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Motivation

Optimal auction design: what's the point?

One primary reason: suggests auction formats
likely be useful in practice.

Exhibit A: single-item Vickrey auction.
0 maximizes welfare (ex post) [Vickrey 61]

0 with suitable reserve price, maximizes expected
revenue with i.i.d. bidder valuations [Meyerson 81]



Review: Vickrey Is Truthful

Utility Model: bidder i has L sesams
private valuation v,, submits rormac uss

bid b, to max utility = v, - price e
Claim: a Vickrey auction is truthful

bidding b, = v; always maximizes utility
Proof idea : bidder i effectively faces a

"take-it-or-leave it" offer at a fixed price
p = max{reserve, highest other bid}.



The Dark Side

[ssue: in more complex settings, optimal auctions
can say little about how to really solve problem.

Example #1: single-item auction, independent but
non-identical bidders. to maximize revenue:

0 winner = use highest "virtual bid"
0 charge winner its "threshold bid"

Example #2: combinatorial auctions (max welfare)

a0 absurd to implement VCG mechanism, even for
modest number of goods



Alternative Approach

Standard Approach: solve for optimal auction over
huge set, hope optimal solution is reasonable

Alternative: optimize only over "plausibly
implementable” auctions.

Sanity Check: want performance of optimal
restricted auction close to that of optimal
(unrestricted) auction.

o if so, have theoretically justified and potentially
practically useful solution



Algorithmic Mechanism Design

"Plausibly Implementable™: for this talk, define as
always running in polynomial time.

Goal #1: Positive Results
ideal: get starting point for real-world solution
if not: still get a "possibility proot”

0 and often some useful design techniques

Goal #2: Negative Results
impossibility results (perhaps assuming P#NP)
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Our Mechanism Design Goals

runs in polynomial time
o ininput size, or in # of bidders/goods

(approximately) optimizes a natural objective

o this talk: focus on welfare-maximization

restrict to dominant-strategy implementations
0 assumes weakest-possible behavioral model
0 interesting to relax this assumption (eg, Bayes-Nash)

In a nutshell: for what problems can we replicate
all of the Vickrey auction's laudable properties?
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Our Mechanism Design Goals

runs in polynomial time
(approximately) optimizes a natural objective
restrict to dominant-strategy implementations

poly-time + vs.
truthful

/ \

what AMD studies well-understood



How To Think About
Algorithmic Mechanism Design

Philosophy: designing truthful mechanisms boils
down to designing algorithms in a certain
"restricted computational model”.

Next: focus on simple class of problems where this
point is particularly clear and well understood.



Single-Parameter Problems

Outcome space: a set of vectors of the form
(X1, Xy, X)) [amount of "stuft” per player]

Utility Model: bidder 1 has private valuation v,
(per unit of "stuft")

utility = v, x, - payment
submits bid b; to maximize its utility

Examples: k-unit auction, "unit-demand" bidders;
job scheduling on related machines
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Mechanism Design Space

The essence of any truthful mechanism
(formalized via the "Revelation Principle"):

collect bid b, from each player i

invoke (randomized) allocation rule: b,'s—x;'s
o who gets how much (expected) stuft

'

i S

invoke (randomized) payment rule: b,'s = p
o and who pays what

truthfulness: for every i, v,, other bids, setting
v.=Db, maximizes expected utility v, x,(b) - p;(b)
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Two Definitions

Implementable Allocation Rule: is a function x
(from bids to expected allocations) that admits
a payment rule p such that (x,p) is truthtul.

o ie., truthful bidding [b;:=v;] always maximizes a
bidder's (expected) utility
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Two Definitions

Implementable Allocation Rule: is a function x
(from bids to expected allocations) that admits
a payment rule p such that (x,p) is truthtul.

o ie., truthful bidding [b;:=v;] always maximizes a
bidder's (expected) utility

Monotone Allocation Rule: for every fixed bidder i,
fixed other bids b, expected allocation only

increases in the bid b..
0 example: highest bidder wins; also sponsored search
0 non-example: 2nd-highest bidder wins
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‘ Myerson's Lemma

Myerson's Lemma: [1981; also Archer-Tardos
FOCS 01] an allocation rule x is implementable if
and only if it is monotone.
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Myerson's Lemma

Myerson's Lemma: [1981; also Archer-Tardos

FOCS 01] an allocation rule x is implementable if
and only if it is monotone.

Moreover: for every monotone allocation rule x,
gives explicit formula for the unique payment
rule p s.t. (x,p) is truthful and losers pay 0.

poly-time + vs.
implementable
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Myerson's Lemma

Myerson's Lemma: [1981; also Archer-Tardos

FOCS 01] an allocation rule x is implementable if
and only if it is monotone.

Moreover: for every monotone allocation rule x,
gives explicit formula for the unique payment
rule p s.t. (x,p) is truthful and losers pay 0.

poly-time + vs.
monotone
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Myerson's Lemma (Proof Idea)

Proof idea: let x be an allocation rule, fix i and b-..

Write x(z), p(z) for x,(z, b-,), pi(z, b-).

apply purported truthfulness ot (x,p) to two
scenarios: true value = z, false bid =z + € and
true value=z + ¢, false bid =z

take ¢ to zero get
0 pl(z)=z-°x'(z) [if x differentiable at z] or
0 jumpinpatz=ze[jumpinXx at z]

Integrating from 0 to b,, get sole candidate:

pi(b) = X, y; @ [jump in x;at y;]
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Min Makespan

m selfish machines with private speeds
o each wants to min [work - transfer from mechanism]

n jobs with known sizes

makespan of a schedule = time last job completes

2 amount of work = 6 and 4 units

L1 |
4 finishing times =2 and 4
3

makespan = 4

speed=3 speed=1
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Min Makespan

Check: an algorithm for min makespan is
monotone iff speeding up a machine can only
increase the work assigned to it (with other
speeds fixed).

Example: optimal (exponential-time) algorithm
is monotone (with consistent tie-breaking).
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Min Makespan

Monotone: speeding up a machine can only increase
the work assigned to it (w/other speeds fixed).

Known: problem is strongly NP-hard, but PTAS
exists [Hochbaum/Shmoys 88], [Epstein/Sgall 04]

But: these PT ASes are not monotone.
0 donot yield truthful mechanisms!

Theorem: [Archer/Tardos 01; Archer 04] there is

a (randomized) monotone 2-approximation.
key observation: LP relaxation is monotone
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A Truthful PTAS

Thm: [Dhangwotnotai/Dobzinski/Dughmi/Roughgarden
FOCS 08] There is a (randomized) monotone
PTAS for this min makespan problem.

Main Techniques: (to obtain monotonicity)

multi-step randomized preprocessing
(“smoothes” the instance)

novel compact representation to enable exact
poly-time optimization over rich set of near-
optimal solution (extends [Epstein/Sgall 04])
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Randomized Shuftling

Trick: round jobs to reduce number of distinct sizes.

Problem: two schedules with equal “rounded” load
can have (slightly) different “real” load.
generally leads to monotonicity violations

Fix: for each "bucket” of (near-identical) jobs, make
all jobs sizes equal to the average size in bucket.
at end of algorithm, randomly instantiate each
"rounded" jobs by one of original ones
recovers monotonicity (in expectation)
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Combinatorial Auctions (CA)

Setting: n bidders, m goods. Player i has private
valuation v, (S) for each subset S of goods.

Assume: v; (d) =0 and v, is
monotone: S subset of T =>v.(S) <v.(T)
subadditive: v.(SUT) <v,(S)+ v, (T)
ignore representation issues
[want running time polynomial in n and m]

Facts: there is a poly-time 2-approximation for
welfare 2. v.(S;) [Feige STOC 06]. No good

truthful approximation known.
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Multi-Parameter Problems

Outcome space: an abstract set ()

Utility Model: bidder i has private valuation v, (w)
for each outcome w

utility = v, (w) - payment

Example: in a combinatorial auction, €2 = all
possible allocations of goods to players
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How To Think About
Algorithmic Mechanism Design

Philosophy: designing truthful mechanisms boils
down to designing algorithms in a certain
"restricted computational model”.

Single-Parameter Special Case:

Implementable rules
= monotone rules
(Myerson's Lemma)
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The Multi-Parameter World

Implementable rules
= "cyclic monotone" rules
(still have uniqueness of
truthful payment rule) [Rochet]
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The Multi-Parameter World

inscrutable

Implementable rules
= "cyclic monotone" rules
(still have uniqueness of
truthful payment rule) [Rochet]
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The Multi-Parameter World

inscrutable

Implementable rules
= "cyclic monotone" rules
(still have uniqueness of
truthful payment rule) [Rochet]

mechanisms that
we understand

VCGe
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The VCG Mechanism

Utility Model: bidder 1's utility: v; (w) - payment
Vickrey-Clarke-Groves: (1961/71/73)
collect bid b, (w) for all i, all outcomes w in Q)
select w” in argmax {X; b, (w)}
charge p; = [-L; b; (w)] + suitable constant

o align private objectives with global one

Facts: truthful, maximizes weltfare L. v. (w) over Q)
(assuming truthful bids).
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Approximation Mechanisms

Goals: [Nisan/Ronen 99| (1) truthful; (2) run in

time polynomial in natural parameters; and
(3) guarantee near-optimal welfare

Best-case scenario: match approximation factor ot
best polynomial-time approximation algorithm
(with valuations given freely as input).

Holy Grail: "black-box reduction” that turns an
approximation algorithm into a truthful
approximation mechanism.
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Approximation Mechanisms

Idea: [Nisan/Ronen 00] use VCG mechanism but
substitute approximation algorithm for the
previous step "select @’ in argmax {X. b, (w)}".

Implementable =
"cyclic monotone”

mechanisms
we understand. VCG
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Approximation Mechanisms

Idea: [Nisan/Ronen 00] use VCG mechanism but
substitute approximation algorithm for the
previous step "select @’ in argmax {X. b, (w)}".

[ssue: only truthful
for a very special

type of approximation
algorithm (discussed
next).

Implementable =
"cyclic monotone”

mechanisms
we understand. VCG

more on
this next
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VCG-Based Mechanisms

Outcome space: an abstract set ()

Utility Model: bidder i's utility: v; (w) - payment

Step 1: pre-commit to a subset Q' of ()
Step 2: run VCG with respect to ('

Facts: truthful, maximizes welfare X, v. (w) over Q'

Hope: can choose Q' to recover tractability while
controlling approximation factor.
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Combinatorial Auctions (CA)

Setting: n bidders, m goods. Player i has private
valuation v, (S) for each subset S of goods.

Assume: v; (d) =0 and v, is
monotone: S subset of T =>v.(S) <v.(T)
subadditive: v.(SUT) <v,(S)+ v, (T)
ignore representation issues
[want running time polynomial in n and m]

Fact: there is a 2-approximation for welfare X, v.(5;)
[Feige STOC 06], but this allocation rule is

not implementable.
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VCG-Based Solution

Key Claim: for every instance, there is a

(1/2Vm)-approximate allocation that either:

assigns all goods to a single player; OR
assigns at most one good to each player
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VCG-Based Solution

Key Claim: for every instance, there is a
(1/2Vm)-approximate allocation that either:
assigns all goods to a single player; OR
assigns at most one good to each player

Corollary: [Dobzinski/Nisan/Schapira STOC 05] there is

a truthful (1/2V¥m)-approximate mechanism for
CAs with subadditive bidder valuations.

Proof: define ()" as above; can optimize in poly-
time via max-weight matching + case analysis.
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VCG-Based Solution

Proof of Key Claim: Fix v;'s. Call a player big if it
gets >Vm goods in the optimal allocation.
(So there are at most Vm of them.)

Case 1: big players account for more than half of
optimal welfare, so one big player accounts for
a 1/2¥m fraction. Give all goods to this player.

Case 2: otherwise, small players account for half.
Give each its favorite good; by subadditivity,
still have a 1/2Vm fraction of optimal welfare.
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Can We Do Better?

[Dobzinski/Nisan STOC 07]: Can't do much better
using a deterministic VCG-based mechanism.
results and techniques launched very active

research agenda on lower bounds
o [Papadimitriou/Schapira/Singer FOCS 08], ...,
[Dughmi/Vondrak FOCS 11]

The good news: randomized mechanisms seem to
hold much promise, for both problems and for
black-box reductions.
can be strictly more powerful than deterministic
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Randomized VCG-Based
Mechanisms

Step 1: precommit to subset A’ of A(CQJ)
"lotteries" over outcomes

Step 2: run VCG with respect to A

Facts: truthtul (in expectation), maximizes
expected weltare E[X, v. (w)] over A’

Hope: can choose A ' to recover tractability while

controlling approximation factor.
[Lavi/Swamy FOCS 05], [Dobzinski/Dughmi FOCS 09]
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A Black-Box Reduction

Theorem: [Dughmi/Roughgarden FOCS 10] If a

welfare-maximization problem admits an
FPTAS, then it admits a truthful FPTAS.

Proof idea: Choosing A ' suitably and "dualizing”,
the relevant optimization problem is a slightly
perturbed version of the original one. Can use
techniques from smoothed analysis [Roglin/Teng
FOCS 09] to get expected polynomial running
time.
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Black-Box Reduction for
Bayes-Nash Implementations

Theorem: [Hartline/Lucier STOC 10], [Hartline/Kleinberg/Malekian
SODA 11], [Bei/Huang SODA 11] In many Bayesian
settings (where valuations are drawn from known
distributions), every approximation algorithm for
welfare maximization can be transmuted into an
equally good truthful (in Bayes-Nash equilibrium)
approximation mechanism.

Suggestive: Bayes-Nash implementations can elude lower
bounds for dominant-strategy truthtul mechanisms
(when such lower bounds exist).
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Welfare Guarantees in
Combinatorial Auctions
with Item Bidding

(Bhawalkar/Roughgarden SODA 2011)



Combinatorial Auctions

n bidders, m heterogeneous goods

bidder i has private valuation v,(S) for each
subset S of goods [~ 2™ parameters]

0 assume nondecreasing with v,(¢) =0

quasi-linear utility: player 1 wants to maximize
vi(S;) - payment
allocation = partition of goods amongst bidders

welfare of allocation S,,S,,...,S.: ). v.(5))
o goalis to allocate goods to maximize this quantity
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[tem Bidding

Note: if m (i.e., # of goods) is not tiny, then direct
revelation is absurd.

Goal: good welfare with much smaller bid space.

0 "truthfulness" now obviously impossible

[tem Bidding: each bidder submits one bid per
good. Each good sold via an independent
second-price auction.
only solicit m parameters per bidder
this auction is already being used! (via eBay)
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[tem-Bidding Example

Example: two players (1 & 2), two goods (A & B).

Player #1: vi(A) =1, v{(B) =2, v{(AB) = 2.
Player #2: v,(A) =2, v,(B) =1, v,(AB) = 2.

OPT welfare = 4.

A tull-information Nash equilibrium:

o #lbidslonA,OonB
o #2bidsOonA,1onB

which has welfare only 2.
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The Price of Anarchy

Definition: price of anarchy (POA) of a game
(w.r.t. some objective function):

: : the closer to 1
timal fn val
optimal obj fn value the better
equilibrium objective fn value
Well-studied goal: when is the POA small?

0 benefit of centralized control --- or, a hypothetical
perfect (VCG) implementation --- is small

o note POA depends on choice of equilibrium concept

o only recently studied much in auctions/mechanisms

46



Complement-Free Bidders

Fact: need to restrict valuations to get interesting
worst-case guarantees.

Complement-Free Bidder: vi(SUT) < v,(S) + v,(T)
for all subsets S, T of goods.
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Complement-Free Bidders

Fact: need to restrict valuations to get interesting
worst-case guarantees.

Complement-Free Bidder: vi(SUT) < v,(S) + v,(T)
for all subsets S, T of goods.

Fact : "bluffing” can yield zero-welfare equilibria.
o consider valuations=1 and 0, bids=0 and 1

No Overbidding: for all i and S, }.g by < v4(S).

0 our bounds degrade gracefully as this is relaxed
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Summary of Results

Theorems [Bhawalkar/Roughgarden SODA 11]:

Q

Q

o O O O

worst-case POA of pure Nash equilibria = 2
when such equilibria exist
extends [Christodoulou/Kovacs/Shapira ICALP 08]

worse-case POA of Bayes-Nash eq < 2Inm
also, strictly bigger than 2
also hold for mixed, (coarse) correlated Nash eq
assumes independent private valuations

with correlated valuations, worst-case POA is
polynomial in m.
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The Complement-Free Case

Lemma 1: for every complement-free valuation v
and subset S, there is a bid vector a; such that:

ZJ@S 1] = Vi (S)/(ln m)
2ier &5 < Vi(T) for every subset T of goods

Proof idea: modify primal-dual set cover algorithm
and analysis.

Lemma 2: implies POA bound of 2 In m.
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Relation to Smoothness

Key Proof Step: invoke Nash equilibrium condition
once per player, with "canonical deviation".

deviation is independent of b-,

Fact: this conforms to the "smoothness paradigm”
of [Roughgarden STOC 09]

Corollary: POA bound of 2 (In m) extends
automatically to mixed Nash + correlated
equilibria, no-regret learners, and Bayes-Nash
equilibria with independent private valuations.
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Correlated Valuations

Lower Bound: for Bayes-Nash equilibria with
correlated valuations, POA can be m™.
o even for submodular valuations

approach #1: direct construction

0 based on random planted matchings
approach #2: [ongoing with Noam Nisan]
communication complexity

a0 good POA bounds imply good poly-size "sketches"
for the valuations

o [Balcan/Harvey STOC 11] such sketches do not exist
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Open Problems

is independent Bayes-Nash POA = 0O(1)?

what about for independent 1st-price auctions?
o [Hassidim/Kaplan/Mansour/Nisan EC 11]

when do smoothness bounds extend to POA of
Bayes-Nash equilibria with correlated types?

optimal trade-offs between auction
performance and "auction simplicity"

a0 e.g., in terms of size of bid space, number of
"tunable parameters”, etc.
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Recap: Mechanism Design as
Constrained Algorithm Design

Philosophy: designing truthful mechanisms boils
down to designing algorithms in a certain
'restricted computational model".
single-parameter <=> monotone algorithms
multi-parameter: includes all the obvious VCG
variants, but what else?

Research Challenge: usetully characterize the
implementable allocation rules for as many
multi-parameter problems as possible.
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Recap: Weltare Maximization

ignoring tractability, VCG works even for arbitrary
multi-parameter problems

truthful approximation mechanisms so far mostly
restricted to randomized variants of VCG

but this already enough for some interesting results

Research Challenges:
better (randomized) approximation mechanisms for
combinatorial auctions; or lower bounds
more general black-box reductions

understanding "simplicity vs. expressiveness" trade-
offs
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