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Abstract

If preferences are single-peaked, electing the best choice of the me-
dian voter is an effi cient, strongly incentive compatible and fair mech-
anism ([10], [21]). Dividing a single non disposable commodity by the
uniform rationing rule meets these three properties as well when pref-
erences are private and single-peaked ([47]).
These are two instances of a general possibility result for collective

decision problems where individual allocations are one-dimensional,
preferences are single-peaked (strictly convex), and feasible allocation
profiles cover a closed convex set. The proof is constructive, by means
of a rule equalizing in the leximin sense individual gains from an ar-
bitrary benchmark allocation. In symmetric non disposable division
problems, this is the only rule effi cient, incentive compatible and fair.
In all other problems there are many more such rules.

1 Introduction and the punchline

Single-peaked preferences played an important role in the birth of social
choice theory and mechanism design. Black observed in 1948 that the ma-
jority relation is transitive when candidates are aligned and preferences are
single-peaked ([10]): this result inspired Arrow to develop the social choice
approach with arbitrary preferences. Dummett and Farquharson noted in
1961 that the median peak (i.e., the majority winner) defines an incentive
compatible voting rule ([21]); they also conjectured that no voting rule is in-
centive compatible under general preferences, which was proven true twelve
years later by Gibbard and by Satterthwaite ([26], [42]).

Two decades and many more impossibility theorems later, single-peaked
preferences reappeared in the problem of allocating a single non disposable
commodity (e.g., a workload) when the agregate demand may be above or
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below the amount to be divided. Inspired by Benassy’s earlier observation
([9]) that uniform rationing of a single commodity prevents the strategic
inflation of individual demands, Sprumont ([47]) characterized the uniform
rationing rule by combining the three perennial goals of prior-free mecha-
nism design: effi ciency, strategyproofness, and fairness.

This striking “if and only if” result is almost alone of its kind in the
literature on mechanisms to allocate private commodities (briefly reviewed
in Section 3). By contrast in the voting model with single-peaked preferences
there are many effi cient, strategyproof and fair voting rules, known as the
“generalized median”rules ([36]).

We define here a family of collective decision problems encompassing
voting, non disposable division, its many variants and extensions (see Sec-
tion 3), and much more. Each participant is interested in a one-dimensional
"personal" allocation, his/her preferences are single-peaked (strictly convex)
over this allocation, and some abstract constraints limit the set of feasible
allocation profiles. The latter set is a line in the voting model, and a sim-
plex in the non disposable division model; in general it is any closed convex
set. Our main result is that we can always design “good”allocations mech-
anisms, i. e., effi cient, incentive-compatible (in the strong sense of group-
strategyproofness) and fair. Loosely speaking, in convex economies where
each agent consumes a single commodity, the mechanism designer hits no
impossibility wall.

The proof constructs a canonical good mechanism with the help of the
leximin ordering, an important concept in post-Rawls welfare economics.
Recall that the welfare profile w beats profile w′ for this ordering if the
smallest coordinate is larger in w than in w′, or when these are equal, if
the second smallest coordinate is larger in w than in w′, and so on. In
our model we fix a benchmark allocation ω that is fair in the sense that it
respects the symmetries of the set of feasible allocation profiles. Then we
equalize, as much as permitted by feasibility, individual benefits away from
ω in the direction of individual peaks: that is, the profile of actual benefits
maximizes the leximin ordering. The corresponding mechanism, in addition
to meeting the three basic goals, is continuous in the profile of peaks (despite
the fact that the leximin ordering itself is not continuous). We call it the
uniform gains rule, to stress its similarity with the uniform rationing rule.
Indeed in the non disposable division problem the two rules coincide.

We do not attempt to describe the full set of good rules in our general
model, but if the set X of feasible allocations is fully symmetric (invariant by
any permutation of the agents) we have some fairly precise partial answers.
By symmetry X must be of dimension 1, or n− 1, or n.
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If X is of dimension 1 we have a voting problem where good rules are the
generalized median rules, described by n−1 free parameters (see Section 2).

If X is of dimension n− 1 the sum of individual allocations is constant,
which generalizes non disposable division. Our uniform gains rule generalizes
Sprumomt’s uniform rationing rule, and remains the only good rule.

Problems where X is of dimension n form a new class where the set of
good rules is of infinite dimension (provided n ≥ 3): the mechanism designer
faces an embarrassment of riches.

2 Overview of the results

After reviewing the relevant literature in Section 3, we define the model in
Section 4. A one-dimensional problem among the agents in N is described
by a closed convex subset X of RN , the set of feasible allocation profiles.
Agent i has single-peaked preferences over the projection Xi of X onto his
coordinate. We review the instances of this general model in the recent
literature, in particular a supply-demand variant of the division problem
and its extension to the multi-resource context with bilateral consumption
constraints. We also give new examples where X is of dimension n = |N |.

Two familiar notions of incentive compatibility are defined in Section 5:
strategyproofness (SP) prevents individual strategic misreport, while strong
groupstrategyproofness (SGSP) rules out cordinated moves by a group of
agents, and guarantees non bossiness to boot. Under single-peaked pref-
erences we expect a groupstrategyproof revelation mechanism to be also
peak-only: it only elicits individual peak allocations and ignores preferences
across the peak. This is true in our general model provided the mechanism
if continuous in the reports: Lemma 1.

The well known fixed priority mechanisms are, as usual, both effi cient
and SGSP. Therefore the point of our main result is to provide a fair mech-
anism achieving these properties. We define three fairness requirements in
Section 6. Symmetry (horizontal equity) says that the mechanism must re-
spect the symmetries between agents: if a permutation σ of the agents leaves
X invariant, then relabeling agents according to σ will simply permute their
allocations. Next Envy Freeness: if X is invariant by permuting i and j then
i weakly prefers her own allocation xi to j’s allocation xj . Finally, given
any benchmark allocation ω in X, the ω-Guarantee property requires each
agent i to weakly prefer her allocation xi to ωi. As long as ω respects the
symmetries of X, all three requirements are compatible.

We state the main result in Section 7. Given any symmetric allocation
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ω in X, we define the uniform-gains rule fω selecting the allocation in X
where the profile of gains from ωi toward the peak pi maximizes the leximin
ordering. This peak-only direct revelation mechanism is effi cient, SGSP,
symmetric, envy-free, continuous, and guarantees ω.

Sections 8,9 provide some insights into the structure of the set of "good"
mechanisms (meeting all properties above except perhaps ω-Guarantee). In
Section 8 we focus on fully symmetric problems: X is invariant by any
permutation of the agents. Then X can only be of dimension 1, n− 1 or n.

Voting problems are those where X is of dimension 1. The uniform
gains rule fω is but one of many more generalised median rules1, i.e., the
most strongly biased in favor of the status quo outcome ω: in order to elect
another outcome, all individual peaks must be to the right of ω (or all to
its left), and then the rule selects the peak closest to ω (Proposition 1).

When X is symmetric and of dimension n − 1 the sum
∑

N xi must be
constant and we interpret X as a generalized division problem, of which
the non disposable division model is the instance where the only additional
constraints are non negative shares. There is only one symmetric allocation
ω, and the uniform gains rule fω is the unique good rule: Proposition 2.
This result applies to a much larger class of problems than Sprumont’s
characterization ([47], [18]), on the other hand it requires more properties:
SGSP in lieu of SP, and Continuity.

IfX is of dimension n the set of good mechanisms is of infinite dimension,
except in the two-person case where it coincides with the one-dimensional
family fω parametrized by ω: Proposition 3.

Finally when the set X of feasible allocations is not fully symmetric, we
expect that the set of good mechanisms (respecting the partial symmetries
of X) to be extremely large. We illustrate this in Section 9 by means of
a very simple three-person workload division problem. Workers i = 1, 2
bring each some amount xi of input, and worker 3 must process the total
output; the feasibility constraint is x3 = x1 + x2. Symmetry rules out
discrimination between workers 1 and 2, but it imposes no restriction to
the relative treatment of 3 with respect to 1 and 2. We describe four quite
different subfamilies of good mechanisms, opening a wide avenue for future
research.

Section 10 collects the proofs of the Theorem and Propositions 2,3.

1The rule is described by n− 1 fixed ballots, then it selects the median of the n "live"
plus the n− 1 fixed ballots. In the rule fω the fixed ballots are simply n− 1 copies of ω.
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3 Related literature

There is a folk impossibility result about the design of prior-free mecha-
nisms, where incentive compatibility is the strong requirement of strate-
gyproofness: in economies where agents consume two or more commodities,
a strategyproof mechanism must be either ineffi cient, grossly unfair, or both.
To mention only a few salient contributions to this theme: Hurwicz conjec-
tured ([29]), then Zhou proved ([53]) that the strategyproof and effi cient
allocation of private goods cannot guarantee “Voluntary Trade” (everyone
weakly improves upon his initial endowment ωi: see the ω-Guarantee axiom
in Section 6); it cannot treat agents symmetrically either ([45]). In abstract
quasi-linear economies, no strategyproof mechanism can be effi cient ([27]),
ditto in public good economies ([5]). And the related, more general, concept
of ex post implementation hits the same impossibility walls when individual
allocations are of dimension two or more ([31]).

Our results show that the impossibility easily disappears in economies
where each agent consumes a unique divisible commodity, possibly a differ-
ent commodity for different agents.

After the Gibbard Satterthwaite theorem, a substantial literature on
voting rules looked for restrictions to the domain of preferences eschewing
the impossibility. The single-peaked domain was extended in a variety of
ways. If outcomes are arranged on a tree, the Condorcet winner still defines
a good voting rule ([20]). If outcomes are a product of lines, there is a
natural extension of single-peakedness in which coordinate-wise majority
still yields a strategyproof and symmetric rule, though effi ciency is replaced
by the much weaker Unanimity property2 ([4], [8], [7]), another instance of
the "no rule is perfect in dimension two or more" result. Trees and products
of lines are special cases of abstract convex sets, where we have a general
characterization of strategyproof rules ([39], [40]).

Still in the voting context recent results provide an endogenous charac-
terization of (a generalization of) single-peaked domains by the fact that
we can find strategyproof peak-only voting rules that are symmetric and
unanimous ([13], [16], [17]).

Following Sprumont’s result, the non disposable division problem re-
ceived much attention as well. On the one hand, if viewed as a fair division
method, it can be axiomatized in a variety of ways without invoking its
incentive compatibility properties: see for instance [43], [49], [50]. On the
other hand it can be adapted and generalized to a variety of alternative

2Outcome x is elected if it is the peak of all voters.
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models, for instance to the random distribution of indivisible units ([41],
[46]).3

Several such variants are very relevant to the present paper and illus-
trated in our examples: the rationing problem with multiple resources and
bipartite constraints ([12]), the balancing of supply and demand in one di-
mensional economies ([32]), and its bipartite generalization ([11], [15]).

If we drop the fairness requirement in Sprumont’s non disposable division
problem, there is an infinite dimensional set of effi cient and strategyproof
division rules: [6], [38], [22]. See also the discussion of asymmetric rules in
the bipartite rationing ([23]) and supply-demand ([24]) models. The same
is true in our general model. However the strength of Proposition 3 is that
we find an infinite dimensional set of fair rules even when the feasible set is
fully symmetric (and of full dimension).

In modern welfare economics the leximin ordering was introduced by
Sen ([44]) as a tool to implement Rawls’egalitarian program. Maximizing
this ordering is sometimes called practical egalitarianism, as it guarantees
effi ciency while deviating as little as possible from the ideal of full equality
of welfares. This ordering was axiomatized first as a social welfare ordering
([28], [1]), then as an axiomatic bargaining solution ([30], [51], [19]). It also
plays a key role in the recent design of good mechanisms for two problems:
the assignment of objects when preferences are dichotomous4: [14]; and the
fair division of multiple divisible commodities when all agents have Leontief
preferences ([25], [34]); see also the generalization of these two results in
[33].

4 The model and some examples

The finite set of relevant agents is N with cardinality n. An allocation profile
is x = (xi)i∈N ∈ RN . The set of feasible allocations is a closed subset X of
RN . The projection of X on the i-th coordinate captures agent i’s feasible
allocations; it is a closed set Xi ⊆ R; the cartesian product of these sets is
XN = Πi∈NXi.

Agent i’s preferences �i are single-peaked over Xi if 1) there is some
pi ∈ Xi, the peak, that �i ranks strictly above any other, and 2) �iincreases
strictly with xi on Xi∩]−∞, pi] and decreases strictly on Xi∩[pi,+∞[. Note

3A good survey of the literature on strategyproof voting and non disposable division
rules up to 2001 is [2].

4Each agent wants at most one indivisible object and partitions objects into two indif-
ference classes; allocations are random.
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that in all our results the set Xi is convex, and in that case single-peakedness
simply means that �i is strictly convex.

We write SP(Xi) for the set of such preferences, and the domain of
preferences profiles as SP(XN ) = Πi∈NSP(Xi). A preference profile is
�= (�i)i∈N ∈ SP(XN ) and p = (pi)i∈N ∈ XN is a profile of individual
peaks.

Definition 1 A one-dimensional allocation problem is a triple (N,X,�)
where X is closed and �∈ SP(XN ).

Definition 2 Fixing the pair (N,X), a rule (aka a revelation mecha-
nism) is a (single-valued) mapping F choosing a feasible allocation for each
allocation problem

F : SP(XN )→ X written as F (�) = x

A rule F is peak-only if it is described by a (single-valued) mapping

f : XN → X written as f(p) = x

such that for all �∈ SP(XN ) with profile of peaks p ∈ XN we have F (�) =
f(p).

A peak-only rule is a particularly simple direct revelation mechanism
because participants need to report only their peak, so an agent does not
even need to figure out how she compares allocations across her peak to
participate.

Example 1 voting Here X is a closed interval of the diagonal ∆ = {x ∈
RN |xi = xj for all i, j ∈ N}.

Example 2 non disposable division ([47]). The feasible set is the simplex
X = {x ∈ RN |x ≥ 0 and

∑
i∈N xi = 1}.

Example 2∗ bipartite rationing ([12], [23]) Here we have a set A of
partially heterogenous resources and we must distribute the amount ra of
resource a among agents in N . Compatibility constraints prevent some
agents to consume certain resources: for instance a is a type of job requiring
certain skills and agent i’s skills allow him to do only some of the jobs (see
[12] for more examples). Formally agent i can only consume a subset θ(i)
of the resources (and each resource can be consumed by at least one agent).
If yia is how much i consumes of resource a, the feasibility constraints are

yia > 0 =⇒ a ∈ θ(i) and
∑
i

yia = ra for all a (1)
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All resources that agent i can consume are perfect substitute for her: she
cares only about her total share xi =

∑
a yia, over which her preferences are

single-peaked.
Note that in Example 2∗ at an effi cient allocation, depending on the

profile of peaks, certain agents must consume more than their peak while
others must consume less. The situation is much simpler in Example 2
where effi ciency means that everyone consumes weakly less than own peak
if
∑

i∈N pi ≥ 1 and weakly more if
∑

i∈N pi ≤ 1.

Example 3 balancing demand and supply This is the problem, closely
related to Example 2, where each agent i can be a supplier or a deman-
der of the non disposable commodity. Normalizing initial endowments at
zero and ignore bankruptcy constraints we get the feasible set X = {x ∈
RN |

∑
i∈N xi = 0}. If pi < 0 (resp. pi > 0) agent i wishes to be a net sup-

plier (resp. demander) of the commodity. Here the familiar Voluntary Trade
requirement corresponds to our ω-Guarantee axiom below where ω = 0 is
the no-trade outcome.

Example 3∗ bipartite demand-supply ([11], [24]) This is a variant of Ex-
ample 3 where transfers between two given agents may or may not be fea-
sible, and such constraints are described by an arbitrary graph with agents
on the vertices. We omit the formal description for brevity.

Example 4 bilateral workload. We have a fixed partition of N as L∪R,
and we set X = {x ∈ RN |x ≥ 0 and

∑
i∈L xi =

∑
j∈R xj}. We think of

two teams L,R who choose individual workloads xk and must coordinate
the total work-load across the two teams (as in a production chain where L
is upstream of R). If R consists of a single "manager" we have a moneyless
version of the principal agent problem, where the principal wishes to adjust
total output to his own target level, while the workers’ individual targets
should also be taken into account (the manager is no dictator). This modifies
Example 3 because the role of agents as suppliers or demanders is fixed
exogenously; moreover voluntariness of trade is not assumed.

Our last example is one where the feasible set is of dimension n.
Example 5 location Initially the agents live at 0; they wish to locate

somewhere on the real line. The stand alone cost of moving agent i to loca-
tion xi is x2

i , and in addition there are externalities, positive or negative, to
locate xi near xj . The agents share a total relocation budget of 1. Formally

x ∈ X def⇐⇒
∑
i∈N

x2
i + π

∑
i,j∈N

(xi − xj)2 ≤ 1

The externality factor π is positive if for instance some construction costs
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(pipes) of two near homes are shared; it is negative if the term π(xi − xj)2

covers the cost of isolating homes i, j from one another.
In alternative interpretations of Example 5 the parameter xi is initially

at the default level 0 and it is costly to adjust it up or down: think of
temperature, emission of CO2, etc..

5 Effi ciency and Incentives

Definition 3 The rule F at (N,X) is
Effi cient (EFF) if for any �∈ SP(XN ) the allocation x = F (�) is Pareto
optimal at �;
Continuous (CONT) if F is continuous for the topology of the Haus-
dorf distance on SP(XN ); if F is peak only this simply means that f is
continuous in RN .

Next we define three increasingly more demanding versions of incentive
compatibility. Fixing (N,X), a profile of preferences �∈ SP(XN ) and a

coalitionM ⊆ N , we say thatM can misreport at � if there is some �′[M ]

def
=

(�′i)i∈M ∈ SP(XM ) such that x′i �i xi for all i ∈ M , where x = F (�) and
x′ = F (�′[M ],�[N�M ]). We say that M can weakly misreport at � if under
the same premises we have x′i �i xi for all i ∈M with at least one is a strict
preference.

Definition 4 The rule F is
Strategyproof (SP) if no single agent can misreport at any profile in
SP(XN );
Groupstrategyproof (GSP) if no coalition can misreport at any profile
in SP(XN );
Strongly Groupstrategyproof (SGSP) if no coalition can weakly mis-
report at any profile in SP(XN ).

In general GSP (or SGSP) is considerably stronger than SP, the voting
problem being an exception.5 We recall two well known facts useful below.

Lemma 1 Fix (N,X) and a strongly groupstrategyproof rule F at (N,X)
(Definition 2).
i) If F is continuous, then it is peak-only.

5See [3] for a detailed discussion of the connections between the two concepts in domains
more general than singlepeaked.
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ii) If F is peak-only, the mapping p → f(p) representing F is weakly in-
creasing and "uncompromising": for all p ∈ XN and all i ∈ N

fi(p) = xi < pi (resp. xi > pi) =⇒

f(p′i, p−i) = f(p) for all p′i ≥ xi (resp. p′i ≤ xi)

Proof : For statement i) we fix i ∈ N and �[N�i]∈ SP(XN�i). We assume
�1
i ,�2

i∈ SP(Xi) have the same peak pi but x1
i = Fi(�1

i ,�N�i) 6= x2
i =

Fi(�2
i ,�N�i) and derive a contradiction. By SP the peak pi must be strictly

between x1
i and x2

i , else agent i can misreport at one of (�1
i ,�[N�i]) or

(�2
i ,�[N�i]). But CONT implies that the range of �i→ xi = Fi(�i,�[N�i])

is connected so it contains pi and this yields a profitable misreport at both
(�1

i ,�[N�i]) and (�2
i ,�[N�i]). We have shown Fi(�1

i ,�N�i) = Fi(�2
i ,�N�i

), i.e., an agent’s allocation depends only upon her own reported peak.
Now assume Fj(�1

i ,�N�i) = x1
j 6= x2

j = Fj(�2
i ,�N�i) for some j 6= i:

by the previous argument and SGSP agent j is indifferent between these
two allocations, therefore the peak pj is in ]x1

j , x
2
j [. Now we can move con-

tinuously from �1
i to �2

i while keeping the same peak pi; the range of xj
contains pj so that coalition {i, j} can weakly misreport at (�1

i ,�N�i) (and
(�2

i ,�N�i)). This is a contradiction so we conclude F (�1
i ,�N�i) = F (�2

i

,�N�i). Peak-onlyness is now clear.
The standard proof of the statement ii) is omitted for brevity.�
It is a folk result that a fixed priority rule (also called serial dictatorship)

is both effi cient and groupstrategyproof. In our model define the slice of X
at x̃[M ] as X[x̃[M ]] = {x[N�M ] ∈ RN�M |(x̃[M ], x[N�M ]) ∈ X}: it is closed
and possibly empty. Given the priority ordering 1, 2, · · · , the mechanism
gives her peak p1 to agent 1 (this is feasible by definition of X1) then to
agent 2 his best allocation x2 in (the projection on the 2d coordinate of)
X[p1]; next to agent 3 her best allocation x3 in (the projection on the 3rd
coordinate of) X[(p1, x2)]; and so on. If X is convex, each step is well
defined as we maximize a single-peaked preference in a closed real interval.
This rule is peak-only, effi cient and strongly groupstrategyproof (instead of
just GSP). It is continuous as well, but to prove it requires arguments similar
to those of steps 6 and 9 in the proof of the main theorem.6

The strength of our Theorem is to achieve all the properties in Definitions
3,4 in a rule treating the participants fairly.

6 It is of course possible to define the mechanism when X is not convex, and it retains
the properties EFF and GSP, but is not necessarily SGSP, peak-only, or continuous.
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6 Fairness

We adapt the familiar "anonymity" property (aka horizontal equity) to our
context where the set X itself may not treat all agents symmetrically. This
requires a few definitions.

Let S(N) be the set of all permutations σ of N . Permuting coordinates
according to σ changes x to xσ = (xσ(i))i∈N and � to �σ= (�σ(i))i∈N . We
call σ ∈ S(N) a symmetry of X if Xσ = X, and write their set S(N,X). We
call ω a symmetric element of X if ω ∈ X and ωσ = ω for all σ ∈ S(N,X).

In Examples 1, 2, 3 and 5 we have S(N,X) = S(N) and we speak of
a fully symmetric set X; in Example 4 S(N,Z) contains the permutations
leaving both L and R unchanged, but not those swapping agents between the
two groups. Similarly in Examples 2∗ and 3∗ the set S(N,X) corresponds
to the symmetries of the bipartite graph of compatibilities.

Of special interest are the simple permutations τ ij exchanging i and j
while leaving all other coordinates constant. If τ ij is a symmetry of X we
think of agents i and j as having identical opportunities in X so then the
No Envy test where i compare his allocation to j’s allocation is meaningful.

Definition 5 Given (N,X) the rule F is
Symmetric (SYM) if for every σ ∈ S(N,X) we have F (�) = x =⇒ F (�σ
) = xσ;
Envy-Free (EF) if whenever τ ij ∈ S(N,X) and F (�) = x we have xi �i
xj ;

Given an allocation ω ∈ X the rule F meets
ω-Guaranteed (ω-G) if F (�) = x implies xi �i ωi for all i.

Like in axiomatic bargaining, the ω-G property views ω as a default
option (e.g., status quo ante) that each agent can revert to.

The three fairness axioms are not logically connected to one another.
They have most bite when the problem (N,X) is fully symmetric. Then all
agents have the same feasible set Xi and Envy-Freeness applies to every pair
of agents.

The affi ne space H[X] spanned by a fully symmetric X is also symmetric
in all coordinates, and ifX is not a singleton there are only three possibilities:
→ H[X] could be the (one-dimensional) diagonal D of RN ;
→ it could be a (n− 1)-dimensional subspace orthogonal to D;
→ or it could have full dimension: H[X] = RN .

(We omit the straightforward proof of this statement).
In the first case X is a closed interval of D and we have a voting problem

(Example 1). In the second case the sum
∑

N xi is constant in X and
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we speak of a generalized division problem (Examples 2 and 3). The case
H[X] = RN yields a new class of problems such as Example 5.

7 Main result: the uniform-gains rules

Theorem Fix (N,X) and a symmetric allocation ω ∈ X. If X is closed
and convex in RN there exists at least one peak-only mechanism fω at
(N,X) that is Effi cient, Symmetric, Envy-Free, Continuous, SGSP and ω-
Guaranteed.

To describe the canonical uniform-gains rule proving the result we recall
the definition of the leximin ordering �lxmin of RN : it is a symmetric version
of the lexicographic ordering �lexic of Rn. For any x, y ∈ RN

x �lxmin y
def⇐⇒ x∗ �lexic y∗ (2)

where x∗ ∈ Rn has the same set of coordinates as x (including possible
repetitions) rearranged increasingly: minN xi = x∗1 ≤ x∗2 ≤ · · · ≤ x∗n =
maxN xi.

Clearly �lxmin is an ordering (complete, transitive) of RN , but it is dis-
continuous and cannot be represented by a utility function. Over a compact
set its maximum always exists but may not be unique, however its maximum
over a convex compact set is unique.7

We pick an arbitrary ω in X, not necessarily symmetric, and define
the peak-only mechanism fω, meeting all properties in the Theorem except
perhaps SYM and EF. It is then easy to check SYM when ω is symmetric
in X, and EF when τ ij is a symmetry of X.

In RN we use the notation [a, b]
def
= {x|min{ai, bi} ≤ xi ≤ max{ai, bi}

for all i} and |a| = (|ai|)i∈N . Given a profile of peaks p the rule fω chooses
an allocation x in [ω, p]. The vector |x − ω| is the profile of gains from the
benchmark ω, using the distance |xi − ωi| as an arbitrary cardinalization
of these ordinal welfare gains. We equalize gains across agents as much as
permitted by feasibility:

fω(p) = x
def⇐⇒ {x ∈ X ∩ [ω, p] and |x− ω| = arg max

∆(ω,p)
�lxmin} (3)

where
z ∈ ∆(ω, p)

def⇐⇒ {z = |x− ω| for some x ∈ X ∩ [ω, p]}
7We recall the known argument (Lemma 1.1 in [37]) in step 1 of the proof, Section 10.
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The allocation fω(p) is well defined because ∆(ω, p) is convex and com-
pact, so the maximum of �lxmin exists and is unique. We show in Section
11 that fω meets EFF, CONT and SGSP. Continuity turns out to be the
hardest part of the proof.

Remark 1 The convexity of X is a suffi cient condition for the existence
of a good mechanism (meeting EFF, SYM, EF, CONT and SGSP), but it
is by no means a necessary condition. We give in the next section a two
person example of a good mechanism when X is a non convex subset of R2:
see Remark 3 in Subsection 8.3.

Remark 2 On the other hand for some non convex sets X even Effi ciency,
Strategyproofness, and Continuity are incompatible. Figure 1 explains this
in a two person example. Assume such a mechanism F exists and fix a
profile �= (�1,�2) with profile of peaks p. If agent 1 reports �′1 with peak
c1 instead of p1, while agent 2 reports �2, then EFF implies F (�′1,�2

) = c. Thus agent 1 can achieve c1, as well as d1 by a similar argument.
Set F1(�) = x1 and assume x1 > p1: then there is a preference �∗1 with
peak p1 ranking c1 above x1. But by SP and CONT an agent’s allocation
depends only upon her own reported peak8, therefore F1(�∗1,�2) = x1 while
F1(�′1,�2) = c1 and agent 1 can misreport. Inequality x1 < p1 is similarly
impossible, so we conclude F1(�) = p1. The same argument for agent 2
gives F2(�) = p2 and we reach a contradiction.

8 Examples, old and new

They are organized around the three types of fully symmetric problems,
where X is respectively of dimensions 1, n− 1, and n. We identify the rules
fω and compare them to other good rules, if any.

8.1 Voting: dim(X)=1

This is Example 1. Let X0 be the set of individual allocations common to
all agents: a peak-only rule f is simply a mapping from XN

0 into X0. Any
allocation ω ∈ X ⊆ D is symmetric: ωi = ω0 ∈ X0 for all i. To read
definition (3) fix a profile of peaks p ∈ XN

0 and some x ∈ X ∩ [ω, p] such
that xi = x0 for all i. If there are agents i, j such that pi ≤ ω0 ≤ pj then
x = ω because x ∈ [ω, p] implies pi ≤ xi ≤ ω0 ≤ xj ≤ pj . If ω0 ≤ pi for all

8See the first part in the proof of statement i) Lemma 1, that only requires SP and
CONT.
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i then ω0 ≤ x0 ≤ p∗1 and x0 − ω0 is maximal at fω(p) = p∗1; similarly if
pi ≤ ω0 for all i we have fω(p) = p∗n. We just proved

Proposition 1 Given (N,X0) and ω0 ∈ X0 the rule fω defined by (3)
is

fω(p) = median{p∗1, p∗n, ω0}

We have known for decades that a voting rule in (N,X0) is Effi cient,
Symmetric, and Strategyproof if and only if it is a generalized median rule
([36], [48]). Such a rule is defined by the choice of (n − 1) arbitrary para-
meters αk in X0, 1 ≤ k ≤ n− 1, interpreted as fixed ballots9 and it picks the
median of the fixed and the live ballots:

f(p) = median{pi, i ∈ N ;αk, 1 ≤ k ≤ n− 1}

(they also meet SGSP and CONT). In that family fω is the rule where all
n− 1 fixed ballots αk are the status quo ω0.

8.2 Dividing: dim(X)=n-1

Here H[X] is orthogonal to the diagonal D of RN and X takes the form
X = {

∑
N xi = β} ∩ C where β is a real number and C is convex, closed,

fully symmetric and of dimension n. There is only one symmetric point ω
in X, i.e., equal split: ωi = 1

nβ for each i.
Example 2: non disposable division: X = {x ≥ 0 ,

∑
N xi = 1}

Here fω is precisely Sprumont’s uniform rationing rule ϕ, a fact that requires
some explanation because the original definition in [47] of the rule ϕ is
different. Given profile of peaks p ∈ [0, 1]N , effi cient allocations are "one-
sided". Assuming

∑
N pi ≥ 1 (excess demand) the allocation x ∈ X is

effi cient if and only if xi ≤ pi for all i. Then ϕ(p) is the most egalitarian
among effi cient allocations; it is the only one in X that can be written, for
some parameter λ ∈ [0, 1], as ϕi(p) = min{λ, pi} for all i. To check ϕ(p) =
fω(p) (where ωi = 1

n for all i), we partition N as N− ∪N+ where pi ≤ 1
n in

N− and pi ≥ 1
n in N+ (assigning agents such that pi = 1

n arbitrarily). Then
excess demand implies∞

δ =
∑
N−

|pi −
1

n
| ≤

∑
N+

|pi −
1

n
|

so that the maximum z of �lxmin in ∆(ω, p) has zi = |pi − 1
n | in N− and

zj = min{µ, |pj − 1
n |} in N+. Then the corresponding feasible allocation

9Note that αk could be ±∞ if X0 is unbounded.
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x = fω(p) is given by xi = min{µ + 1
n , pi} for all i, and ϕ(p) = fω(p)

follows. The argument in the case of excess supply is similar.
This new interpretation of the uniform rule stresses the fact that an

agent requesting her fair share of the resources (pi = 1
n) is guaranteed to

receive exactly that.

Example 2∗: bipartite rationing
Recall that allocation x is feasible iffxi =

∑
A yia for some matrix of transfers

[yia] such that yia > 0 =⇒ a ∈ θ(i) and
∑

i yia = ra for all a. A fully
egalitarian allocation (xi = xj for all i, j) is typically not feasible, but there
is a canonical “most egalitarian” allocation ω that Lorenz dominates any
other feasible allocation x: ω∗1 ≥ x∗1, ω∗1 + ω∗2 ≥ x∗1 + x∗2, and so on.10

Clearly ω is symmetric and it defines the most natural uniform gains rule
fω in this problem.

Mimicking the original definition of uniform rationing, we can also choose
for each profile of peaks p the allocation ϕ(p) that Lorenz dominates every
other effi cient allocation x: this rule is defined and axiomatized in [12]. It
turns out that ϕ guarantees ω as well however, unlike in the simple model
of Example 2, the rules ϕ and fω are in general different.

Here is a three-person two-resource example: N = {A,B,C} Q = {a, b} ;
f(A) = f(B) = {a} f(C) = {a, b} ra = 6, rb = 5. The egalitarian allocation
is ω = (3, 3, 5) and it is chosen by both ϕ and fω whenever it is effi cient.
Now for p = (1, 6, 11) the allocation x is effi cient iff xA = 1, xB + xC = 10
and xC ≥ 5. Then ϕ(p) = (1, 5, 5) while fω(p) = (1, 4, 6).

Example 3: balancing demand and supply X = {x ∈ RN |
∑

N xi = 0}
Here the symmetric default allocation is ω = 0 and f0 is the well known
rule that serves the short side while rationing uniformly the long side. That
is, given p we let N+ = {i ∈ N |pi > 0} be the set of agents with positive
demand, and N− = {i ∈ N |pi < 0} the set of those with positive supply.
If
∑

N+
pi >

∑
N−
|pi| we have excess demand, and each i ∈ N− (as well as

any with pi = 0) gets xi = pi while agents in N+ use the uniform rationing
rule to divide

∑
N−
|pi|. And a similar definition in case of excess supply.

In the bipartite demand-supply model of [11], the compatibility con-
straints ruling out transfers between certain agents complicate the descrip-
tion of feasible and effi cient allocations: in particular the agents who must
be rationed at a given profile of peaks may contain both demanders and

10The recursive definition of ω is as follows. Let N1 be the largest solution of λ1 =

minS⊆N

∑
a∈θ(S) ra
|S| : then xi = λ1 for all i ∈ N1; next N2 is the largest solution of λ2 =

minS⊆N�N1

∑
a∈θ(S)�θ(N1) ra

|S| and xi = λ2 for all i ∈ N2; and so on. See [12] for details.
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suppliers. But because trade must be voluntary the default allocation is
still ω = 0 and the rule axiomatized in [11] equalizes the net gains of agents
who must be rationed. Therefore it is precisely the rule f0.

Our next result characterizes the uniform gains rule in all symmetric
division problems.

Proposition 2: Given (N,X) where X = {
∑

N xi = β} ∩ C is a fully
symmetric division problem, the uniform gains rule fω where ωi = 1

nβ for
all i is the unique rule that is Effi cient, Symmetric, Continuous and SGSP.

This result is closely related - but not logically comparable - to the char-
acterization of the uniform rationing rule in Example 2 by the combination
of EFF, SYM and SP ([47], [18]). The proof uses critically the fact that
effi cient allocations must be one-sided as explained above. However one-
sidedness does not hold any more in a general symmetric division problem,
which explains why Proposition 2 uses the stronger requirement SGSP and
adds CONT.11 Here is an example where four partners divide 100 shares in
a joint venture under the constraint that no teo partners owns more than 2

3
of the shares:

X = {x ∈ R4
+|

4∑
1

xi = 100 and xi + xj ≤ 66 for all i 6= j}

At the profile of peaks p = (10, 15, 35, 40) the allocation x = (17, 17, 30, 36)
is effi cient.

Similarly the rule f0 in Example 3 is characterized in in [32] by Effi ciency,
Voluntary Trade (0-G) and SP: effi cient allocations must be one-sided so that
the proof in [18] can be adapted. Proposition 2 is an alternative characteri-
zation where Voluntary Trade is replaced by Symmetry plus Continuity, and
SP by SGSP.

8.3 Full dimension problems

Proposition 3
i) If n = 2 and the closed, convex subset X of RN is fully symmetric and of
dimension 2 , a rule F (Definition 2) is Effi cient, Symmetric, Continuous
and SGSP if and only if it is the uniform gains rule fω for some symmetric
allocation ω in X.
ii) If n ≥ 3 and the closed, convex subset X of RN is symmetric and of
dimension n, the set of rules Effi cient, Symmetric, Continuous and SGSP

11yet a plausible conjecture is that Proposition 2 holds when SGSP is replaced by SP.
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is of infinite dimension (while the symmetric rules fω form a subset of
dimension 1).

Section 10 has the proof of statement ii). For brevity we explain the proof
of statement i) in one instance of Example 5 with two agents and positive
externalities when the two agents live close to each other. Specifically

X = {x2
1 + x2

2 −
8

5
x1x2 ≤ 1} (4)

Figure 2 represents the feasible set X where Xi = [−5
3 ,

5
3 ] for i = 1, 2. Also

represented are the symmetric point ω = (1
3 ,

1
3) and the four boundary points

a, b, c, d of X critical to the construction of fω. By EFF we only need to
describe fω(p) when p is outside X. Suppose p is to the NorthEast (NE) of
a. Outcome a is effi cient at p and inside [ω, p]; it also equalizes the benefits
|ai − ωi| therefore fω(p) = a. Similar arguments show that fω(p) = b for
p in the NW of b, fω(p) = c if p is SW of c and fω(p) = d if it is SE of
d. Now take p SE of ω but SW of d shown in Figure 2: at outcome x the
vector (|x1 − ω1|, |x2 − ω2|) = (|p1 − ω1|, |x2 − ω2|) is leximin optimal for
x ∈ [ω, p], thus fω(p) = x. Thus we see that for any p outside X that is
West of d, East of c and South of ω, agent 1 gets her peak allocation and,
conditional on this, x2 is best for agent 2. Similar arguments in the three
other remaining regions complete the description of fω.

We show now that, conversely, any rule F meeting EFF, SYM, CONT
and SGSP is precisely fω for some ω in the diagonal of X. The proof works
by focusing on the choice of F at the four corners of X12 namely A = (5

3 ,
5
3)

in the NE corner, B = (−5
3 ,

5
3) in the NW, and so on. By Lemma 1 F is

peak-only so we write it f . By EFF and SYM we have f(A) = a, f(C) = c.
Now by effi ciency f(B) is some point b on the NW frontier of X, and by
symmetry f(D) = d obtains from b by exchanging its coordinates. Call ω
the intersection of the line bd and the diagonal: we show that f = fω.

Consider first the rectangle [B, b]: by uncompromisingness (Lemma 1
statement ii)) f(p1, B2) = b for any p1 ∈ [B1, b1]: f(p) = b along the top
edge of [B, b]. Repeating this argument we see that f(p) = b holds along
its left edge, and then inside [B, b] as well. Similarly f = fω in the three
rectangles [A, a], [C, c] and [D, d]. Now consider the point p in Figure 2 that
is neither in X nor in any of these four rectangles. By effi ciency f(p) = z is
on the frontier of X between y and x. We assume z1 < x1 = p1 and derive
a contradiction. By uncompromisingness we get f(5

3 , p2) = f(p) = z; but
(5

3 , p2) ∈ [D, d] so f(5
3 , p2) = d, contradiction. We conclude that f and fω

coincide in the triangular region bordered by [D, d] and the SE frontier of
X. Finally we repeat this argument in the seven other triangular regions.
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Remark 3 Figure 3 shows a non convex feasible set X where the same
construction as above delivers the good mechanism fω (still defined by (3)).
It goes to show that convexity is not a necessary condition for the existence
of a good mechanism in the sense of the Theorem.

9 An embarrassment of riches

We consider the simplest non trivial instance of the bilateral workload Ex-
ample 4 with two agents on one side and one on the other: L = {1, 2} and
R = {3}. Thus X = {x ∈ R3

+|x1 + x2 = x3}. We find that the set of good
rules is very rich and worthy of further research.

This makes a different point than statement ii) in Proposition 3: in the
proof of that result we construct a large set of good rules by drawing a
wedge between agent i’s allocations above the default ωi, or below; these
new rules are mere variants of the canonical uniform gains rule. Here we
find instead a menu of genuinely different power-sharing scenarios between
the three participants.

Let f be a good rule, namely meeting EFF, SGSP, SYM and CONT.
For a prolile p ∈ R3

+ we write f(p) = (x1, x2, t(p)) where x3 = t(p) is the
amount that agents 1, 2 have to share. It is easy to check that they do so by
the uniform rationing rule (by using the argument in Step 1 of the proof of
Proposition 2), therefore the function t(·) determines f entirely. Effi ciency
amounts to t(p) ∈ [p1 + p2, p3], and Symmetry means that t(p1, p2, p3) is
symmetric in p1, p2.Fixing p1, p2 the mapping p3 → t(p) must ensure agent
3’s truthfulness, which means that it is the projection of p3 on an interval
independent of p3.

Putting these facts together we get the general form

t(p) = median{p3, J−(p1, p2), J+(p1, p2)} (5)

where J−,+ are symmetric, continuous functions such that

0 ≤ J−(p1, p2) ≤ p1 + p2 ≤ J+(p1, p2) (6)

Of course SGSP imposes some further constraints on J−,+.
We describe three families of rules where SGSP holds. A full description

reveals a set of choices much larger but not necessarily more interesting.

First family of good rules
They all guarantee a benchmark allocation ω = (α, α, 2α) ∈ X. Think of
a supply-demand model similar to Example 3 between demanders 1, 2 and
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supplier 3 where ω is the profile of initial endowments. Then

t(p) = median{p1 + p2, p3, 2α} (7)

is the rule giving its peak to the short side and rationing the long side (here
J−(p1, p2) = min{p1 + p2, 2α} and J+(p1, p2) = max{p1 + p2, 2α}). We let
the reader check the ω-G property.

The canonical rule fω also guarantees ω, but proves to be more compli-
cated than the rule (7). Straightforward computations from definition (3)
give the following J−, J+ in (5):

J−(p1, p2) = p1 + p2 if 2p1 + p2, p1 + 2p2 ≤ 3α

= α+
1

2
min{p1, α}+

1

2
min{p2, α} otherwise

and
J+(p1, p2) = p1 + p2 if 2p1 + p2, p1 + 2p2 ≥ 3α

= α+
1

2
max{p1, α}+

1

2
max{p2, α} otherwise

Thus fω coincides with (7) if p1, p2 ≤ α and if α ≤ p1, p2. But for
instance if p3 < 2α < p1 + p2 and p1 < α < p2, then t(p) is smaller with fω

than under rule (7) which may or may not favor agent 3 or agent 1.

Second family of good rules
We now run a vote between the three agents to determine t(p): thus agent
i = 1, 2 reports 2pi, because if t(p) = 2pi the report pi guarantees xi = pi.
The simplest rule is majority voting

t(p) = median{2p1, 2p2, p3} = median{2p∗1, 2p∗2, p3} (8)

More generally p → t(p) can be any three-person strategyproof voting
rule respecting the symmetry between 1 and 2 and ensuring effi ciency (6).
Such rules take the form

t(p) = median{min{2p∗1, α},max{2p∗2, β}, p3}

for some constants α, β such that α ≤ β. Note that agent 3 can enforce any
x3 in [α, β] while agents 1, 2 together can only force t(p) below β or above
α.12

12A variant is the rule t(p) =median{min{p1 + p2, 2α},max{p1 + p2, 2β}, p3} where
agent 3 can also force x3 anywhere in [2α, 2β], while if agent i = 1, 2 reports pi ∈ [α, β]
she guarantees only that xi is somewhere in [α, β].
Conversely if β ≤ α then t(p) = p1+p2 if p1+p2 ∈ [2α, 2β], while the report p3 ∈ [2α, 2β]

only guarantees x3 ∈ [2α, 2β].
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A variant closer to the spirit of the first family is the rule t(p) =median{min{p1+
p2, 2α},max{p1 + p2, 2β}, p3} with α ≤ β. Here agent 3 can also force x3

anywhere in [2α, 2β], while if agent i = 1, 2 reports pi ∈ [α, β] she guarantees
only that xi is somewhere in [α, β].

Conversely if β ≤ α then t(p) = p1 + p2 if p1 + p2 ∈ [2α, 2β], while the
report p3 ∈ [2α, 2β] only guarantees x3 ∈ [2α, 2β].

Third family of good rules
We fix γ, δ ≥ 0 and apply the general formula (5) with the following func-
tions:

J−(p1, p2) = min{p1, (p2 + γ)}+ min{(p1 + γ), p2}
J+(p1, p2) = max{p1, (p2 − δ)}+ max{(p1 − δ), p2}

For γ = δ = 0 this is the simple majority rule (8). For general parameters
γ, δ the rule gives full power to agents 1, 2 if their peaks are not too different:
t(p) = p1 +p2 if |p1−p2| ≤ min{γ, δ}; but if p1 ≥ p2 +max{γ, δ} then t(p) =
median{2p1 − δ, 2p2 + γ, p3}.

10 Proofs

10.1 Main Theorem

Step 1 The leximin ordering
Recall from section 6 the notation RN 3 x → x∗ ∈ Rn where x∗ simply

rearranges the coordinates of x increasingly. The leximin ordering �lxmin of
RN applies �lexicto x∗ as stated in equation (2). It is a separable ordering,
which means that for any x, y ∈ RN and any i ∈ N

{x �lxmin y and xi = yi} =⇒ x−i �lxmin y−i
(where the second inequality is in RN�i). Check now that �lxmin has a
unique maximum over any convex and compact set C of RN . Suppose
instead that x and y are two such maximizers so that x∗1 = y∗1 = a.
Compare S = {i ∈ N |xi = a} with T = {j ∈ N |yj = a}. If they are
disjoint we have for all k ∈ N a ≤ min{xk, yk} < max{xk, yk} implying
mink∈N (x+y

2 )k > a and contradicting the optimality of x. Thus there is an
agent labeled 1 in S ∩ T and such that x1 = y1 = a. Then by separabilty,
x−1 and y−1 maximize �lxmin in the slice C[a[1]] and we can proceed by
induction on |N |.

Here is another fact useful below with a similar proof (omitted). For all
u, v ∈ RN

u �lxmin v =⇒ (λu+ (1− λ)v) �lxmin v for all λ, 0 ≤ λ ≤ 1 (9)
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Throughout the rest of the proof we fix (N,X) withX convex and closed.
Step 2 Effi cient allocations

Let T be the set of triples τ = (S0, S+, S−) of pairwise disjoint subsets
of N covering N .where up to two components of τ can be empty (if all three
are non empty τ is a partition of N). The signature τ = s(y) of y ∈ RN is
given by S0 = {i ∈ N |yi = 0}, S+ = {i ∈ N |yi > 0}, S− = {i ∈ N |yi < 0}.
We define a transitive but incomplete ordering D on T by

τ1 D τ2 def⇐⇒ {S2
0 ⊇ S1

0 , S
2
+ ⊆ S1

+, S
2
− ⊆ S1

−}

and B is the strict component of D.
Fixing τ ∈ T we define the τ -boundary of X as follows

∂τ (X) = {x ∈ X| for all y {y 6= x and s(y − x) D τ} =⇒ y /∈ X}

Lemma 2 Fix p ∈ XN . If p ∈ X then x = p is the only Pareto
optimal allocation. If p /∈ X then x ∈ X is Pareto optimal for every profile
�∈ Πi∈NSP(Xi) with peaks p if and only if x ∈ ∂s(p−x)(X).

Proof. The first statement is clear. Next assume p /∈ X and pick
x ∈ X such that x /∈ ∂s(p−x)(X). Then there exists y ∈ X�x such that
s(y − x) D s(p − x). This implies yi = xi for each i such that xi = pi, and
for all j

yj > xj =⇒ pj > xj and yj < xj =⇒ pj < xj

From y 6= x we see that not both S+ and S− are empty at y − x, therefore
for ε > 0 small enough εy+(1−ε)x stays in X and is a Pareto improvement
of x.

Conversely if x ∈ X is Pareto inferior to y ∈ X for every relevant profile
� we get xi = pi =⇒ yi = xi, and yj > xj =⇒ pj ≥ yj =⇒ pj > xj , and
similarly yj < xj =⇒ pj < xj , so we conclude x /∈ ∂s(p−x)(X).

Step 3 Defining fω

For a ∈ RN we write |a| = (|ai|)i∈N and for any a, b we define the
rectangle [a, b] = {x ∈ RN |min{ai, bi} ≤ xi ≤ max{ai, bi} for all i}.

We fix a point ω ∈ X. Then for all p ∈ RN we define

fω(p) = x
def⇐⇒ { x ∈ X ∩ [ω, p] and |x− ω| = arg max

∆(ω,p)
�lxmin}

where
y ∈ ∆(ω, p)

def⇐⇒ y = |z − ω| for some z ∈ X ∩ [ω, p]
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This is well defined because for any x ∈ [ω, p] we have s(x−ω) D s(p−ω)
therefore in [ω, p] each |xi − ωi| is either xi − ωi or ωi − xi, so the mapping
x → |x − ω| is linear and invertible in X ∩ [ω, p] and its image ∆(ω, p) is
convex and compact. By Step 1 �lxmin has a unique maximum y in ∆(ω, p),
which comes from a unique x in X ∩ [ω, p].

Step 4 fω is effi cient
Fix p and set x = fω(p). If p ∈ X then the maximum of �lxmin on

∆(ω, p) is clearly |p − ω| therefore x = p as desired. Assume next p /∈ X:
by Lemma 2 we must check x ∈ ∂s(p−x)(X). Assume to the contrary there
exists y ∈ X�x such that s(y − x) D s(p − x). Then yi = pi whenever
xi = pi, and if yi > xi (resp. yi < xi) then pi > xi (resp pi < xi). We see
that for ε small enough y′ = (1 − ε)x + εy stays in X ∩ [ω, p]. For all i we
have |y′i − ωi| = |y′i − xi| + |xi − ωi| ≥ |xi − ωi|, with a strict inequality if
yi 6= xi (which does happen). We conclude |y′ − ω| �lxmin |x− ω| which is
a contradiction.

Step 5 fω is SGSP
We fix ω and show first that fω meets a coalitional form of uncompro-

misingness (Lemma 1). For any p, p′ ∈ XN with x = fω(p) we have

p′ ∈ [x, p] =⇒ fω(p′) = x (10)

Together x ∈ [ω, p] and p′ ∈ [x, p] imply x ∈ [ω, p′]. Now |x− ω| maximizes
(uniquely) �lxmin over ∆(ω, p), and is in ∆(ω, p′) ⊆ ∆(ω, p): hence |x− ω|
maximizes �lxmin over ∆(ω, p′), as was to be proved.

Next we fix p ∈ XN with x = fω(p), and consider a coalition M ⊆ N
changing all its reports to p′[M ] (so p

′
i 6= pi for all i ∈ M), and such that

everyone in M weakly prefers x′ = fω(p′[M ], p[N�M ]) to x. We claim that
this implies x′ = x. HenceM , as well as any coalition larger thanM , cannot
weakly misreport at p and we are done.

To prove the claim, consider first an agent i such that pi = ωi. By defini-
tion of fω we have xi = pi hence x′i = xi as well because agent i’s welfare does
not decrease. So at profile (p′[M ], p[N�M ]) agent i allocation is xi 6= p′i and
uncompromisingness (10) implies that everyone’s allocation is unchanged if i
reports instead xi = pi: fω(p′[M ], p[N�M ]) = fω(p′[M�i], p[(N�M)∪i]). There-
fore we need only to prove the claim when pi 6= ωi for all i.

For easier reading we assume, without loss of generality, pi > ωi for all
i, so that ωi ≤ xi ≤ pi for all i. We must have p′i ≥ xi for all i ∈ M , as
p′i < xi implies x′i < xi and agent i is strictly worse off at x′. We partition
M as M+ ∪M− where p′i > pi ≥ xi in M+, while pi > p′i ≥ xi in M− (one
set M+,− could be empty).
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The coordinate-wise minimum of p and (p′[M ], p[N�M ]) is q = (p[M+], p
′
[M−], p[N�M ]).

From q ∈ [x, p] and (10) we get x = fω(q). To conclude the proof we assume
x′ 6= x and derive a contradiction. From ∆(ω, q) ⊆ ∆(ω, (p′[M ], p[N�M ]))

and the definition of fω we get (x′ − ω) �lxmin (x − ω). Check that for
ε positive and some small enough the profile εx′ + (1 − ε)x is in ∆(ω, q).
Indeed for all i /∈M+ we have ωi ≤ xi, x′i ≤ qi by definition of q; for i ∈M+

such that xi < pi = qi we have xi ≤ x′i (because i weakly prefers x
′ to x)

so the inequalities ωi ≤ εx′i + (1 − ε)xi ≤ qi hold for ε small enough; and
for i ∈ M+ such that xi = pi = qi we have x′i = pi (again because i weakly
improves from x to x′) so that εx′i + (1− ε)xi = xi.

Applying finally property (9) to u = x′ − ω, v = x − ω, and λ = ε, we
get ((εx′ + (1 − ε)x) − ω) �lxmin (x − ω), contradicting x = fω(q) because
εx′ + (1− ε)x 6= x.

Step 6 fω is continuous
Define an orthant Θ of RN by fixing the sign of each coordinate: Θ is

described by n inequalities xi ≤ 0 or xi ≥ 0, one for each coordinate i.
It is enough to show that fω is continuous when p − ω varies in such an
orthant, because the orthants are 2n closed sets covering RN . Without loss
of generality we focus on the orthant Θ = RN+ , i.e., we prove continuity for
the set of profiles p such that p ≥ ω. Here fω(p)−ω maximizes �lxmin over
(X − ω) ∩ [0, p− ω]). Using the normalisation ω = 0, we are left with

fω(p) = arg max
X∩[0,p]

�lxmin

We will apply repeatedly a simple version of Berge’s maximum theorem.
Let a, b vary in two metric spaces A,B; fix a real-valued function a→ g(a)
and a compact-valued function b → Γ(b) from B into A. If g is continuous
and Γ is hemicontinuous (meaning both upper and lower hemicontinuous),
then the real-valued function γ(b) = max{g(a)|a ∈ Γ(b)} is continuous as
well.

For any (q, p) ∈ (RN+ )2 we set Φ(q, p) = X ∩ [q, p] and we claim that the
convex-compact-valued function (q, p) → Φ(q, p) is hemicontinuous on the
closed convex subset of (RN+ )2 where it is non empty. The proof of this claim
is postponed to step 9 below.

We prove now that the mapping p→ f∗(p) is continuous. Observe that
x→ x∗ is continuous, then check that the first coordinate of f∗

f∗1(p) = max{x∗1|x ∈ Φ(0, p)}

is continuous: Berge’s theorem applies because x → x∗1 is continuous and
Φ(0, p) is hemicontinuous. We use now the notation eS for the vector (eS)i =
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1 if i ∈ S and 0 if not, to write f∗2 as

f∗2(p) = max{x∗2|x ∈ Φ(f∗1(p)eN , p)}

It is continuous by Berge’s theorem because x → x∗2 is continuous and
Φ(f∗1(p)eN , p) is hemicontinuous. Next we write

f∗3(p) = max {x∗3|x ∈ ∪i∈NΦ(f∗1(p)ei + f∗2(p)eN�i, p)}

Here Φ(f∗1(p)ei + f∗2(p)eN�i, p) is hemicontinuous and hemicontinuity is
preserved by union, so the same argument applies.

Next we define similarly f∗4(p) in terms of the sets Φ(f∗1(p)ei+f∗2(p)ej+
eN�{i,j}, p) and so on. We omits the details.

Thus f∗ is continuous and we show now that f is too. Fix p ∈ RN+ and
let pt, t = 1, 2, · · · , be a sequence converging to p: if w is a limit point of the
sequence f(pt) (i.e., the limit of one of its subsequences) then w ∈ Φ(0, p)
because the graph of Φ is closed. Moreover f∗(pt) converges to w∗, and to
f∗(p), by continuity of x → x∗ and of f∗, respectively. Thus w∗ = f∗(p)
hence w maximizes �lxmin in Φ(0, p) and by Step 1 this unique maximum
is f(p).

Step 7 fω is symmetric if ω is symmetric in X
A symmetric point always exists: the set S(N ;X) of all symmetries of X

is a group for the composition of permutations. Starting from an arbitrary
element x of X, we set ω = 1

|S(N ;X)|
∑

σ∈S(N ;X) x
σ, which is in X because it

is convex, and is clearly symmetric in X.
We check that fω is symmetric if (and only if) ω is symmetric. For any

profile p ∈ XN we must show fω(pσ) = fω(p)σ whenever σ ∈ S(N ;X). As
�lxmin is a symmetric ordering we have arg maxBσ �lxmin= (arg maxB �lxmin
)σ for any set B where the maximum is unique, moreover if xσ = x then
∆(ω, pσ) = ∆(ω, p)σ.
Step 8 fω is Envy-Free

Assume τ ij ∈ S(N,X). The desired property xi �i xj is clear if pi and
pj are on both sides of ωi = ωj because for agent i allocation xi is on the
"good" side of ωi while xj is on the "bad" side. Now assume pi and pj are on
the same side of ωi, say pi, pj ≥ ωi, and agent i envies xj : then pi > xi ≥ ωi
and xj > xi. Note that xj may be larger or smaller than pi. We consider
now several allocations where coordinates other than i, j stay as in x, and
for brevity we only mention these two coordinates: e.g., x is simply (xi, xj).
By the symmetry assumption, x′ = (xj , xi) is in X and by convexity so is
x′′ = (λxi + (1 − λ)xj , (1 − λ)xi + λxj). For λ small enough (in particular
below1

2) the allocation (|x′′i −ωi|, |x′′j −ωj |) is in ∆(ω, p) (recall xi < pi) and
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the shift from (|xi−ωi|, |xj −ωj |) to (|x′′i −ωi|, |x′′j −ωj |) is a Pigou Dalton
transfer hence it improves the leximin ordering.

Step 9 hemicontinuity of (q, p)→ Φ(q, p) = [q, p] ∩X
Upper hemicontinuity is clear because the graph of Φ is closed. For

lower hemicontinuity we use an auxiliary result. Consider a polyhedral-
valued function b → H(b) = {x ∈ Rm2 |Ax ≤ b} where b ∈ Rm1 and A is
a fixed m1 × m2 matrix. This function is hemicontinuous where it is non
empty (Theorem 14 in [52]). We can approach X by an increasing sequence
of polyhedra Xt in the following sense:

Xt ⊆ Xt+1 ⊆ X for all t

and for all x ∈ [q, p] ∩X

x = lim
t→∞

xt where xt is the projection of x on Xt

It is easy to check that lower hemicontinuity is preserved by (finite or infinite)
union, as well as by the closure operation. AsX is the closure of ∪tXt, so ΦX

is the closure of ∪tΦXt
, and we conclude that ΦX is lower hemicontinuous.

10.2 Proposition 2

Fix X = {
∑

N xi = β} ∩ C with C closed convex and fully symmetric, and
let f be a rule meeting EFF, SYM, CONT, and SGSP. By Lemma 1 f is
peak only.

Step 1 For any p ∈ XN such that x = f(p), and any two agents labeled 1
such that p1 > p2, we claim that there is exactly three possible configurations
of their allocations x1, x2:

p1 > p2 > x1 = x2 or x1 = x2 > p1 > p2 or p1 ≥ x1 ≥ x2 ≥ p2

By uncompromisingness (Lemma 1) f1(x1, p2, p−1,2) = x1. If f2(x1, p2, p−1,2) 6=
x2 then there is a preference �∈ SP(X2) which is not indifferent between
these two allocations: then coalition {1, 2} has an opportunity to weakly
misreport, which is impossible, so we conclude x1 = x2. The same argu-
ment applies for the cases p1 > p2 > x1 and xi > p1 > p2 for i = 1, 2. The
remaining case is x1, x2 ∈ [p1, p2] and we must exclude the configuration
p1 ≥ x2 > x1 ≥ p2. By SYM the allocation (x2, x1, x−1,2) is in X and by
convexity of X so is (x1+x2

2 , x1+x2
2 , x−1,2): the latter is Pareto superior to

f(p), a contradiction.
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Step 2 We fix an arbitrary profile p and define N− = {i ∈ N |pi < xi},
N0 = {i ∈ N |pi = xi} and N+ = {i ∈ N |pi > xi}. By Step 1 and SYM
all i in N− (resp. N+) have the same allocation x− (resp. x+). Again by
Step 1 and SYM for j ∈ N0 and i ∈ N− inequality pj ≤ x− is impossible:
so x− ≤ pj for all j ∈ N0. A similar argument gives pj ≤ x+.

We claim that x ∈ X ∩ [ω, p]. From x− ≤ xj ≤ x+ for all j ∈ N0 and∑
N xi = β we see that x− ≤ ωi = β

n ≤ x+, therefore pi < x− = xi ≤ ωi in
N−, and similarly ωi ≤ xi = x+ < pi in N+. Finally xi = pi in N0.

So the allocation x is entirely described by the two numbers x+, x−,where
β
n ≤ x+ ≤ +∞ and −∞ ≤ x− ≤ β

n . That is, if pi > x+ agent i gets x+, she
gets x− if pi < x−, and she gets pi if x− ≤ pi ≤ x+. Note that x+ = +∞
(resp. x− = −∞) if and only if N+ = ∅ (resp. N− = ∅).

Now the equality
∑

N xi = β reduces to

|{i : x+ < pi}| × (x+ −
β

n
) +

∑
i: β
n
≤pi≤x+

(pi −
β

n
) =

= |{i : pi < x−}| × (
β

n
− x−) +

∑
i:x−≤pi≤ βn

(
β

n
− pi) (11)

Clearly the first term in the equality increases in x+ while the second term
decreases in x−.

Step 3 We compare now x = f(p) and z = fω(p). By Theorem 1 fω

meets EFF, SYM, CONT, and SGSP just like f , therefore by Steps 1, 2
above, z is described by two numbers z+, z− just like x and they solve the
same equation (11). By the monotonicity properties above, if z 6= x we must
have either {z+ > x+ and z− < x−} or {z+ < x+ and z− > x−}. In the
former case z is Pareto superior to x, and vice versa in the latter case. This
is impossible because both rules are effi cient.

10.3 Proposition 3

Statement i) We let the reader check that the argument detailed for example
(4) applies as well to any convex, compact X symmetric and of dimension
two; the shape of X inside X12 is the same, except when some of the four
corners are actually feasible, but those cases are easy. Similarly if X is
unbounded.

Statement ii) Here we choose a function θ0 from R into R+ = [0,+∞[
such that its restriction θ− to R− is a decreasing bijection to R+, and its
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restriction θ+ to R+ is an increasing bijection to R+. The canonical example
used in the construction of fω is θ0(x) = |x|.

For z ∈ RN we write θ(z) = (θ0(zi))i∈N . Fixing (N,X), ω and θ we
define a new rule fω,θ as follows

fω,θ(p) = x
def⇐⇒ {x ∈ X ∩ [ω, p] and θ(x− ω) = arg max

∆θ(ω,p)
�lxmin}

where

z ∈ ∆θ(ω, p)
def⇐⇒ {z = θ(x− ω) for some x ∈ X ∩ [ω, p]}

When θ−(z) = θ+(−z) this definition is exactly the same as (3). Not so
otherwise, because θ treats differently a move above the default ωi and one
below it.

Then we follow step by step the proof of the Theorem to show that fω,θ

meets precisely the same properties as fω. The desired conclusion follows
because the set of functions θ such that θ− is not the mirror image of θ+ is
of infinite dimension.

As the range ofX∩[ω, p] by x→ θ(x−ω) is a compact set, �lxmin reaches
its maximum in ∆θ(ω, p). To prove uniqueness (despite the fact that this
range may not be convex) we mimick the argument in Step 1. Assume x, y
are two maximizers, S, T are disjoints (we use the same notations as in Step
1) and set a = θ(x)∗1 = θ(y)∗1: then for all k ∈ N a ≤ min{θ0(xk), θ0(yk)} <
max{θ0(xk), θ0(yk)} implying mink∈N θ0(x+y

2 )k > a and contradicting the
optimality of x, y. Then S and T must intersect and the argument ends by
dropping this coordinate and invoking the separability of �lxmin.

The proofs of EFF, SGSP, SYM and EF are exactly as in the Theorem,
so we do not repeat them.

Continuity is not much harder. We restrict attention first to an arbitrary
orthant Θ and to the vectors p such that p − ω ∈ Θ. Because θ treats
differently positive and negative deviations from ω, we keep Θ an arbitrary
orthant; on the other hand normalizing ω to zero is without loss of generality.
We set h(p) = θ(fω,θ(p)) and prove first that h(·)∗ is continuous. As θ(x)∗1

is continuous Berge’s theorem tells us that h(p)∗1 = max{θ(x)∗1|x ∈ Φ(0, p)}
is continuous as well. For the next coordinate we can write

h(p)∗2 = max{θ(x)∗2|x ∈ Φ(0, p) and θ(x) ≥ h(p)∗1eN}

= max{θ(x)∗2|x ∈ Φ(θ−1
0 (h(p)∗1), p)}

therefore Berge theorem applies again, and h(·)∗2 is continuous. And so on
as in the above proof.

27



Once h(·)∗ is continuous, we take a converging sequence pt → p as before
and w a limit point of f(pt), i. e., w = limt′ f(pt

′
) for some subsequence

t′ of t (omitting the superscripts). Then θ(f(pt
′
))∗ → θ(w)∗ because θ and

x→ x∗ are continuous; and θ(f(pt))∗ → θ(f(p))∗ by the continuity of h(·)∗.
Thus θ(f(p))∗ = θ(w)∗ and w ∈ Φ(0, p) by the hemicontinuity of Φ. We
conclude w = f(p) as was to be proved.
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