Computational Fair Division

Ariel Procaccia Carnegie Mellon University

OVERVIEW

Indivisible Goods

A new, approximate notion of fairness and its application in Spliddit

Classroom Allocation

Leximin in the real world: properties, optimization, and implementation

OVERVIEW

Rent Division

Computationally efficient algorithms for assigning rooms and dividing rent

Indivisible Goods

A new "computational" notion of fairness and its application in Spliddit

Classroom Allocation

Leximin in the real world: properties, optimization, implementation

THE WHINING PHILOSOPHERS PROBLEM

Nir Ben Moshe

ENVY-FREE RENT DIVISION

- <u>Theorem [Sevensson 1983]</u>: An envy-free solution always exists
- <u>Theorem [Aragones 1995]</u>: An envy-free solution can be computed in polynomial time

ENVY-FREE RENT DIVISION

- <u>Theorem [Sevensson 1983]</u>: An envy-free solution always exists
- <u>Theorem [Aragones 1995]</u>: An envy-free solution can be computed in polynomial time
- <u>Theorem [Gal, Mash, P, Zick 2015]</u>: A solution that maximizes the minimum utility subject to envy-freeness can be found in polynomial time

OVERVIEW

for assigning rooms and dividing rent

Indivisible Goods

A new "computational" notion of fairness and its application in Spliddit

Classroom Allocation

Leximin in the real world: properties, optimization, implementation

INDIVISIBLE GOODS

Assume: additive valuations

- EF is infeasible ⇒ random values?
- For each good g, draw values V₁(g), ..., V_n(g) from a distribution over [0,1]ⁿ
- <u>Theorem [Dickerson et</u> <u>al., 2014]</u>: Under mild technical assumptions, if $m = \Omega(n \cdot \log n)$ then an EF allocation exists w.h.p. as $m \to \infty$

Min value of m such that 99% of instances admit an EF allocation

MAXIMIN SHARE GUARANTEE

Maximin share (MMS) guarantee [Budish 2011] of player *i*:

 $\max_{X_1,\ldots,X_n} \min_j V_i(X_j)$

• <u>Theorem [P & Wang 2014]</u>: $\forall n \geq 3$ there exist additive valuation functions that do not admit an MMS allocation

Counterexample for n = 3

Counterexample for n = 3

Maximin share (MMS) guarantee [Budish 2011] of player *i*:

 $\max_{X_1,\ldots,X_n} \min_j V_i(X_j)$

- <u>Theorem [P & Wang 2014]</u>: ∀n ≥ 3 there exist additive valuation functions that do not admit an MMS allocation
- <u>Theorem [P & Wang 2014]</u>: It is always possible to guarantee each player 2/3 of his MMS guarantee (in poly time for constant n)

Share Rent

Divide Goods

Split Fare

Distribute Tasks

Assign Credit

Suggest an App

OVERVIEW

Rent Division

Computationally efficient algorithms for assigning rooms and dividing rent

Indivisible Goods

A new "computational" notion of fairness and its application in Spliddit

Classroom Allocation

Leximin in the real world: properties, optimization, implementation

Hervé Moulin

"... the reward of helping people who have a real fair division problem by explaining our solutions, is that they in return pose interesting and difficult new questions, food for our thoughts. ... It could be a goldmine of ideas, as well as a costly proposition if there are too many questions!"

Fair division problem in the public school system

I'm writing in the hopes that there might be an interest in collaborating to create a product that would streamline this process for school districts, allowing more funds to go to students. If not, I was hoping that you might be able to point to literature/contacts that would aid in this endeavor.

Thank you for your time and best of luck with the launch!

I object, your honor the method is provably fair!

OUR APPROACH

- Facilities have capacities
- Players have demands
- Preferences are dichotomous
- Starting point: the Leximin Mechanism [Bogomolnaia and Moulin 2004]

2015/2016 request form: "provide a description of the district school site and/or general geographic area in which the charter school wishes to locate"

THE LEXIMIN MECHANISM

THE LEXIMIN MECHANISM

- <u>Theorem [Kurokawa et al. 2015]</u>: The leximin mechanism satisfies proportionality, envy-freeness, Pareto efficiency, and group strategyproofness
- We actually prove this in a much more general framework
- <u>Theorem [Kurokawa et al. 2015]</u>: The expected number of units allocated by the leximin mechanism 1/4-approximates the maximum number of units that can be allocated simultaneously

BIBLIOGRAPHY

- Procaccia. Cake Cutting: Not Just Child's Play. Communications of the ACM 2013.
- Dickerson, Goldman, Karp, Procaccia, and Sandholm. The Computational Rise and Fall of Fairness. AAAI 2014.
- Procaccia and Wang. Fair Enough: Guaranteeing Approximate Maximin Shares. EC 2014.
- Kurokawa, Procaccia, and Shah. Leximin Allocations in the Real World. EC 2015.