑦

= 0 0 1 0
0 0 0 1 ⋅

𝑠
𝑡
𝑧
𝑦

E.g.:	 𝑠	𝑡	𝑦	𝑧 = 3	2	6	30 is	a	solution
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“quadratic
arithmetic
program”
(QAP)



Pinocchio:	From	QAP	to	SNARK	(I)
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Prove	that	committed	𝑥 satisfies	equations	 𝑉 ⋅ 𝑥 ∗ 𝑊 ⋅ 𝑥 = 𝑌 ⋅ 𝑥 .

Define	𝑉M 𝜉 ,𝑊M 𝜉 , 𝑌M 𝜉 by	“columnwise Lagrange	interpolation”

1 0 0 0
0 0 1 0 ⋅

𝑠
𝑡
𝑧
𝑦

∗ 0 1 0 0
1 1 0 0 ⋅

𝑠
𝑡
𝑧
𝑦

= 0 0 1 0
0 0 0 1 ⋅

𝑠
𝑡
𝑧
𝑦

𝑉$ 1 = 1, 𝑉$ 2 = 0
𝑉$ 𝜉 = 2 − 𝜉

𝑊" 1 = 1, 𝑊" 2 = 1
𝑊" 𝜉 = 1

…

value	
at	1
value	
at	2

Consider	polynomial	𝑃3⃗ 𝜉 = 𝑉$ 𝜉 𝑠+ 𝑉" 𝜉 𝑡 +⋯ ⋅ 𝑊$ 𝜉 𝑠+⋯ − 𝑌$ 𝜉 𝑠 + ⋯ :

• In	𝜉 = 1:	𝑃3⃗ 1 = 𝑉$ 1 𝑠+ 𝑉" 1 𝑡 + ⋯ ⋅ 𝑊$ 1 𝑠 +⋯ − 𝑌$ 1 𝑠 +⋯ = 𝑠 ⋅ 𝑡 − 𝑧
• In	𝜉 = 2:	𝑃3⃗ 2 = 𝑉$ 1 𝑠+ 𝑉" 1 𝑡 + ⋯ ⋅ 𝑊$ 1 𝑠 +⋯ − 𝑌$ 1 𝑠 +⋯ = 𝑧 ⋅ 𝑠 + 𝑡 − 𝑦

So	 𝑉 ⋅ 𝑥 ∗ 𝑊 ⋅ 𝑥 = 𝑌 ⋅ 𝑥
if	and	only	if	𝑃3⃗ 1 = 𝑃3⃗ 2 = 0
if	and	only	if 𝜉 − 1 ⋅ 𝜉 − 2 		|		𝑃 𝜉
if	and	only	if there	exists	ℎ 𝜉 : 𝜉 − 1 ⋅ 𝜉 − 2 ⋅ ℎ 𝜉 = 𝑃3⃗ 𝜉



Pinocchio:	From	QAP	to	SNARK	(II)
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Example.

1 0 0 0
0 0 1 0 ⋅

𝑠
𝑡
𝑧
𝑦

∗ 0 1 0 0
1 1 0 0 ⋅

𝑠
𝑡
𝑧
𝑦

= 0 0 1 0
0 0 0 1 ⋅

𝑠
𝑡
𝑧
𝑦

𝑉$ 𝜉 = 𝑌# 𝜉 = 2 − 	𝜉
𝑉" 𝜉 = 𝑉 𝜉 = 𝑊# 𝜉 = 𝑊 𝜉 = 𝑌$ 𝜉 = 𝑌" 𝜉 = 0
𝑉# 𝜉 = 𝑊$ 𝜉 = 𝑌 𝜉 = 𝜉 − 1	
𝑊" 𝜉 = 1

value	
at	1
value	
at	2

Claim:	 𝑠	𝑡	𝑧	𝑦 is	solution	 iff there	exists	ℎ 𝜉 such	that	

𝜉 − 1 𝜉 − 2 ℎ 𝜉 = 𝑠𝑉$ 𝜉 + 𝑡𝑉" 𝜉 + 𝑧𝑉# 𝜉 + 𝑦𝑉 𝜉 ⋅
𝑠𝑊$ 𝜉 + 𝑡𝑊" 𝜉 + 𝑧𝑊# 𝜉 + 𝑦𝑊 𝜉 − 𝑠𝑌$ 𝜉 + 𝑡𝑌" 𝜉 + 𝑧𝑌# 𝜉 + 𝑦𝑌 𝜉

Claim:	 3	2	6	30 is	solution	 iff there	exists	ℎ 𝜉 such	that	

𝜉 − 1 𝜉 − 2 ℎ 𝜉 = 3𝑉$ 𝜉 + 2𝑉" 𝜉 + 6𝑉# 𝜉 + 30𝑉 𝜉 ⋅
3𝑊$ 𝜉 + 2𝑊" 𝜉 + 6𝑊# 𝜉 + 30𝑊 𝜉 − 3𝑌$ 𝜉 + 2𝑌" 𝜉 + 6𝑌# 𝜉 + 30𝑌 𝜉

Claim:	 3	2	6	30 is	solution	 iff there	exists	ℎ 𝜉 such	that	

𝜉 − 1 𝜉 − 2 ℎ 𝜉 = 3𝜉 ⋅ 3𝜉 − 1 − 24𝜉 − 18

Claim:	 3	2	6	30 is	solution	 iff there	exists	ℎ 𝜉 such	that	

𝜉 − 1 𝜉 − 2 ℎ 𝜉 = 9𝜉" − 27𝜉 + 18



Pinocchio:	From	QAP	to	SNARK	(III)

Lemma	⇒ 3	2	6	30 is	solution	 iff there	exists	ℎ 𝜉 such	that	

𝜉 − 1 𝜉 − 2 ℎ 𝜉 = 9𝜉" − 27𝜉 + 18
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9𝜉" − 27𝜉 + 18𝜉" − 3𝜉 + 2
9	(𝜉" − 3𝜉 + 2)

9

0
−

ℎ 𝜉 = 9



Pinocchio:	From	QAP	to	SNARK	(IV)
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verification	key:
𝑔 fg$ ⋅…⋅ fgh

prover:
𝑔i f

prover/verifier:
𝑔jk f 3kl⋯

prover/verifier:
𝑔mk f 3kl⋯

prover/verifier:
𝑔nk f 3kl⋯

evaluation	key:
𝑔, 𝑔f, 𝑔fo ,…

evaluation/verification	 	key:
𝑔jp(f),𝑔mp(f), 𝑔np (f)

𝑒
𝑔r
𝑔s 𝑒 𝑔r,𝑔s = 𝑒(𝑔t, 𝑔h)

iff
𝑎 ⋅ 𝑏 = 𝑐 ⋅ 𝑑

𝑒
𝑔t
𝑔h

Magic	crypto	tool:	pairing

verifier: 𝑒 𝑔 fg$ ⋅…⋅ fgh ,𝑔i f = 𝑒 𝑔jk f 3kl⋯,𝑔mk f 3kl⋯ ⋅ 𝑒 𝑔nk f 3kl⋯,𝑔
g$	

?

Ξ − 1 ⋅ … ⋅ Ξ − 𝑑 ⋅ ℎ Ξ = 𝑉$ Ξ 𝑥$ +⋯ ⋅ 𝑊$ Ξ 𝑥$ + ⋯ − 𝑌$ Ξ 𝑥$ +⋯ ⋅ 1𝜉 − 1 ⋅ … ⋅ 𝜉 − 𝑑 ⋅ ℎ 𝜉 = 𝑉$ 𝜉 𝑥$ +⋯ ⋅ 𝑊$ 𝜉 𝑥$ + ⋯ − 𝑌$ 𝜉 𝑥$ + ⋯ ⋅ 1	

Ξ:	random,
unknown

Prove:



Pinocchio:	From	QAP	to	SNARK	(V)
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𝑠, 𝑡

- evaluate	function:	get	𝑧, 𝑦
- compute	𝑔jx f y, 𝑔mx f y, 𝑔nx f y

- compute	ℎ 𝜉 = j z m z gn z
zg$ ⋅…⋅(zgh)

- compute	𝑔i f

verify:	
𝑒 𝑔 fg$ ⋅…⋅ fgh , 𝑔i f

				= 𝑒(𝑔jk f {ljo f |lj} f 4 ⋅ 𝑔jx f y,
𝑔mk f {lmo f |lm} f 4 ⋅ 𝑔mx f y) ⋅

𝑒 𝑔nk f {lno f |ln} f 4 ⋅ 𝑔nx f y,𝑔
g$	

𝑦, 𝑔i f , 𝑔jx f y,𝑔mx f y, 𝑔nx f y

evaluation	key:
𝑔, 𝑔f, 𝑔fo ,…
𝑔jx f ,𝑔mx f , 𝑔nx f

verification	key:
𝑔 fg$ ⋅…⋅ fgh

𝑔jk f ,𝑔mk f ,𝑔nk f

𝑔jo f ,𝑔mo f ,𝑔no f

𝑔j} f , 𝑔m} f , 𝑔n} f
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Pinocchio	VCSecret	sharing	MPC

+



Trinocchio:	Distributing	the	Pinocchio	System	(I)
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- evaluate	function:	get	𝑧, 𝑦
- compute	𝑔jx f y, 𝑔mx f y, 𝑔nx f y

- compute	ℎ 𝜉 = j z m z gn z
zg$ ⋅…⋅(zgh)

- compute	𝑔i f

𝑠, 𝑡 𝑦, 𝑔i f , 𝑔jx f y,𝑔mx f y, 𝑔nx f y𝑠 , 𝑡 𝑦 , 𝑔i f , 𝑔jx f y , 𝑔mx f y , 𝑔nx f y	



Trinocchio:	Distributing	the	Pinocchio	System	(II)
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prove 𝑔,𝑔f, 𝑔fo ,… ,𝑔jx f ,𝑔mx f ,	𝑔nx f ,𝑠, 𝑡 :

𝑧, 𝑦 = 𝑓(𝑠, 𝑡)

𝑔jx f y = exp	(𝑔jx f ,𝑧)

𝑔mx f y = exp	(𝑔mx f ,𝑧)

𝑔nx f y = exp(𝑔nx f ,𝑧) 	

𝑛 𝜉 = 𝑉$ 𝜉 𝑠+ 𝑉" 𝜉 𝑡 + 𝑉# 𝜉 𝑧 + 𝑉 𝜉 𝑦 ∗ 𝑊$ 𝜉 𝑠 +⋯ − 𝑌$ 𝜉 𝑠 + ⋯

ℎ 𝜉 = � z
zg$ ⋅…⋅ zgh

𝑔i f = exp 𝑔, ℎ� ⋅ exp 𝑔f,ℎ$ ⋅ … ⋅ exp	(𝑔f��k ,ℎhg$)	

return		𝑦, 𝑔i f ,	𝑔jx f y,𝑔mx f y,	𝑔nx f y



Trinocchio:	Distributing	the	Pinocchio	System	(II)
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return	 𝑦 , 𝑔i f , 𝑔jx f y , 𝑔mx f y , 𝑔nx f yreturn		𝑦, 𝑔i f ,	𝑔jx f y,𝑔mx f y,	𝑔nx f y

𝑔i f = exp 𝑔, ℎ� ⋅ exp 𝑔f, ℎ$ ⋅ … ⋅ exp	(𝑔f��k , ℎhg$ )𝑔i f = exp 𝑔, ℎ� ⋅ exp 𝑔f,ℎ$ ⋅ … ⋅ exp	(𝑔f��k ,ℎhg$)	

ℎ 𝜉 = � z
zg$ ⋅…⋅ zgh

	ℎ 𝜉 = � z
zg$ ⋅…⋅ zgh

	

Products	of	2-out-of-3	shares
give	3-out-of-3	shares

𝑛 𝜉 = 𝑉$ 𝜉 𝑠 + 𝑉" 𝜉 𝑡 + 𝑉# 𝜉 𝑧 + 𝑉 𝜉 𝑦 ∗ 𝑊$ 𝜉 𝑠 +⋯
− 𝑌$ 𝜉 𝑠 +⋯

𝑛 𝜉 = 𝑉$ 𝜉 𝑠 + 𝑉" 𝜉 𝑡 + 𝑉# 𝜉 𝑧 + 𝑉 𝜉 𝑦 ∗ 𝑊$ 𝜉 𝑠 + ⋯ − 𝑌$ 𝜉 𝑠+ ⋯ 	

𝑔nx f y = exp(𝑔nx f , 𝑧 )

𝑔mx f y = exp	(𝑔mx f , 𝑧 )

𝑔jx f y = exp	(𝑔jx f , 𝑧 )

𝑔nx f y = exp(𝑔nx f ,𝑧) 	

𝑔mx f y = exp	(𝑔mx f ,𝑧)	

𝑔jx f y = exp	(𝑔jx f ,𝑧)

MPC	computation	of	𝑓 gives
internal	wire	values	“for	free”

𝑧 , 𝑦 = 𝑓( 𝑠 , 𝑡 )𝑧, 𝑦 = 𝑓(𝑠, 𝑡)

prove 𝑔,𝑔f, 𝑔fo ,… ,𝑔jx f ,𝑔mx f ,	𝑔nx f , 𝑠 , 𝑡 	 :prove 𝑔, 𝑔f, 𝑔fo, … ,𝑔jx f ,𝑔mx f ,	𝑔nx f ,𝑠, 𝑡 :

Division	by	public
polynomial	is	linear!

Shamir	reconstruction
“in	the	exponent”

Only	step in	which
the	workers
communicate!



Trinocchio:	Distributing	the	Pinocchio	System	(III)
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𝑦 , 𝜋

𝑥⃗

𝑥⃗

𝑥⃗

𝑠 , 𝑡
Theorem. Privacy-preserving
computation	of	Pinocchio	VC:	three
workers	each	perform	essentially	the
work	of	the	original	prover.

275	s

275	s

275	s

6427	s

6427	s

6427	s

0.05	s



Extensions	/	Future	Directions
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𝑋 ⋅ 𝑅 = 1

𝑋 = 𝐵$ + 2𝐵" +
…+2�𝐵�

1 = 𝐵$ ⋅ 1− 𝐵$
…
1 = 𝐵� ⋅ 1− 𝐵�

QAP MPC

nonzero
test

positivity
test

𝑈 ∈� ℱ
𝑉 = 𝑂𝑝𝑒𝑛( 𝑋𝑈 )
𝑅 = 𝑉g$	 𝑈

𝐵$ ,… , 𝐵$ =
𝐵𝑖𝑡𝐷𝑒𝑐( 𝑋 )

…

• Multiple	 inputters

• Auditable	MPC

• Verifiability	by	certificate	validation

• QAPs	+	MPC	for	particular	tasks?
– Zero	testing
– Comparison
– …

• Easily	programmable	distributed
verifiable	computation




