
Optimal round VSS with a
non-interactive Dealer:

VSS as a special case of VSR

Yvo Desmedt
The University of Texas at Dallas, USA

and

University College London,UK

May 31, 2016

c©Yvo Desmedt



This is joint work with Kirill Morozov (Tokyo Institute of Technology,
Japan).

The research in 2009-2010 on VSS started while Yvo Desmedt and
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time and full time.

The problem was addressed during several visits to Kyushu University
and meetings abroad.
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1. REDISTRIBUTION OF SECRET SHARES

Many groups independently considered the following problem.

Suppose that participants in P are moving to a different
organization, retiring, dying, etc. Then a new set of participants P ′

should receive shares. Unfortunately, the dealer is no longer
available.

There are two approaches:

Trivial one: authorized participants, specified by ΓP, recompute the
secret s, and then they play dealer and give new shares to parties in
P ′ such that these authorized, as specified by ΓP ′ can recompute
the secret s.
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Private approach: similar as before, but without the recomputation of
the secret s.

Simmons posed this as an open problem (early 1990’s). In
Chen-Gollmann-Mitchell solution each recomputation grows the
size of the shares. Desmedt-Jajodia avoided this growth. Others
considered special cases, such as P ′ = P and P ⊂ P ′.

Both Chen-Gollmann-Mitchell and Desmedt-Jajodia only
considered passive adversaries, as observed by Wong-Wang-Wing.
Wong-Wang-Wing considered active adversaries in P, but assumed
all participants in P ′ to be honest! Moreover, their security is
conditional. They called their protocol Verifiable Secret
Redistribution (VRS). We will later see how VSS can be considered
as a special case of VRS.
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2. OUR GOALS

• Our original goal was to remove the interaction with the dealer in
VSS.
Removing this interaction has many advantages. We give some
examples when the original data originates:
– from a busy leader

– when storing data before a flight

– when the dealer used a pre-VSS area SS scheme

– when the dealer had an accident after the dealing

– when the dealer has limited resources, such as using a
smartphone with a poor connection.
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Despite many security experts warning against the use of cloud for
storage, in our modern society everybody wants their data stored
this way. “Multi-cloud Storage Toolkit” has been implemented by
IBM (2010). Note that non-US cloud serves exist.

• Other questions that we raised was whether we need as much
randomness as most VSS schemes use. Most VSS schemes that
have few rounds require the dealer to have O(t2) random values as
large as the secret.

A trivial approach to remove the interaction with the dealer is parties
execute a secure multi-party computation. (We recently learned
Cramer et al. also observed this). However, this increases the round
complexity, which by itself was a major research problem 5-6 years
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ago. When analyzing the round complexity of VSS, one assumes
that broadcast is free (i.e., does not require extra interaction).

So, a natural question became whether we can:

• achieve all above while having 3 rounds for both VRS and VSS.
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3. SOME PRELIMINARIES

As observed by McEliece-Sarwate, when we let k = t+ 1 and
u = (s, r1, r2, . . . , rt) ∈ F t+1, where s is the secret and ri are
uniformly random, the shares sj (1 ≤ j ≤ n) the n parties receive in
Shamir’s secret sharing scheme, can be regarded as a codeword
s = (s1, s2, . . . , sn), generated by a k × n generator matrix G, as
follows. G corresponds to the generator matrix of the Generalized
Reed-Solomon code and

s = u ·G,

where the j-th column in G corresponds to (1, αj, α
2
j , . . . , α

t
j), and

α1, α2, . . . , αn are distinct non-zero elements of a finite field F .

According to the above, we denote the generator matrix of the
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t+ 1-out-of-n Shamir secret sharing scheme by G, and we use H to
indicate the corresponding parity check matrix.

(Note that we can generalize the use of G and H to cover linear
secret sharing schemes for general access structures.)
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4. SOME DEFINITIONS

We assume that the protocol is synchronous.

We assume that the number of dishonest parties in P are t and that
n ≥ 3t+ 1 and that the number of dishonest parties in P ′ are t′ and
that n′ ≥ 3t′ + 1. In the case of VSS t′ = t, n′ = n and P ′ = P. For
simplicity, we assume for the VRS case that P ∩ P ′ = ∅, but we
allow any dishonest t parties in P to collaborate with any dishonest
t′ parties in P ′.

(Note that we can generalize this to access structures ΓP and ΓP ′

and their respective adversary structures, provided the Q3 condition
is satisfied over P and P ′.)

We do not assume any restrictions on adversary’s computational
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power.

Definition 1. n values s = (s1, s2, . . . , sn) are called almost consistent

shares in an t+ 1-out-of-n Shamir secret sharing scheme in which

n ≥ 3t+ 1 when s is at Hamming distance at most t from a codeword

formed using u ·G, where G is the Generator Matrix.

(Note that we can generalize this to consider an error caused by a
subset of participants in the adversary structure).
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5. OUR VRS/VSS PROTOCOL

In sharp contrast with the published literature, the dealer uses
ordinary Shamir secret sharing and we do not use any extra
randomness. (In general we assume a linear secret sharing, in
which any honest subset can recover all randomness.)

If the dealer is an external party, the dealer will stop participating.

In VSS, we need to check that the parties in P received “consistent”
shares of s from the dealer. In VRS, we need to check that the
parties in P ′ received “consistent” shares from P.

An important part in both our VRS/VSS protocols is that parties
redistribute their shares, in a way very different from:
Desmedt-Jajodia and very different from Ben Or-Goldwasser-
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Wigderson and Cramer-Damgård-Maurer.

The nodes are regarded as participants. We regard that all
participants in P are on the left, and these in P ′ are on the right.
The edges will correspond to private communications.

Parties in P and in P ′ can behave dishonestly, which we explain
further. Parties in P doing this are denoted by J and similarly we
have J ′. (Note that if P ′ = P ′, we do not necessarily have that
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J ′ = J .)

Step 1 All parties in P make shares of their shares, as follows. Each
party Pj ∈ P chooses t′ uniformly random values ri,j
(1 ≤ i ≤ t′) to form uTj = (sj, r1,j, r2,j, . . . , rt′,j)

T , and
computes

sTj = (s1,j, s2,j, . . . , sn′,j)
T = G′

T · uTj

and sends si,j to P ′i ∈ P ′ privately.
Step 2 Each party P ′i ∈ P ′ having received s′i = (s′i,1, s

′
i,2, . . . , s

′
i,n)

from Pj ∈ P (1 ≤ j ≤ n) computes

tempi = s′i ·HT

and broadcasts the n− k values in tempi to all parties in P ′.
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We let Temp be the n′ × n− k matrix in which its i-th row is
tempi.

Step 3 Each party P ′i ∈ P ′ runs a non-interactive decoding process
(see further), which will identify some appropriate (see
further) J and J ′.
Based on the results from above decoding, honest parties in
P ′ conclude the original dealer was dishonest or not. If
declared honest, they correct, without interaction:
• in the VRS case: their shares-of-shares obtained, and then

apply the Desmedt-Jajodia compression.

• in the VSS case: their original shares obtained from the
dealer.
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6. THE TYPES OF ERRORS

Let S = [si,j], the n′ × n secret matrix of shares-of-shares. We first
identify the types of malicious errors (focus: threshold case).

Type i) The first element of uTj must be a consistent share sj, which
we call the share-valid condition (see also
Wong-Wang-Wing).
There are two ways that this condition could be violated:
• the dealer gave some parties inconsistent shares

• some party (or parties) Pj replaces sj with some
randomness when performing the redistribution protocol.

We regard both as an error in the codeword s at location j,
we call fj the corresponding error, which defines
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f = (f1, f2, . . . , fn).
Remark: if the dealer made more than t such errors, the
dealer will eventually be declared dishonest (see further).

Type ii) The shares-of-shares si,j must be consistent, i.e., for each
fixed j, (α′i, si,j) must correspond to points on a polynomial
of degree at most t′. If the shares-of-shares are
non-consistent, then sTj = G′

T · uTj is replaced by Pj into

sTj + eTj , where eTj is an n′-column.

To describe the impact of these inconsistent shares caused
by all dishonest parties in P, we introduce an n′ × n matrix
E, where the j-th column of E is only nonzero when Pj ∈ J
and then this j-th column is eTj .
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Type iii) Wong-Wang-Wing assumed parties in P ′ to be honest. We
do not.
Up to t′ parties P ′i ∈ P ′ can each broadcast their incorrect
values for tempi, which we denote as having them
broadcast

tempi + e′i.

To describe the impact of all dishonest parties in P ′, we
introduce an n′ × n− k matrix E′, where the i-th row of E′ is
only non-zero when Pi ∈ J ′ and such a row corresponds to
e′i.
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7. A NOTE ABOUT THE ERRORS

In VRS the participants in P are the distributed equivalence of the
role of the dealer in VSS.

In VSS we cannot distinguish between the following two cases:

Case 1 All participants are honest, but the dealer gives t parties
inconsistent shares.

Case 2 The dealer is honest, but at most t participants pretend
having received incorrect shares of the dealer.

The equivalence in the case of VRS is:

Case a All participants in P ′ are honest, but t′ of the participants in P ′

receive incorrect shares-of-shares.
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Case b All parties in P are honest, but at most t′ participants in P ′

pretend having received incorrect shares.

This implies that for some type of errors, we will not be able to
uniquely identify J and J ′.

Note that we are not interested in finding who caused these errors!
We are interested in making certain that honest parties in P ′

receive correct shares, and in the VSS case, come to correct
shares for honest parties in P or declare the dealer dishonest.
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8. THE ALGEBRA BEHIND THE PROTOCOL

Lemma 1. When the parties in P gave consistent shares, but the

share-valid condition has been violated, each column in Temp are

almost consistent shares of the n− k syndromes corresponding to

f ·HT .
Proof: Since S is replaced by S + E, we have
Temp = (S + E) ·HT + E′. Now, S = G′

T · U , where U is a k′ × n
matrix in which the first row is s + f . So, using a block matrix
U = [s + f | R]T , where R is a t′ × n matrix, or U = [u ·G+ f | R]T .
This gives
Temp = G′

T · [u ·G ·HT + f ·HT | R ·HT ]T +E ·HT +E′. Using the
fact G ·HT = 0, where 0 is the k × n− k zero matrix, this gives us:

Temp = G′
T ·
[
f ·HT

R ·HT

]
+ E ·HT + E′ (1)
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Since P gave consistent shares, E = 0. Also, f ·HT are the
syndromes caused by having a violation of the share-valid
condition. Since R is uniformly random, and H of full rank, R ·HT is
a t′ × n− k random matrix, which guarantees that the multiplication
on the left by G′T in Eqn. 11 makes the result shares of the n− k
syndromes corresponding to f ·HT . The fact that for each of these
n− k syndromes the n′ values are almost consistent shares follows
from the fact that E′ has at most t′ non-zero rows. 2

Corollary 1. Temp does not leak anything about s, the original

secret.
Proof: From Eqn. 11, it follows that Temp is independent of the
secret s. 2
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9. OUR DECODER: INTRODUCTION

In Lemma 1 we assumed that the parties in P gave consistent
shares. How can we remove this assumption?

A problem we may encounter is that some parties in P may give
very inconsistent shares, poisoning the protocol.

Solution: we want to remove the poison! Problem: since we want
constant rounds, we can not go back and ask to recompute shares
of the syndromes ignoring some inputs.

So, what saves us?
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1. a parity check matrix H is not unique. Any invertible linear
combinations of the n− k rows of H form a new parity check matrix.

2. a parity check matrix can be put in systematic form. This means that
we get H = [−R′B In−k], where B ∈ ΓP.
Note now that for some syndrome n− k − 1 entries of the received
word will not be used, since the corresponding column in H will
have n− k − 1 zero entries. Similarly, for two syndromes n− k − 2

entries of the received will not be used, etc.

Our decoder exploits the following properties to find the Type (iii)
errors. We now prove the mathematics behind this idea.

Corollary 2. If the Q3 property is satisfied, for every two maximal

sets A1, A2 ∈ ΛP, we can write H = [R′′B Vn−k] · FπB where
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Vn−k ∈ Fn−k×n−k is an invertible matrix and FπB is a permutation

matrix

Proof: For the threshold case, take B = P \ (A1 ∪A2).
(Generalized: skipped). 2

Corollary 3. (Syndrome Input Exclusion Corollary) If the Q3

property is satisfied, for every set A ∈ ΛP, when taking some

appropriate linear combinations of the syndromes, for some

syndromes, the errors caused by A ∈ ΛP will be excluded and the

corresponding linear combination(s) will be zero.

Proof: We use the notations used in the proof of Corollary 2. By
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multiplying the syndromes with V −1n−k, we obtain that: e′In−k, where
e′ is caused by two unauthorized sets. Therefore, the columns in
In−k that are orthogonal on e′ will give syndromes equal to zero.
Since rows in In−k have only a single non-zero entry, and since in
this corollary, we consider errors caused by a single unauthorized

set, we obtain the claim. 2
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10. OUR DECODER

All parties in P ′ will run in Step 3 of our protocol on their own, i.e.,
without any interaction.

1. Loop over all possible dishonest sets A ∈ ΛP:
i. Loop over all possible sets B ⊂ P \A and compute compute
TempV −1B , where V −1B ∈ Fn−k×n−k2 is an invertible matrix as
specified in Corollary 2 and the Syndrome Decoding Input
Exclusion Corollary, and where Temp is the matrix of n′ shares of
the n− k syndromes.
Due to the fact that V −1B forces an identity matrix in V −1B H (spread
over columns), we can split the syndromes into two categories,
these for which we have (almost) consistent shares, and these we
do not. If for the last loop, we get that the locations of the
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inconsistent shares are caused by the same A, we have identified
A, else we try another one.
For the VSS case: If both loops do not terminate prematurely, the
dealer is declared dishonest.

2. When we found A, we only consider the linear combinations that
gave us almost consistent shares. Each party computes from these
remaining almost consistent combined shares of the j-th syndrome,
the consistent shares and then the actual syndromes using the
reconstruction protocol of the secret sharing scheme (e.g.,
Lagrange).

3. For the VSS case: If the remaining linearly combined syndromes
are zero, then the protocol succeeds,
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else corrects the shares si, i.e. compute the error vector f ∈ Fn

using the syndrome decoding;
if the errors in f with the union of A span the set not in ΛP or if the

error correction fails, then declare D dishonest,
else each involved party Pi accepts the corrected share

s̃i = si − fi and the protocol succeeds.
For the VRS case: Having found “the” dishonest parties J in P and
“the” dishonest parties J ′ in P ′, the parties can ignore the shares of
shares received from the parties in J . They then use the
Desmedt-Jajodia compression using any honest subset of P \ J .
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11. OPEN PROBLEM

In the general adversary structure case, our decoder is efficient.

However, that is not true for the threshold case. So, the open
problem is how to make an efficient decoder.

Do we have a suggestion?
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problem is how to make an efficient decoder.

Do we have a suggestion?

Clever monkeys are just copycats (2012 study!!)
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Since we copy, we introduce more syndromes. So, we define:

Syn = H ′ · Temp,

giving an n′ − k′ × n− k matrix. As we learned:

Temp = G′
T ·
[
f ·HT

R ·HT

]
+ E ·HT + E′

Multiplying at the right with H ′ then gives:

Syn = H ′ · Temp = H ′ · E ·HT +H ′ · E′ (2)

which becomes independent of f . We then attempt to make a
Peterson-Gorenstein-Zierler decoder. We first define error-locator
polynomials corresponding to errors done by J and produced by
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J ′, which we write respectively as:

Λ(x) =
∏
Pj∈J

(1− αjx) and Λ′(y) =
∏
P ′j∈J

′

(1− αjy).

This then gives (proceeding as Peterson-Gorenstein-Zierler):

τ ′∑
i=0

λ′i ·

 τ∑
j=0

Syn[τ ′ + l′ − i, τ + l − j] · λj

 = 0 (3)

where τ = |J | and τ ′ = |J ′|. Which in tensor notation becomes:

λ′Synλ = 0,

where λ and λ′ are tensors of order 1 (vectors) and Syn is a tensor
of order 4. Since both λ and λ are unknowns, we have a non-linear

c©Yvo Desmedt 32



set of equations. Above corresponds to a bilinear form of a
quadratic form.

While in Peterson-Gorenstein-Zierler, the matrix notation allowed an
efficient decoder finding the error locator, in our case, we do not
know how to efficiently solve the above tensor equation. Moreover,
we know that (J ,J ′) might not be unique.
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12. CONCLUSIONS

Recent research on VSS has focused on rounds. We believe there

are other aspects worth analyzing, such as randomness complexity,

communication complexity, etc.
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