One dimensional mechanism design

Herve Moulin University of Glasgow

June 2015

prior-free mechanism design:

three goals

- efficiency
- incentive compatibility as strategyproofness (SP)
- fairness

voting with single-peaked preferences: two seminal results

• Black 1948: the median peak is the Condorcet winner and the majority relation is transitive

 \rightarrow precursor to Arrow's theorem

• Dummett and Farquharson 1961: the Condorcet winner is incentive compatible: Efficient + SP + Fair

 \rightarrow conjecture the Gibbard/Satterthwaite 1974 impossibility result:

 $|\mathsf{Range}| \geq 3 + \mathsf{SP} + \mathsf{Non} \mathsf{ dictatorial} = \varnothing$

and a characterization result

.

 Moulin 1980: all voting rules Efficient + SP + Fair: the generalized median rules

a new problem

non disposable division with single-peaked (convex) preferences

- rationing a single commodity with satiation: Benassy 1982
- dividing a single non disposable commodity (workload): the *uniform division rule*: Sprumont 1991
- balancing one dimensional demand-supply: Klaus Peters Storcken 1998
- asymmetric variants: Barbera Jackson Neme 1997, Moulin 1999, Ehlers 2000

- bipartite rationing: Bochet Ilkilic Moulin 2013, Bochet Ilkilic Moulin Sethuraman 2012, Chandramouli and Sethuraman 2013, Szwagrzak 2013
- bipartite demand-supply: Bochet Ilkilic Moulin Sethuraman 2012, Chandramouli and Sethuraman 2011, Szwagrzak 2014
- bipartite flow division: Chandramouli and Sethuraman 2013

common features to voting and all allocation problems above

 \rightarrow one dimensional individual allocations (*they may represent different commodities*)

 \rightarrow single-peaked private preferences over own allocation

 \rightarrow convex set of feasible allocation profiles

•

new examples

where the range of feasible allocation profiles is of full dimension

adjusting locations, temperatures, ...

agent i lives initially at 0 and wishes to move to $p_i \in \mathbb{R}$

cost: stand alone cost + externality (positive or negative)

$$\sum_{i \in N} x_i^2 + \pi \sum_{i,j \in N} (x_i - x_j)^2 \le 1$$

unifying result

we can construct simple, peak-only mechanisms

efficient

incentive compatible: groupstrategyproof

and **fair**: symmetric treatment of agents; envy-freeness; individual guarantees

general model

N the relevant agents

allocation profile $x = (x_i)_{i \in N} \in \mathbb{R}^N$

feasibility constraints: $x \in X$ closed and convex in \mathbb{R}^N

 X_i : projection of X on the *i*-th coordinate

agent i's preferences \succeq_i are single-peaked over X_i with peak p_i

direct revelation mechanism, or **rule**

$$F: (\succeq_i)_{i \in N} \to x \in X$$

peak-only rule (much easier to implement)

$$f: p = (p_i)_{i \in N} \to x = f(p) \in X$$

such that

$$F(\succeq_i;_{i\in N}) = f(p_i; i \in N)$$

- efficiency (**EFF**) i.e., *Pareto optimality*
- incentive compatibility: StrategyProofness (SP), GroupStrategyProofness (GSP), or StrongGroupStrategyProofness (SGSP)
- Continuity (CONT): F is continuous for the topology of closed convergence on preferences; or f is continuous $\mathbb{R}^N \to \mathbb{R}^N$

A folk proposition

a fixed priority rule meets EFF, SGSP, and CONT

agent 1 is guaranteed her peak

• • •

conditional on this, agent 2 is guaranteed his best feasible allocation

conditional on this, agent 3 is guaranteed his best feasible allocation

note: only Continuity requires the convexity of X and some qualification

Fairness Axioms

- Symmetry (SYM): $F((\succeq_{\sigma(i)})_{i \in N}) = (x_{\sigma(i)})_{i \in N}$ if the permutation σ : $N \to N$ leaves X invariant
- Envy-Freeness (EF): if permuting i and $j: N \to N$ leaves X invariant then $x_i \succeq_i x_j$
- ω -Guarantee (ω -G): $x_i \succeq_i \omega_i$ for all i, where $\omega \in X$

an allocation $\omega \in X$ is symmetric if $\omega^{\sigma} = \omega$ for every σ leaving X invariant,

Main Theorem

.

For any convex closed problem (N, X), and any symmetric allocation $\omega \in X$, there exists at least one peak-only rule f^{ω} that is Efficient, Symmetric, Envy-Free, Guarantees- ω , and SGSP

This rule is also Continuous if X is a polytope or is strictly convex of full dimension

the proof is constructive

•

the uniform gains rule f^{ω} equalizes benefits

w.r.t. the leximin ordering from the benchmark allocation $\boldsymbol{\omega}$

other recent applications of the leximin ordering to mechanism design

- Leontief preferences: Ghodsi et al. 2010, Li and Xue 2013
- assignment with dichotomous preferences: Bogomolnaia Moulin 2004 (a special case of the bipartite single-peaked model)
- generalization: Kurokawa Procaccia Shah 2015

the leximin ordering in \mathbb{R}^N

 $a \rightarrow a^* \in \mathbb{R}^n$ rearranges the coordinates of a increasingly

apply the lexicographic ordering to a^{\ast}

$$a \succeq_{\mathsf{leximin}} b \iff a^* \succeq_{\mathsf{lexicog}} b^*$$

a complete symmetric ordering of \mathbb{R}^N with convex upper contours

it is *discontinuous* but

its maximum over a *convex* compact set is unique

notation: $[a, b] = [a \land b, a \lor b]$ and $|a| = (|a_i|)_{i \in N}$

define the uniform gains rule f^{ω}

$$f^{\omega}(p) = x \stackrel{def}{\iff} \{ x \in X \cap [\omega, p] \text{ and} \\ |x - \omega| \succeq_{\mathsf{leximin}} |y - \omega| \text{ for all } y \in X \cap [\omega, p] \}$$

for any $\omega \in X$, symmetric or not, f^{ω} meets EFF, ω -G, CONT, and SGSP

 \rightarrow CONT is the hardest to prove, and is qualified

•

if ω is symmetric in $X\text{, }f^\omega$ meets SYM and EF

the Theorem unifes previous results

 \rightarrow if X is symmetric in **all** permutations its affine span H[X] is one of three types

- H[X] is the diagonal Δ of \mathbb{R}^N : X is a voting problem
- H[X] is parallel to $\Delta^{\perp} = \{\sum_N x_i = 0\}$: X is a division problem
- $H[X] = \mathbb{R}^N : X$ is a full-dimensional problem

Case 1: X is a voting problem

the (n-1)-dimensional family of generalized median rules

$$f(p) = \text{median}\{p_i, i \in N; \alpha_k, 1 \le k \le n-1\}$$

meets EFF, SYM, CONT and SGSP

is characterized by $\mathsf{EFF}+\mathsf{SYM}+\mathsf{SP}$

 f^{ω} is the rule most biased toward the status quo ω : $\alpha_k = \omega$ for all k: it takes the *unanimous* voters to move away from the status quo

Case 2: X is a non disposable division problem

$$X = \{\sum_N x_i = \beta\} \cap C$$

example 1: the "simplex" division $X = \{x \ge \mathsf{0} \text{ , } \sum_N x_i = \mathsf{1}\}$

 ω is the equal split allocation

 f^{ω} is Sprumont's uniform rationing rule with a new interpretation:

equalizing benefits from the guaranteed equal split

instead of

equalizing shares among efficient allocations

example 1*: bipartite rationing

resources on one side, agents on the other

there is a most egalitarian (Lorenz dominant) feasible allocation ω

the egalitarian rule of Bochet et al. 2013 guarantees ω

it equalizes total shares among efficient allocations

 f^{ω} is different: equalizes benefits from ω

example 2: balancing demand and supply: $X = \{\sum_N x_i = 0\}$

$$\omega = 0$$

 f^0 serves the short side while rationing uniformly the long side

example 2*: bipartite demand supply

some suppliers(resp. some demanders are long) are short, some are long (resp. short)

 f^0 is the egalitarian solution of Bochet et al. 2012

a characterization result for symmetric division problems $X=\{\sum_N x_i=\beta\}\cap C$

the only symmetric feasible allocation is $\omega_i = \frac{\beta}{n}$ for all *i*

Proposition

If $X = \{\sum_N x_i = \beta\} \cap C$ and C is symmetric, and is either a polytope or strictly convex, the uniform gains rule f^{ω} is characterized by EFF, SYM, CONT and SGSP

 \rightarrow conjecture: SP suffices instead of SGSP

compare

 \rightarrow in the simplex division the uniform rationing rule f^{ω} is the **unique** mechanism meeting EFF, SYM and SP (Ching 1994)

 \rightarrow in the supply-demand problem the uniform rationing rule f^0 is the **unique** mechanism meeting EFF, SYM, SP, and guaranteeing voluntary participation (Klaus, Peters, Storcken 1998)

example 3: dividing shares in a joint venture between four partners: $x_{\{1,2,3,4\}} = 100$

no two agents can own $\frac{2}{3}$ of the shares

$$\sum_{1}^{4} x_i = 100 \text{ and } x_i + x_j \leq 66 \text{ for all } i \neq j$$

 \rightarrow efficient allocations are not always one-sided

at p = (10, 15, 35, 40) the allocation x = (17, 17, 30, 36) is efficient

Case 3: X is full-dimensional $(H[X] = \mathbb{R}^N)$

Proposition

i) If n = 2 then the family of rules f^{ω} , where ω is a symmetric allocation in X, is characterized by EFF, SYM, CONT and SGSP.

ii) If $n \ge 3$ and X is either a polytope or strictly convex, then the set of rules meeting EFF, SYM, CONT and SGSP is of infinite dimension (while symmetric rules f^{ω} form a subset of dimension 1).

illustrate statement i)

example 5: location with positive externalities

$$X = \{x_1^2 + x_2^2 - \frac{8}{5}x_1x_2 \le 1\}$$

Figure 1 illustrates the family f^ω

Figure 2

about the convexity assumption

convexity of X is not necessary in the main result

Figure 2 gives an example

Figure 3

however

for some non convex feasible sets X even EFF, SP, and CONT are incompatible

Figure 3

Figure 1

Conclusion

unification of previous results in a more general model

an embarrassment of riches

in one-dimensional problems with convex feasible outcome sets

we can design many efficient, incentive compatible (in a strong sense) and fair mechanisms

 \rightarrow symmetric division problems are an exception

additional requirements must be imposed to identify reasonably small new families of mechanisms

Thank You

.