
Optimal Auctions with Positive Network Externalities

Nima Haghpanah∗ Nicole Immorlica∗ Kamesh Munagala†

Vahab Mirrokni‡

Abstract

We consider the problem of designing auctions in social networks for goods that exhibit
single-parameter submodular network externalities in which a bidder’s value for an outcome
is a fixed private type times a known submodular function of the allocation of his friends.
Externalities pose many issues that are hard to address with traditional techniques; our work
shows how to resolve these issues in a specific setting of particular interest. We operate in a
Bayesian environment and so assume private values are drawn according to known distribu-
tions. We prove that the optimal auction is NP-hard to approximate pointwise, and APX-hard
on average. Thus we instead design auctions whose revenue approximates that of the optimal
auction. Our main result considers step-function externalities in which a bidder’s value for
an outcome is either zero, or equal to his private type if at least one friend has the good. For
these settings, we provide a e

e+1 -approximation. We also give a 0.25-approximation auction
for general single-parameter submodular network externalities, and discuss optimizing over a
class of simple pricing strategies.

1 Introduction
Many goods have higher value when used in conjunction with others. A classic example of this
phenomenon is the telephone, which clearly has positive value for a consumer only if he or she has
people to call. Telephones, and other goods with similar stories, are called networked goods and
said to exhibit network effects or network externalities. Modern technology has given birth to a new
generation of networked goods. Internet services like email, instant messaging, and online social
networks are used primarily to connect with friends and, as such, have strong network externalities.
But even more significantly, these services, particularly online social networks, provide platforms
upon which developers can generate new applications – applications with very strong networking
components. It is now possible to play poker in Texas HoldEm, visit cafes in Cafe World, and even
be a virtual farmer in the immensely popular FarmVille with friends in online social networks like
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Facebook. Such applications are more fun when used with friends, and many such applications
even explicitly reward players with many friends. The unique feature of such modern networked
goods is that the underlying social network is explicit. This enables application distributors to use
the network structures to market and sell these goods.

In this paper, we leverage explicit network structure to design mechanisms for selling net-
worked goods. We primarily focus on goods, such as applications like FarmVille in online so-
cial networks, that are available in unlimited supply or, more precisely, can be produced at zero
marginal cost. The network externalities of the good are implied by the private valuations of the
social network users. In the most general case, users have a private value for each possible allo-
cation of the good to a subset of users. This allows for arbitrary externalities, enabling say John
Doe to value the good only if Kim Kardashian owns it despite having no direct relationship to her.
While this makes sense for some goods, like fashion, many network goods like telephones or social
network applications have value to a user only if users in his or her immediate neighborhood also
own the good. The main focus of the paper is on a special case of this sort of direct externality,
which we call step function externalities: that is, we suppose a user’s value for the good is zero
unless at least one of his or her neighbors or friends in the social network is also allocated the good.

We study auction mechanisms, or mechanisms that solicit bids from agents indicating their
private value for various allocations, and then determine an allocation and prices in a way that
maximizes expected revenue. As is common in economics, we work in a Bayesian setting where,
while the realization of the private value is known only to the agent, it is drawn according to a
commonly known distribution. Most literature on mechanism design assumes that agents value
allocations solely based on the bundle of goods they receive, i.e., they are indifferent about the al-
locations of the other players. This is clearly violated in settings with externalities. Unfortunately,
externalities significantly complicate mechanism design for the following reasons:

1. The efficient representation of values is no longer a trivial task, since in the most general
case each bidder might need to report a value for each subset of allocated bidders.

2. More dimensions make satisfying incentive constraints harder (multi-parameter mechanism
design is not well understood).

3. The space of feasible allocations might be more complex, which can make finding the opti-
mal allocation a computationally hard problem.

4. Furthermore, the complexity of the feasible allocation space can easily cause the setting
to violate downward-closure, i.e., not every subset of a feasible allocation is necessarily
feasible. Thus the few known results for multi-parameter mechanism design can not be
adopted generically.

We circumvent the first two issues by assuming a special structure on the players’ values,
namely that valuations satisfy step function externalities as defined above. Thus our problem is
a single-parameter one, and so the representation and incentive constraints are straight-forward.
Revenue maximization is also well understood for single-parameter settings. The seminal paper
by Myerson [22] fully characterizes mechanisms that maximize revenue in expectation over the
value distributions. By this characterization, the expected revenue of any mechanism is equal to
the expected virtual value of the allocated agents, where the virtual value of an agent is a func-
tion of the valuation and its distribution and may be negative. In our setting, this characteriza-

2



tion converts the optimal allocation problem to a combinatorial optimization problem, which is to
maximize the sum of the virtual values over all feasible subsets. For step-function externalities,
the feasibility constraint requires that all allocated agents have a neighbor who is also allocated.
Graph-theoretically, this equates to finding, in a vertex-weighted graph with possibly negative
vertex weights, a maximum-weight subset of vertices whose induced subgraph has no singleton
components.

Although the optimal mechanism is easy to define, the third and fourth issues of mechanism
design with externalities remain in our setting. We observe via reduction to set-buying that ap-
proximating the optimization problem within even a linear factor on every sampling of the values
is NP-hard. On the other hand, we only need to find algorithms that perform well in expectation
rather than in worst case: the Myerson mechanism we wish to approximate anyway provides an
optimal average-case guarantee, and there is no mechanism with high revenue for every instantia-
tion of values. Even on average, we prove that our problem remains APX-hard. However, we are
able to design constant approximations for several versions of the problem.

We first note that there’s a simple (1/2)-approximation for our problem. The algorithm divides
the graph into two subsets of vertices, such that each vertex in each set has a neighbor in the
other. This can be done, for example, by constructing a spanning tree of the graph and then taking
a bipartite partitioning of it. The allocation strategy is to then pick the set with better expected
revenue, extract revenue from that set, and allocate to users in the other set in order to maintain
feasibility. This very simple algorithm does not use the structure of the social network in any deep
way, and is therefore unable to give better approximations in even very simple social networks
consisting of a single edge. In order to leverage knowledge of the network structure, we consider
a greedy algorithm that iteratively allocates to influential vertices and their neighbors. Our main
result shows that this can be used to obtain an e

e+1 ≈ 0.73-approximation to the optimal revenue
for any distribution of values.

We additionally formulate our problem as a linear program (LP) whose variables represent the
allocation and whose constraints use the network structure to characterize feasibility. We show
how to round this LP to give a e

e+1 -approximation, thereby matching the performance of our main
greedy algorithm. The LP has several advantages however. First, it is hypothetically easy to incor-
porate additional feasibility constraints by simply including additional inequalities in the polytope
and so might be of use in specific externality settings. Second, the LP exhibits some interesting
mathematical properties. Namely, the gap of this LP is linear in the number of agents for a par-
ticular instantiation of values, and nonetheless we manage to prove a constant approximation on
average. We do this through a novel average-case analysis of the rounding technique which may
be useful in other applications. We also show that the expected integrality gap of our LP is 0.828,
and thereby bound the approximation ratio of any LP-based mechanism.

We extend our setting to the more general single-parameter submodular externalities in which
a bidder’s value for an outcome is his private value times a known function of the set of players who
receive the good. For such settings we study a class of mechanisms called influence and exploit in
which some bidders (the influencers) are given the good for free and the remainder (the exploited)
are offered an optimal price conditioned on the set of influencers. We show that the revenue is a
submodular function of the set of influencers and hence we can use recent submodular function
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maximization results [7, 10] to design an influence-and-exploit mechanism whose revenue is within
a 0.41-factor of the optimal influence and exploit mechanism. We also show that a randomization
over influence and exploit mechanisms gives a 0.25-approximation to the optimal expected revenue
of any mechanism by further submodularity arguments.

Related Work. Various settings with positive, negative, or mixed externalities have been stud-
ied in economics as well as computer science literature. Rohlfs [23] discusses positive externalities
in the telephone industry in which a person’s value for a telephone increases as more friends use
it. A well-studied scenario with negative externalities is the allocation of ad slots in which a com-
pany’s valuation for being listed as one of the sponsored search results decreases if their competitor
is also listed [1, 4, 11, 12, 16, 19]. Finally, the valuation might have mixed externalities, as in the
sale of nuclear weapons [15], in which countries prefer their allies rather than their foes to win
the auction. Our work can be viewed as another in this line of literature, which addresses the
difficulties of externalities in a specific setting of practical import by making application-specific
assumptions.

Our work considers auction mechanisms with externalities. In contrast, some prior work con-
siders instead the problem of posted price mechanisms [3, 2, 5, 14]. Particularly relevant to our
work is that of Hartline, Mirrokni, and Sundararajan [14]. They consider the problem of finding
a revenue-maximizing sequence of prices that are offered sequentially to buyers. They observed
that simple influence and exploit strategies have revenue within a constant factor of the revenue of
any equilibrium of any pricing sequence. They are reminiscent of our auction mechanisms which
subsidize certain subsets of agents, and also our influence and exploit mechanisms for general
single-parameter submodular externalities. However, unlike Hartline, Mirrokni, and Sundarara-
jan [14], we provide approximation results with regards to the optimal auction revenue, which has
a higher value than the optimal pricing strategy.

There has recently been a growing attention to the average case modeling of the optimization
problems as opposed to the classical worst-case/adversarial agenda. It has been shown in different
settings that such stochastic analyses help us achieve stronger guarantees than the worst-case anal-
ysis. An example is the online bipartite matching problem. In the adversarial setting, the celebrated
result due to Karp, Vazirani and Vazirani [18] proves the tight approximation guarantee of 1− 1/e
for this problem. On the other hand, a sequence of papers initiated by the work of Feldman et al. [8]
show improved guarantees for the stochastic version of the problem in which either the values are
drawn from a known distribution or the sequence of arrivals is a random permutation [17, 20, 21].
Other papers study stochastic optimization problems in other settings such as Steiner tree and set
cover [9, 13].

2 Preliminaries
We consider a society of n bidders located on the vertices in a social network G(V,E), where the
undirected edges model friendship. We assume for ease of exposition that the social network is
connected. There is a supply k of a homogeneous good. Unless otherwise specified, we assume
k ≥ n so that the supply is essentially unlimited (equivalently, the good can be reproduced at zero
marginal cost).
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An outcome o ∈ Ω = {0, 1}n is a distribution of goods among bidders, where oi = 1 if bidder
i receives a copy of the good and 0 otherwise. Bidder i’s type vi : Ω → R+ ∪ {0} maps outcomes
to non-negative real numbers, where vi(o) represents his value for outcome o and is positive only
if he receives a copy of the good (i.e., oi = 1). We study Bayesian mechanism design, in which
one assumes that each type vi(·) is drawn independently from a commonly-known distribution Fi.
Let F = F1 × . . . × Fn be the product distribution of Fi for all i; v be the vector of types, called
the type profile; v−i be the vector of types of agents other than i, and F−i the distribution of v−i.
Throughout the paper, our algorithms assume access to expectations defined with respect to the
distribution F . We assume these can be computed to within sufficient accuracy via sampling.

A (direct) mechanism is specified by two functions χ : Rn2n → Ω and ρ : Rn2n → Rn in which
χ(v) is the outcome given the reported type profile v, and ρi(v) is the payment of agent i given
the reported type profile v.1 The utility of an agent for outcome o and price p is his value for the
outcome minus the price he pays, vi(o)− p. We say that a mechanism (χ, ρ) is Bayesian incentive
compatible (BIC) if reporting the true type maximizes any player i’s expected utility assuming that
other players also report their true types, that is for every agent i and types vi and v′i,

Ev−i∼F−i [vi(χ(v))− ρi(χ(v))]

≥ Ev−i∼F−i [vi(χ(v
′
i, v−i))− ρi(χ(v

′
i, v−i))].

Note that this is an interim notion, i.e., the agents choose the strategy that gives them the highest
expected utility after observing their own private value. Similarly, we assume an interim notion of
individual rationality, i.e., each agent’s expected utility conditioned on their private value should
be non-negative.

We consider single-parameter settings. In these settings, agents’ values are a function of just
one private parameter, called their type. As types are represented by a single parameter, vi, the
Bayesian assumption reduces to assuming that vi is drawn independently from a distribution Fi

over the non-negative reals, henceforth referred to as the type distribution of bidder i. We assume
type distributions are regular and hence the corresponding virtual values are non-decreasing (see
Subsection 2.1 for definitions).2

In the following subsection, we discuss optimal auction design for single-parameter settings.
We encourage the reader familiar with these subjects to skip to Subsection 2.2 where we define the
problem studied in this paper.

2.1 Optimal Auction Characterization
In his seminal paper, Myerson characterized the revenue of the optimal (i.e., revenue-maximizing)
auction in terms of the virtual values of the agents [22]. We first define virtual values and then
discuss the characterization result.

1Note the domain is exponential in general as types may assign different values to each of the 2n possible outcomes.
2If the distributions are not regular, we can still apply our techniques using standard ironing arguments of Myer-

son [22].
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Definition 1. Suppose type v is drawn independently from a continuous distribution and let F (v) =
Prz[z ≤ v] be the cumulative function and f(v) = F ′(v) be the density function of the distribution.
Then the virtual value function φ(v) is v − 1−F (v)

f(v) .

Virtual values may also be defined for discrete distributions.

Definition 2. Suppose type v is drawn independently from a discrete distribution with support
{v1, . . . , vk}. Let F (vj) = Pr[v ≤ vj] and f(vj) = Pr[v = vj]. Then the virtual value function
φ(vj) is vj − 1−F (vj)

f(vj) (vj+1 − vj) for j < k and φ(vk) = vk.

Note that virtual values may be negative. However, they are non-negative in expectation, a fact
which enables many of our results.

Fact 1. For any distribution F and value v, the virtual value φ(v) is non-negative.

We will further assume that the distributions we study are regular, meaning that the corresponding
virtual value function is non-decreasing in the support of F .

For a mechanism (χ, ρ) in a single-parameter setting, let xi(v) = vi(χ(v))/vi if vi > 0, and
zero otherwise. In Myerson’s characterization, it is the function x that is relevant for determining
the revenue of the mechanism, and hence in a slight abuse of terminology we will refer to x as the
allocation function even though there may be bidders i with xi(v) = 0 that receive copies of the
good (however they do not value the copy of the good because of the externalities). Accordingly
define xi(vi) = Ev−i∼F−i [xi(vi, v−i)] to be agent i’s expected allocation for type vi, where the
expectation is over the types of other players.

In the single-parameter setting with regular distributions, Myerson showed that for any mono-
tone increasing rule x, there is a unique corresponding payment rule ρ such that the resulting
mechanism (χ, ρ) is BIC (where χ is any function that induces allocation function x and is not
necessarily unique). The expected revenue of the mechanism is equal to its expected virtual value,∑

Evi∼Fi [xi(vi)φi(vi)]. Furthermore, if x is not monotone increasing, then there is no payment
rule that makes the corresponding mechanism BIC. Restricting attention to BIC mechanisms is
without loss of generality due to the revelation principle, and so to maximize revenue, one simply
needs to find a rule χ satisfying all exogenous constraints (e.g., limited supply) whose correspond-
ing feasible allocation function x is monotone and maximizes expected virtual value. We can
therefore analyze the revenue of any monotone mechanism without explicitly defining the prices.

2.2 Externality Model
In this setting, we assume that each player i is assigned local influence function gi : 2V → *
which is common knowledge. Following the previous literature on network influence, we assume
that this local influence function is submodular3 for each player, i.e., gi(S ∪ {j}) − gi(S) ≥
gi(S ′∪{j})−gi(S), for all S ⊇ S ′, and j /∈ S. Without loss of generality assume gi is normalized
such that gi(V ) = 1. Given this function and i’s type vi, define S(o) = {j : oj = 1} to be the

3Submodularity is used to model settings in which influence exerts diminishing returns.
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set of players that are given the good in an outcome o. Then the value of i for o is defined to be
vi(o) = vi · gi(S(o)).

For a mechanism (χ, ρ), the allocation function xi(v) is, by definition, xi(v) = vi(χ(v))/vi =
gi(S(χ(v))) and, invoking Myerson’s characterization, we can write the expected revenue of the
mechanism as

∑
i E[xi(v)φi(vi)].

We consider two special cases of submodular externalities: concave externalities and step-
function externalities.

2.2.1 Concave Externalities

Let N(i) be the neighborhood of i in G, i.e., N(i) = {j : (i, j) ∈ E}. In concave externalities, for
each player i and subset S, gi(S) = G(|S ∩N(i)|) for some concave function G(.) if i ∈ S. That
is, the valuation of each bidder i depends on the number of his neighbors who have the good but
not their identity, and also the local influence function is the same among all players.

2.2.2 Step-Function Externalities

Step-function externalities are a special case of submodular externalities in which the value of the
influence function is 0 if the set of neighbors who receive the good is empty, and 1 otherwise. Let
N(i) be the neighborhood of i in G, i.e., N(i) = {j : (i, j) ∈ E}. Formally, bidder i’s local
influence function for an outcome o in which players S(o) receive the good is:

gi(S(o)) =

{
1 : i ∈ S(o), |S(o) ∩N(i)| ≥ 1
0 : otherwise

We say that a bidder i is satisfied by an allocation if gi(S(o)) = 1, in which case vi(o) =
vi. Otherwise we have gi(S(o)) = vi(o) = 0, and we say i is not satisfied by o. This models
applications, like bridge tournaments, that require just one friend to be of value.

In this setting, for any mechanism (χ, ρ), we have xi(v) = gi(S(χ(v))) = 1 if outcome χ(v)
satisfies bidder i and zero otherwise. As a result, allocation functions x must satisfy the condition
that xi(v) = 1 only if for at least one (more generally, s) neighbor j ∈ N(i) of i, we also have
xj(v) = 1. This means that in the subgraph induced by the allocated agents, every vertex must
have degree at least 1 (more generally, s). Call such a subset of agents feasible. By the Myerson
characterization discussed above, the optimal auction is thus specified by an allocation function
that, given a type profile, allocates to a feasible subset of agents with maximum sum of virtual
values (note this rule is necessarily monotone).

Graph-theoretically, the problem of finding an optimal allocation function equates to finding a
subset of vertices of maximum weight whose induced subgraph has no isolated vertices. Unfortu-
nately, we show in Section 3 that this problem is more general than the set buying problem, and
therefore hard to approximate within a linear factor on every sampling of values. We also show
that the problem of maximizing the expected revenue (over randomness of values), is APX-hard.

As the problem is NP-hard to solve optimally, we instead design a polynomial-time monotone
allocation function whose expected revenue (as defined by the sum of virtual values) is close to the
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optimal expected revenue OPT , where the expectations are over the type distributions. We say an
auction is an α-approximation if its expected revenue is at least α×OPT .

3 Hardness
By Myerson’s characterization of optimal allocations, the problem of finding an optimal allocation
function equates to finding a subset of vertices of maximum weight whose induced subgraph has no
isolated vertices. Unfortunately, since virtual values and hence vertex weights might be negative,
this problem is more general than the set buying problem (see, e.g., Feige et. al. [6]). We prove this
formally in Lemma 1. We next show that the problem of maximizing the expected revenue, over the
randomness of values, is APX-hard. Therefore our problem does not admit a PTAS unless P=NP,
which justifies the search for constant factor approximations to the problem in later sections. The
reduction is from a special case of set buying, which we call the prize collecting set cover problem
(PCSCP).

Definition 3. A set-buying instance is specified by a set of elements U and a collection F of subsets
of U . There is a non-negative cost c(S) associated with each set S ∈ F , and a non-negative value
v(u) associated with each element u ∈ U . The set-buying problem is to pick some subsets S ⊆ F
to maximize the value of the elements covered by those sets minus the total cost of those sets, that
is
∑

u∈Span(S) v(u)−
∑

S∈S c(S), where Span(S) = ∪S∈SS.

Theorem 2 (Feige et al [6]). It is NP-hard to approximate the set-buying problem to within a linear
factor.

Lemma 1. The optimal auction with step-function externalities is NP-hard to approximate to
within a linear factor on every instantiation of values.

Proof. For any instance I = (U,S) of the set-buying problem we construct a bipartite graph
GI = ((L,R), E) with a vertex lu ∈ L for each u ∈ U and a vertex rS ∈ R for each S ∈ F . We
introduce an edge (lu, rS) ∈ E for any element u and set S such that u ∈ S.

Consider an instance I and social network defined by the corresponding bipartite graph GI .
Let the type distribution of bidder lu be v(u) with probability 1; and let the type distribution4 of
bidder rS be 0 with probability 1/2 and c(S) with probaiblity 1/2. Consider an instantiation of
types in which each bidder lu has type v(u) and each bidder rS has type 0. The induced virtual
values are v(u) for each bidder lu and −c(S) for each bidder rS . For any feasible subset of bidders,
include, without loss of generality, all bidders lu ∈ L with an allocated neighbor rS ∈ R. Note
that any feasible solution thus corresponds to a solution of the set-buying instance with the same
value. The lemma then follows from the inapproximability of set buying.

4Note this type distribution is not regular (and indeed our positive results hold for arbitrary distributions). For a
reduction using regular distributions, consider drawing types uniform [0, c(S)] and then consider the same instantion
of values as before. The dissatisfying aspect of this proof, and the reason we do not include it, is that the required
instantiation of types is a zero probability event.
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The prize-collecting set cover problem (PCSCP) is a type of set cover problem in which all
sets and all elements have equal costs and values, respectively. The problem seeks to maximize the
value of covered elements plus the cost of unused sets.

Definition 4. In the prize collecting set cover problem (PCSCP), we are given a collection of n
sets {S1, S2, . . . , Sn} over a universe U . For a collection C of sets, let QC = ∪i∈CSi. The goal is
to find a collection C∗ that maximizes α|QC∗ |+ n− |C∗| for some α > 0.

While this is equivalent, in optimality, to the set-buying problem of maximizing the value of
covered elements minus the cost of the used sets, the two problems differ in approximability. The
PCSCP is easier to approximate: although, as we show, it is APX-hard, there is a e/(e + 1)-
approximation for it. On the other hand, set-buying is not approximable to within a linear factor.
We will show an approximation-preserving reduction from PCSCP to our problem, implying APX-
hardness of our problem. We will then give an e/(e+ 1)-approximation for our problem.

Lemma 2. There is an approximation preserving reduction from the prize collecting set cover
problem to our problem.

Proof. Given an instance of the prize collecting set cover problem, where the sets are denoted
{S1, S2, . . . , Sn} and the elements are denoted e1, e2, . . . , em, we construct a graph where there
is a vertex for each set and each element, and an edge between Si and ej if ej ∈ Si. For each
element ej , the value is α with probability 1. Let L . mnα. For each set Si, the valuation follows
distribution Bernoulli(L − 1, 1/L), so that the virtual valuation is −1 w.p. 1 − 1/L and (L − 1)
w.p. 1/L. To compute the revenue, we let L → ∞. There are two events:

1. If at least one set has positive virtual valuation, the solution chooses all such sets and the
corresponding covered elements. The revenue from each set is (L− 1) with probability 1/L
for a total contribution to the expected revenue approaching n as L → ∞. To compute the
revenue from the elements, note that there is a set with positive virtual value with probability
n/L, in which case the revenue of the elements is at most αm. Therefore, the contribution to
the expected revenue from the elements is αmn/L → 0 as L → ∞. Therefore, the optimal
solution has contribution n from this event as L → ∞, and this solution is trivial to compute.

2. If no set has positive virtual valuation (which happens w.p. 1 − n/L → 1), the solution
chooses the sets (and the elements they cover) of the optimal PCSCP solution to get the
value precisely α|QC∗ |−| C∗|, and this is the contribution from this event.

Therefore, the value of the optimal revenue solution is α|QC∗ | + n − |C∗| as L → ∞, and this
completes the reduction.

Theorem 3. The prize collecting set cover problem (PCSCP) is APX-complete.

Proof. We start with a 4-regular graph. On such a graph with n = 152k nodes, for any ε > 0, it is
NP-HARD to decide if there is an independent set of size at least (74 − ε)k or at most (73 + ε)k.
Given such a graph G, construct the following prize collecting set cover instance: there is a set Sv
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for every vertex v, and an element ue for every edge e. Each set Sv contains the four elements ue

such that vertex v is adjacent to edge e in G. We further set α = 1/3.
We first note that we can assume, without loss of generality, that any optimal solution C∗ to

the induced PCSCP instance uses only disjoint sets: i.e., ∀i, j ∈ C∗, Si ∩ Sj = ∅. Assume not and
let i, j ∈ C∗ be two sets such that Si ∩ Sj 2= ∅. Consider the alternative solution C = C∗ \ {j}.
Since each set contains exactly four elements, QC contains at least |QC∗ |− 3 elements, and so the
value of C is (1/3)|QC |+n− |C| ≥ (1/3)(|QC∗ |− 3)+n− (|C∗|− 1) = (1/3)|QC∗ |+n− |C∗|.
Therefore, C is optimal as well.

Now consider a solution in which the chosen sets C are disjoint. Any such solution covers 4|C|
vertices and so has value n+(1/3)|C|, and it corresponds to an independent set of vertices in G of
size |C|. Thus it is NP-hard to distinguish between instances with an optimal solution of value at
least 152k + (1/3)(74− ε)k or at most 152k + (1/3)(73 + ε)k, so it is NP-hard to approximation
PCSCP to within a factor of 152+(1/3)(74)

152+(1/3)73 ≈ 1.002.

Corollary 4. The problem of maximizing the expected revenue is APX-hard.

4 Step-Function Externalities
Although the optimal auction is NP-hard to compute and NP-hard to approximate on every instan-
tiation of values, it is in fact easy to approximate on average. The following very simple allocation
function has expected revenue within a factor 1/2 of the optimal expected revenue. In Appendix B,
we show that this can be generalized to a (1/4)-approximation for the limited-supply setting.

Divide vertices into two sets S0 and S1 such that each vertex i ∈ S0 (respec-
tively S1) has a neighbor in the opposing set S1 (respectively S0). Note that this can
be done efficiently, e.g. by computing a spanning tree of G and considering an ar-
bitrary 2-coloring of it. Suppose S0 has higher expected positive virtual value, i.e.,∑

i∈S0
E[max(φi(vi), 0)] ≥

∑
i∈S1

E[max(φi(vi), 0)]. For each vertex i ∈ S0, choose
an arbitrary neighbor ji ∈ S1. These vertices will be used to make our desired alloca-
tion feasible. Let S+

0 = {i ∈ S : φ(vi) ≥ 0} be the bidders with positive virtual value
in set S0 for a particular instantiation of values, and S ′

1 = {j : j = ji, i ∈ S+
0 } be their

designated neighbors. Then allocate to every bidder in S+
0 ∪ S ′

1.

To see that this is a (1/2)-approximation, note that the expected optimum revenue is at most∑
i E[max(φi(vi), 0)] since at best a mechanism can extract φi(vi) from all bidders i with pos-

itive virtual value. The above mechanism gets expected revenue
∑

i∈S+
0
E[max(φi(vi), 0)] from

the bidders in S+
0 , which is at least half the optimum expected revenue by linearity of expecta-

tion and our choice of S+
0 . For bidders j ∈ S ′

1, note that j’s expected allocation is independent
of its value, i.e., we have xi(vi) = xi for some constant xi. As a result, the revenue from i is
E[xiφi(vi)] = xiE[φi(vi)]. Thus, since the expected virtual value of any bidder is non-negative
(see Fact 1), the expected revenue of bidders in S ′

1 is non-negative.
Further note that this analysis is tight, as shown by the simple example of a single edge whose

endpoints have value 1 with probability p and 0 with probability 1− p for some 0 < p < 1. Then

10



the virtual value is 1 with probability p and −p
1−p with probability 1 − p. Consider the mechanism

which allocates to both nodes when at least one of them has positive value. The expected revenue
of this mechanism is 2p2 + 2p(1 − p)(1 + −p

1−p) = 2p − 2p2 whereas the (1/2)-approximation
described above has expected revenue p. The ratio of the two approaches 1/2 as p → 0.

The main reason why our analysis can not guarantee better than a 0.5-approximation is that
the upper bound is quite loose. In fact, we show in Example A.1 in Appendix A that there exists
a gap of 0.75 between the value of the upper bound and the optimum solution. Furthermore, our
mechanism is “close to” a threshold strategy in which each player receives the good whenever
his value surpasses a pre-defined threshold.5 Using thresholds of 0 for players in S0 and φ−1(0)
for players in S1 yields a mechanism with the same revenue as that outlined above. We show in
Appendix C that no threshold strategy can have better than 0.5 approximation.

In order to improve this approximation ratio, we need to leverage our detailed knowledge
of the graph structure. In the remainder of this section, we present both a greedy and a linear-
programming-based approach that get a 0.73-approximation for general distributions. Both ap-
proaches follow the same general auction scheme.

4.1 General Auction Scheme
The key observation is that any auction gets positive contributions from two types of nodes: those
with positive virtual value who also have a neighbor with positive virtual value, and those with
positive virtual value whose neighbors all have negative virtual value. Our general auction scheme
first estimates the relative contributions of these two types and then tailors its strategy accordingly.
In the extremes, where one type contributes most of the revenue, a simple deterministic scheme
has a good approximation. When the contributions are more-or-less equal, we use either a greedy
or LP-based algorithm to get a constant approximation.

To define the auction, we first introduce some notation to capture the contribution from the
types discussed above. For an instantiation of values v, let x∗

i (v) be the optimum allocation to
agent i. Then optimal expected revenue is Ev[

∑
i x

∗
i (v)φi(vi)]. Fix a player i and define the

following events:

• P+
i is the event that φi(vi) ≥ 0 and there exists j ∈ N(i) such that φj(vj) ≥ 0.

• P−
i is the event that φi(vi) ≥ 0 and all neighbors of i have negative virtual value.

• Ni is the event that φi(vi) < 0.

Observe that the expected revenue of the optimum allocation from agent i can be written as

Ev[xi(v)φi(vi)] = Ev[x
∗
i (v)φi(vi)|P+

i ]Pr(P+
i )

+Ev[x
∗
i (v)φi(vi)|Ni]Pr(Ni)

+Ev[x
∗
i (v)φi(vi)|P−

i ]Pr(P−
i )

Define
A∗

i = Ev[x
∗
i (v)φi(vi)|P−

i ]Pr(P−
i ),

5Whether he is then allocated depends on whether any of his friends also pass their thresholds and receive the
good.
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B∗
i = Ev[x

∗
i (v)φi(vi)|P+

i ]Pr(P+
i ),

and
C∗

i = Ev[x
∗
i (v)φi(vi)|Ni]Pr(Ni)

(note C∗
i is negative). Let A∗ =

∑
i A

∗
i , B∗ =

∑
i B

∗
i , and C∗ =

∑
i C

∗
i (note we do not need to

compute these values in our auction scheme). The auction scheme runs three algorithms and then
takes the best solution, breaking ties randomly. The first algorithm tries to extract a revenue of A∗;
the second aims for a revenue of B∗; the third aims for a revenue of (1− 1/e)A∗ +B∗ + C∗.

General Auction Scheme. Run the following three algorithms and output the one
with highest virtual value. In case of a tie, break the tie randomly.

1. Allocate to all nodes i for which φi(vi) ≥ 0 as well as all nodes i for which Ni

happens and for some neighbor j of i, φj(vj) ≥ 0.
2. Allocate to all nodes for which P+

i happens.
3. Use one of the below subroutines.

The subroutines are discussed in the following sections. The combinatorial subroutine is greedy
and uses intuition from the greedy algorithm for set cover. The LP-based subroutine uses a depen-
dent randomized rounding scheme. The key property of each subroutine, proved in lemmas in the
corresponding sections, is that each generates revenue R = (1− 1/e)A∗+B∗+C∗. We show that
this implies an e/(e+ 1)-approximation for our general auction scheme.

Theorem 5. For any subroutine with expected revenue at least equal to R = (1−1/e)A∗+B∗+C∗,
the approximation guarantee of the general auction scheme is e/(e+ 1) ≈ 0.73.

Proof. For an instantiation of values v, let xi(v) be the expected allocation of i (over the ran-
domization in the auction scheme). Correspondingly, define A,B,C for the auction’s allocation
function, and note that the auction scheme’s expected revenue is A+B+C. There are three cases
depending on which algorithm the auction scheme selects. If the auction scheme selects the first
algorithm, then xi(v) = 1 for all i for which φi(vi) ≥ 0 so A ≥ A∗ (conditioned on the selection
of the first algorithm). Lemma 3 further shows that B + C ≥ 0 and so the total revenue of the
auction in this case is at least A ≥ A∗. If the auction scheme selects the second algorithm, then
xi(v) = 1 for all i such that P+

i happens, and so the revenue of the scheme is at least B. In
the optimal allocation, x∗

i (v) also equals 1 for all such i and hence the revenue of the auction is
at least B = B∗. Finally, if the subroutine is invoked, by assumption it guarantees a revenue of
R = (1− 1/e)A∗ +B∗ + C∗.

The optimal expected revenue is at most A∗ + B∗ + C∗, and so the approximation ratio of the
auction is at least

min
max(A∗, B∗, (1− 1/e)A∗ +B∗ + C∗)

A∗ +B∗ + C∗ .

For computing the above minimum, normalize A∗ = 1 and suppose B∗ = x and B∗+C∗ = rx for
0 ≤ r ≤ 1 (such r exists since B∗ + C∗ ≥ 0 by Lemma 3 and C∗ ≤ 0). Thus we want to compute
the minimum of max(1, x, 1 − 1/e + xr)/(1 + xr) where 0 ≤ r ≤ 1. We can do a case analysis
on the maximum:

12



1. xr ≤ 1/e. Then, we are minimizing max(1, x)/(1 + xr). We can set xr = 1/e, so that the
lowest possible value is e/(e+ 1).

2. xr ≥ 1/e and x(1− r) ≤ 1−1/e. Then we have (1−1/e+xr)/(1+xr). Setting xr = 1/e
implies e/(e+ 1).

3. x ≥ 1 and x(1 − r) ≥ 1 − 1/e. Then we have x/(1 + xr). But xr ≤ x + 1/e − 1, so that
we are minimizing x/(x+ 1/e) for x ≥ 1, so that we again have e/(e+ 1).

Thus the approximation ratio is e/(e+ 1) ≈ 0.73.

The proof of the approximation guarantee requires the following technical lemma which shows
that the contribution of a node i when P+

i happens outweighs his contribution when Ni happens
(for reasonable allocation rules).

Lemma 3. For any monotone non-decreasing allocation function x that allocates to nodes i with
φi(vi) < 0 only if there is a neighbor j with φj(vj) ≥ 0, and corresponding B,C, we have
B + C ≥ 0.

Proof. We prove the inequality for each node i separately. Let N(i) be the neighborhood of i and
note that:

Bi + Ci = Evi [xi(vi)φi(vi)|P+]Pr(P+)

+Evi [xi(vi)φi(vi)|N ]Pr(N)

= Evi [xi(vi)φi(vi)|P+]Pr(P+)

+(Evi [xi(vi)φi(vi)|N, ∃j ∈ N(i),φj(vj) ≥ 0]

·Pr(∃j ∈ N(i),φj(vj) ≥ 0)Pr(N)

+Evi [xi(vi)φi(vi)|N, ∀j ∈ N(i),φj(vj) < 0]

·Pr(∀j ∈ N(i),φj(vj) < 0))Pr(N).

But by assumption conditioned on N and the event [∀j ∈ N(i),φj(vj) < 0], xi(vi) = 0, and
therefore, letting E be the event [∃j ∈ N(i),φj(vj) ≥ 0], we have

B + C = Evi [xi(vi)φi(vi)|P+]Pr(φi(vi) ≥ 0) Pr(E)

+Evi [xi(vi)φi(vi)|N,E] Pr(N) Pr(E)

= (Evi [xi(vi)φi(vi)|P+, E]Pr(φi(vi) ≥ 0)

+Evi [xi(vi)φi(vi)|N,E]Pr(N)) Pr(E)

= Evi [xi(vi)φi(vi)|E] Pr(E)

≥ 0,

where the second equality follows because the event P+
i implies event E and the last inequality

follows because x(vi) is a monotone non-decreasing function of vi as φ(·) is regular and also that
Evi [φi(vi)] = 0 (see Fact 1).
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The last step is to show that our auction scheme is BIC by proving that it is monotone. It is easy
to check the monotonicity of the first two algorithms, and also both subroutines used as the third
algorithm. Some attention has to be payed to the cases in which we switch between algorithms
when an agent changes his value. One can check that as a player increases his value, if the value
of any of the algorithms increase, that player has to be allocated in the new solution. Thus, when
we consider the set of algorithms that produce the maximum value, the algorithms that are added
to the set of maximizers (if any) allocate that player (possibly some algorithms are dropped out of
the set of maximizers). By our random tie-breaking among algorithms, this does not decrease the
probability of allocation.

4.2 Greedy Subroutine
The greedy subroutine follows intuition from the greedy algorithm for set cover. Let P be set
of agents i with non-negative virtual value φi(vi) ≥ 0 who have neighbors with non-negative
virtual value, i.e., {i : φi(vi) ≥ 0 and ∃i′ ∈ N(i),φi′(vi′) ≥ 0}. For each node j with negative
virtual value φj(vj) < 0, associate a set Qj = {i : i ∈ N(j), i /∈ P,φi(vi) ≥ 0}, i.e., Qj is
the set of neighbors of j with non-negative virtual value who are not in P . If we select j (which
comes at a cost of φj(vj)), then we cover Qj (gaining revenue equal to the sum of virtual values of
agents i ∈ Qj). The greedy subroutine initially selects P and then iteratively select sets Qj whose
marginal “bang-per-buck” is maximized.

Greedy Subroutine.
1. Initialize the set of allocated nodes S ← P .
2. Initialize the bang-per-buck of each Qj to bj = −

∑
i∈Qj

φi(vi)/φj(vj).
3. Repeat until for all Qj , bj < 1:

(a) Let j∗ be the node with bj∗ = maxj bj .
(b) Set S ← S ∪ {j∗} ∪Qj∗ .
(c) For all Qj , update bj = −

∑
i∈Qj∩(V−S) φi(vi)/φj(vj).

Lemma 4. The expected value of greedy is at least (1− 1/e)A∗ +B∗ + C∗.

Proof. Note that both OPT and the greedy algorithm select all the vertices in P , and therefore get
revenue of B∗ from them.

Without loss of generality, assume that the rest of the positive elements all have unit value by
replicating them. Let nj be the number of elements in Qj and let Q∗ be the set of nodes with
negative virtual value that OPT picks. Therefore,

OPT =
∑

j∈Q∗

nj − φj(vj)

For each Qj , sort the elements by the decreasing order of the time greedy covers them. Let the
time stamp be some very small value for any element not covered. Notice that we sort the elements
of each set independently, and therefore an element which is in multiple sets is going to have a
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possibly different index in each of them. So when greedy covers the i’th element of a set Qj , all
the elements 1, . . . , i − 1 of that set are uncovered. Note that if φj(vj) ≤ i then i is covered by
greedy since otherwise Qj has positive value. At the time i is covered by greedy, the option of
picking set Qj gives the per-element reward of 1− φj(vj)/i. So we can write the following lower
bound for the value that greedy gets:

∑

j∈Q∗

nj∑

cj≤i

1− φj(vj)/i =
∑

j∈Q∗

nj − φj(vj)− φj(vj) ln(φj(vj)/nj)

=
∑

j∈Q∗

φj(vj)(
nj

φj(vj)
− ln(

nj

φj(vj)
))− φj(vj)

≥
∑

j∈Q∗

φj(vj)(
nj

φj(vj)
(1− 1/e))− φj(vj)

=
∑

j∈Q∗

nj(1− 1/e)− φj(vj),

where the inequality followed because for any a ≥ 1, a− ln(a) ≥ a(1− 1/e).

4.3 LP-Based Subroutine
As discussed above, the main hurdle in the analysis of the simple auction schemes was the loose
upper bound on the optimal expected revenue. In this section, we use a linear program whose
constraints characterize the feasible allocation rules as an upper bound. We then use this LP to
bound the expected revenue of an LP-based subroutine for the auction scheme.

Recall that for each profile of types v with virtual valuation functions {φi(·)}, the optimal
revenue is equal to the maximum sum of virtual values among feasible allocations. In step-function
externalities, an allocation x(·) is feasible if each vertex i with xi(v) = 1 had a neighbor j with
xj(v) = 1. Hence we can write the following LP relaxation of the optimum revenue:

max
x

∑
i xi(v)φi(vi) (1)

s.t. xi(v) ≤
∑

j∈N(i) xj(v) ∀i
0 ≤ xi(v) ≤ 1 ∀i.

Each instantiation of types induces one such LP. As discussed in Section 3, given the instanti-
ation of types, our problem is more general than the set-buying problem studied in Feige et. al. [6]
whose LP-relaxation is shown to have linear gap. Hence the LP value might seem like a very loose
upper bound. However, recall that we only require our auction to have close-to-optimal revenue
on average. In other words, we need a rounding scheme whose expected value, over the distribu-
tion of LPs induced by the type distributions, is close to the expected value of the LPs. Thus we
can perform poorly on hard instances so long as we do well on average, and so LPs with linear
worst-case integrality gaps might still be useful in designing an LP-based subroutine with good
approximation ratios.
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LP-Based Subroutine. Solve LP 1 for the instantiation of types v and let x∗
i (v) be an

optimal solution.
1. For each i with φi(vi) < 0, give i a copy of the good with probability x∗

i (v).
2. For each i with φi(vi) ≥ 0, give i a copy of the good if it has a neighbor j that

either
(a) has non-negative virtual value φj(j) ≥ 0, or
(b) has negative virtual value φj(j) < 0 and received the good in step 1.

To use this subroutine in our auction scheme, we must argue its expected revenue is at least
R = (1 − 1/e)A∗ + B∗ + C∗. The analysis of the randomized rounding requires a key lemma:
the LP constraints corresponding to an agent i with positive virtual value must be tight in an
optimal solution x∗(v). Namely, x∗

i (v) = min(1,
∑

j∈N(i) x
∗
j(v)). Hence to round and get constant

contribution from these agents, we can round the nodes with negative virtual value with probability
equal to their LP values and then round nodes with positive virtual value to one if some neighbor
was rounded to one. To bound the expected allocation of such an agent i in the rounding, we note
that in the worst-case all neighbors of i have negative virtual value. However, even in this case,
i is allocated so long as at least one j ∈ N(i) receives the good. This happens with probability
x∗
j for neighbor j and so the allocation probability of i from the rounding scheme is at least 1 −∏
j∈N(i)(1− x∗

j). This is within a (1− 1/e) fraction of x∗
i .

Let xi(v) be the expected allocation of i in the subroutine, and define A,B,C as the expected
revenue contributions from nodes of each type accordingly.

Lemma 5. A ≥ (1− 1/e)A∗.

Proof. First note that conditioned on event P−, we have x∗
i (v) = min(1,

∑
j∈N(i) x

∗
j(v)), and

xi(v) = 1 −
∏

j∈N(i)(1 − x∗
j(v)). Let y =

∑
j∈N(i) x

∗
j(v) and d = |N(i)|. Fixing the value of∑

j∈N(i) x
∗
j(v), the minimum of 1−

∏
j∈N(i)(1− x∗

j(v)) happens when all the variables are equal,
in which case we have xi(v) = 1− (1− y

d)
d ≥ 1− 1

ey . Thus when y ≤ 1, we have x∗
i (v) = y and

so xi(v)
x∗
i (v)

is at least 1−e−y

y , whose minimum value is equal to 1− 1
e . When y ≥ 1, we have x∗

i (v) = 1

and so xi(v)
x∗
i (v)

is at least 1− e−y, whose minimum value is again 1− 1
e . Therefore we have

Ai = Evi [xi(vi)φi(vi)|P−]Pr(P−)

≥ (1− 1

e
)Evi [x

∗
i (vi)φi(vi)|P−]Pr(P−)

= (1− 1

e
)A∗

i

Summing over i yields the result.

Theorem 6. The expected revenue of the LP-based subroutine is R = (1− 1/e)A∗ +B∗ + C∗.

Proof. Lemma 5 shows A ≥ (1 − 1/e)A∗. Furthermore, from the construction of x we see that
conditioned on P+ and N , x and x∗ are equal so B + C = B∗ + C∗. Therefore the total revenue
of the subroutine is at least (1− 1/e)A∗ +B∗ + C∗.
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We now prove that the above LP has integrality gap at most 0.828. This means that we can
not use the LP solutions as an upper bound in order to get approximation guarantees better than
0.828. We show the gap by proving the gap on the analogous LP for the PCSCP, which using the
reduction in Lemma 1 implies the gap on the original LP.

Theorem 7. The above LP has integrality gap at most 0.828.

Proof. We construct an LP gap instance for the prize collecting set cover problem. In our instance,
the input is a graph; the sets are vertices and the elements are edges, so that each edge is present
in the sets corresponding to its incident vertices. For an n-vertex graph, the goal is to choose a
subset X of vertices to maximize α|E(X)|+ n− |X|, where E(X) is the subset of edges incident
to some vertex in X .

The LP has a variable xe for each edge, which is 1 if the edge is selected in the event that all
vertices in the graph have negative virtual valuation. Similarly, yv is the variable denoting whether
vertex v is selected in the same event. The LP can be reformulated as:

Maximize n−
∑

v

yv + α
∑

e

xe

xe ≤ yu + yv ∀e = (u, v) ∈ E
xe, yu ∈ [0, 1] ∀e ∈ E, u ∈ V

Consider a complete graph on n vertices, for large n. By appropriate scaling, let us rewrite the
objective as |E(X)|+ αn(n− |X|). Set all yv = 1 and xe = 1/2. For this fractional solution, the
objective is approximately n2(1 + α)/2. Suppose the optimal integer solution chooses k vertices
and all incident edges. Its value is approximately nk − k2/2 + αn(n − k). Optimizing over
k, we obtain k = n(1 − α), so that the optimal value is n2(1 + α2)/2. The ratio is therefore
(1 + α2)/(1 + α), so that α =

√
2− 1. This yields a ratio of 2(

√
2− 1) = 0.828.

5 Submodular Externalities
In order to design an approximately optimal mechanism for the more general problem with sub-
modular externalities, we identify a set of mechanisms, called influence-and-exploit mechanisms.
In the following, we first show that a simple random-sampling mechanism which belongs to this
category of mechanisms achieves a 0.25-approximate mechanism for this problem. Then, we fo-
cus on optimizing over these mechanisms and design improved approximation algorithms for this
problem. We start by defining influence and exploit-mechanisms:

Definition 5. For a fixed price p and any set of players S, define the Influence-and-Exploit Mech-
anism IE(S) as follows. Give the good to any i ∈ V \S regardless of its value and to any i ∈ S if
his value is more than the threshold p.
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5.1 Constant Approximation
First, we observe that a simple IE mechanism gives a 0.25-approximation to the optimal revenue
for the setting of single-parameter submodular externalities. Consider the following algorithm:

• Let S be a random subset of bidders where each i ∈ S is chosen independently with proba-
bility 1

2 .
• Influence: Give the good to all i ∈ V \ S regardless of the value.
• Exploit: Give the good to a bidder j ∈ S if vj ≥ pj(S), where pj(S) = φ−1

j,S(0) is the inverse
virtual value of zero for the distribution Fj,S .

In order to prove the approximation guarantee, we make use of the following lemma.

Lemma 6 ([7]). For a ground set V , Let f : 2V → * be a monotone submodular set function.
Form set S by picking elements i ∈ V independently at random with some fixed probability p. Then

E[f(S)] ≥ pE[f(V )]

Define the revenue function Ri(S) = maxp p(1−Fi,S(p)), where Fi,S(p) = Prvi∈Fi(vigi(S) ≤
p). We first prove that

∑
i Ri(V ) is an upper bound on the revenue of any mechanism.

Lemma 7. The expected revenue of any Bayesian incentive compatible mechanism is at most∑
i Ri(V ).

Proof. Recall that we normalized gi(V ) = 1. As a result, Fi,V (p) = Fi(p). So by definition
Ri(V ) = maxp p(1 − F (p)). Consider any mechanism with allocation function xi(vi) ≤ 1. By
Myerson’s characterization, the expected revenue of the mechanism is

∑
i Evi [xi(vi)φi(vi)] ≤∑

i E[max(0,φi(vi))] =
∫∞
φ−1(0) φi(x)f(x)dx =

∫∞
φ−1(0)(xf(x) − (1 − F (x)))dx = −x(1 −

F (x))|∞φ−1(0) = pi(S)(1− Fi,S(pi(S))) = Ri(V ).

Lemma 8. If the revenue function is submodular for all agents, then the above mechanism is a
4-approximation of the optimal mechanism.

Proof. Consider any agent i. With probability 1/2, it chosen to be in S. Fixing the set S, the
expected revenue we get from i is Ri(S) = pi(S)(1 − Fi,S(pi(S))). Now note that each agent is
independently sampled, so over the random choices of the mechanism, and by submodularity of
Ri(S), the expected revenue from i (conditioned on being in S) is at least Ri(V )/2. Since we get
this revenue with probability 1/2, the expected revenue from i is at least Ri(V )/4. This gives a
4-approximation.

Similar to [14], we may simply assume that the revenue function Ri is monotone and submod-
ular for each bidder, and indeed our result holds for any settings that induce monotone submodular
revenue functions. Interestingly, for the single-parameter submodular setting, the submodularity
of the revenue function follows from the submodularity of the local influence function.

Lemma 9. The revenue function is submodular for the single-parameter submodular externality
setting, and the concave externality setting.
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Proof. Consider a player i with distribution Fi over vi. Then

Ri(S) = max
p

p(1− Fi,S(p))

= max
p

p(1− Fi(p/g(S)))

= g(S)max
p′

p′(1− F (p′))

where p′ = p/g(S). Submodularity of Ri(.) then follows directly from submodularity of g(.).

Applying the above two lemmas, we conclude that the following:

Theorem 8. There exists a 1
4 -approximate IE mechanism to the optimum revenue in the single-

parameter submodular externality model, and thus in the concave externality model.

5.2 Optimizing over IE Mechanisms
Now that we proved that IE mechanisms achieve a constant-factor approximation to the optimal
revenue, it would be interesting to optimize among IE mechanisms. To do so we need to find a set
V \ S of initial (influential) bidders to get the good regardless of their value, and then exploit the
remaining bidders by setting optimal thresholds as above. Let χ(v) be the outcome of this strategy,
that is, χi(v) = 1 if the good is given to i for the profile of types v in IE(S). Let Φ(S) be the
expected revenue of IE(S). Our goal is to find a subset S of bidders that maximizes Φ(S). We
do so by arguing that Φ(S) is a (not necessarily monotone) submodular function and then using
submodular function maximization results. We present the results in this section with regard to
concave externalities in order to keep notation simple; the results extend easily to the more general
submodular externalities. We first characterize the expected revenue of any IE strategy.

Lemma 10. Let Xi,S(v) = |{j ∈ N(i) : χj(v) = 1}| where N(i) is the neighborhood of i
in G. Then the expected revenue of any IE strategy, IE(S), for each i ∈ S is equal to p(1 −
Fi(p))Ev[h(Xi,S(v))] where h(·) is the concave function defining the externality (i.e., gi(o) =
oi · h(|{j ∈ N(i) : oj = 1}|)).

Proof. Consider IE(S) with allocation function x and outcome function χ. By Myerson’s charac-
terization, we can write the expected revenue of i in IE(S) as

Ev[xi(v)φi(vi)] = Ev[gi(χ(v))φi(v)]
= Ev[χi(v)h(Xi,S(v))φi(v)].

Note in any IE strategy, χi(v) and χj(v) are independent random variables (when v is drawn from
F ) for any i 2= j. Thus χi(v) is also independent from Xi,S(v). So we can write the revenue of i
as E[h(Xi,S(v))]E[χi(v)φi(vi)]. Since we set χi(vi) = 1 when φ(vi) ≥ 0, E[χi(v)φ(vi)] is equal
to the optimum revenue from distribution Fi, which is equal to p(1− Fi(p)).

We next prove the key structural property of the revenue function Φ(S) for IE mechanisms,
namely that it is submodular.
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Lemma 11. The set function Φ is a non-negative submodular function of S.

Proof. First note that each agent i ∈ V \S contributes 0 to the revenue, and each i ∈ S contributes
Φi(S) = p(1− Fi(p))Ev[h(Xi,S(v))], where Xi,S(v) is a random variable denoting the number of
i’s neighbors that are given the good to at profile v, that is Xi,S(v) = |{j ∈ N(i) : χj(v) = 1}|. For
all i, S, let Fi,S be the discrete distribution (with density function fi,S) of Xi,S(v) when v is drawn
from the joint distribution of types. We show submodularity of Φ(.) by proving submodularity of
all Φi(.) for all i, that is Φi(S ∪ {j})−Φi(S) ≤ Φi(S ′∪{j})−Φi(S ′), for all S ′ ⊆ S and all i and
j. Submodularity of Φ(.) follows from submodularity of Φi(.)’s, since Φ(S) =

∑
i )∈S Φi(S). First

note that if i is not a neighbor of j, then we have 0 = Φi(S∪{j})−Φi(S) ≤ Φi(S ′∪{j})−Φi(S ′) =
0. Now assume that i is a neighbor of j. Define Φ =Φ i(S ∪ {j})− Φi(S). Now we have

Φ = p(1− Fi(p))(Ev[h(Xi,S∪{j}(v))]− Ev[h(Xi,S(v))])

= p(1− Fi(p))(Ek∼Fi,S∪{j} [h(k)]− Ek∼Fi,S [h(k)])

= p(1− Fi(p))
∑

k

h(k)(fi,S∪{j}(k)− fi,S(k))

First we show that fi,S∪{j}(k) = Fj(p)fi,S(k + 1) + (1 − Fj(p))fi,S(k). To compute the
probability that i has k neighbors using strategy IE(S ∪ {j}), we consider two events. First is the
event in which vj < p, which happens with probability Fj(p). In this case, we need k − |V \(S ∪
{j})| neighbors of i in set S to have value more than p. If this happens when using strategy IE(S),
i is going to have k− |V \(S∪{j})|+ |V \(S∪{j})|+1 = k+1 neighbors that are allocated (note
that j is in the influence set and therefore allocated). The probability of this event is fi,S(k+1) by
definition. The second event is the event in which vj ≥ p, which happens with probability 1−Fj(p).
In this case, we need k− |V \(S∪{j})|−1 neighbors of i in set S to have value more than p. If this
happens when using strategy IE(S), i is going to have k−|V \(S∪{j})|−1+|V \(S∪{j})|+1 = k
neighbors that are allocated. The probability of this event is fi,S(k) by definition. Summing up,
we conclude our desired equation, fi,S∪{j}(k) = Fj(p)fi,S(k + 1) + (1− Fj(p))fi,S(k).

As a result,

Φ = p(1− Fi(p))Fj(p)
∑

k

h(k)(fi,S(k + 1)− fi,S(k))

= p(1− Fi(p))Fj(p)
∑

k

fi,S(k)(h(k − 1)− h(k))

Now recall that h is a concave function of k. As a result, H(k) = h(k − 1) − h(k) is a
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non-decreasing function of k. Therefore,

Φi(S
′ ∪ {j})− Φi(S

′)− (Φi(S ∪ {j})− Φi(S))

= p(1− Fi(p))Fj(p)
∑

k

H(k)(fi,S′(k)− fi,S(k))

= p(1− Fi(p))Fj(p)
∑

k

H(k)(Fi,S′(k)−

Fi,S′(k − 1)− (Fi,S(k)− Fi,S(k − 1)))

= p(1− Fi(p))Fj(p)

·
∑

k

(Fi,S′(k)− Fi,S(k))(H(k)−H(k + 1))

Note that for S ′ ⊃ S, Fi,S′(k) ≥ Fi,S(k). This is because any vertex in S ′\S is always allocated
in IE(S), but only with some probability in IE(S ′), and therefore the probability that i has k or less
allocated neighbors in IE(S) is only less than in IE(S ′). So Fi,S′(k)− Fi,S(k) ≥ 0 for all k. Also,
since H is a non-decreasing function, H(k)−H(k + 1) ≤ 0.

It only remains to consider the revenue function of j when we add j to sets. For S such that
j /∈ S, we have

Φj(S ∪ {j})− Φj(S) = p(1− Fj(p))Ev[h(Xj,S(v))]

Again, note that for S ′ ⊃ S, Fj,S(k) ≤ Fj,S′(k), therefore

EFj,S′ [h(k)] − EFj,S [h(k)]

=
∑

k

h(k)(fj,S′(k)− fj,S(k))

=
∑

k

(Fj,S′(k)− Fj,S(k))

·(h(k)− h(k + 1)) ≤ 0

Function Φ(.) as described above is non-negative and submodular, but not necessarily mono-
tone. In order to obtain a constant-factor approximation for maximizing over IE mechanisms, we
can simply apply non-monotone submodular maximization algorithms for this problem [7, 10].
For example, the following simple local search algorithm gives a 0.33-approximation to this prob-
lem [7]: (i) Let S = {i|i = argmaxi′∈V (Φ({i′})}, and (ii) at each step either add or remove a
bidder i from S if this adding or removing increases the value of Φ(S) by a 1 + ε

n factor, (ii) After
reaching a local optimal L, output the better of L and L̄. The above simple algorithm acheives
0.33-approximation for the problem of maximizing over IE strategies. One can apply a recently-
developed randomized local search algorithm to acheive a 0.41-approximation of Oveis Gharan
and Vondrak [10] for this problem. We conclude with the following theorem:

Theorem 9. The problem of optimizing over IE mechanisms can be approximated within a factor
0.41 in polynomial time.
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A Loose upper bound
Consider an upper bound on the optimal expected revenue which is equal to the sum of positive
virtual values. The following example shows that the optimal expected revenue can be just a 3/4-
fraction of this upper bound, indicating that better approximations require better upper bounds.

Example A.1. Consider the following tree: there is a root vertex; the root has n children, called
level 1 nodes; and each level 1 node has one child, the level 2 nodes. Assume that the distribution
on values is such that the virtual value is 1 with probability p = 1/2, and −1 with probability 1/2.
The upper bound’s value is

∑
i E[max(0,φ(vi))] = (2n + 1)/2. Now consider any pair v1 and

v2. Assuming that the root is always allocated (the best case for the pair), the optimum solution
is to allocate both when they are positive, only v1 when it is the only one with positive value, and
neither otherwise. The expected value of this allocation is 3/4. There are n pairs and at best the
optimum can get revenue 1 from the root, and so the optimum revenue is at most 3

4n + 1. Hence

the ratio of the optimum to the upper bound is at most
3n
4 +1
2n+1

2

→ 3/4.

B Limited-Supply Setting
All auctions discussed so far assume the auctioneer has an unlimited supply of the good. When
there is a limited supply, we must modify the above techniques to satisfy the supply constraint. The
below theorem shows how to extend our simple (1/2)-approximation presented at the beginning
of Section 4 to get a (1/4)-approximation with limited supply. The LP-based auction also has a
natural extension to the limited-supply setting. Namely, we can add a constraint to the LP forcing
the total number of distributed goods to be at most the supply limit. However, we can not apply
our rounding scheme directly to this altered LP: it does not satisfy supply constraints (even in
expectation). We leave the problem of rounding this altered LP as an open question.

Theorem 10. There is a (1/4)-approximation auction for the limited-supply setting.
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Proof. Suppose the auctioneer has k copies of the good. Compute a spanning tree of the social
network and color the nodes red and blue such that each red node has a blue neighbor in the
spanning tree (and vice versa). Pick a color uniformly at random and name the nodes of this color
S1 and nodes of the other color S2. Allocate to the k/2 highest positive virtual values in S1, and
their neighbors in S2 to ensure feasibility. We now compute the expected virtual value of this
allocation for the red nodes. We condition on the event E that the red nodes were chosen to be set
S1.

Ev[
∑

i red

xi(v)φi(vi)] = Ev[
∑

i red

xi(v)φi(vi)|E] Pr[E]

+Ev[
∑

i red

xi(v)φi(vi)|E] Pr[E]

≥
(
1

2

)
Ev[

∑

i red

xi(v)φi(vi)|E]

=

(
1

2

)
Ev[ max

S⊆ red:|S|≤k/2

∑

i∈S

φi(vi)]

where the second step follows since the expected allocation of any red node i is independent of its
value conditioned on E. Therefore by fact 1 each such vertex contributes a non-negative amount
to the revenue. The third step follows since conditioned on E we picked the best set of size at most
k/2 from the red nodes.

Now to prove the approximation guarantee first define X = E[maxS:|S|≤k

∑
i∈S φ(vi)], and

note this is an upper bound on the optimum revenue, since in the best case we can allocate the
highest (positive) k virtual values. But we know that for any sampling of the values,

max
S:|S|≤k

∑

i∈S

φ(vi) ≤ max
S⊆ red:|S|≤k

∑

i∈S

φ(vi)

+ max
S⊆ blue:|S|≤k

∑

i∈S

φ(vi)

≤ 2 · ( max
S⊆ red:|S|≤k/2

∑

i∈S

φ(vi)

+ max
S⊆blue:|S|≤k/2

∑

i∈S

φ(vi)),

and therefore,

X = E[ max
S:|S|≤k

∑

i∈S

φ(vi)]

≤ 2(E[ max
S⊆S1:|S|≤k/2

∑

i∈S

φ(vi)]

+E[ max
S⊆S2:|S|≤k/2

∑

i∈S

φ(vi)]),
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by linearity of expectation. Recalling that the expected value of our allocation is at least

E[ max
S⊆S1:|S|≤k/2

(
∑

i∈S

φi(vi))],

and noting that we picked each of the two sets with probability 1/2 to be S1, we conclude that the
expected revenue of our allocation (over the randomness of the algorithm and sampling of values),
is at least 1/4 of the upper bound.

C Threshold Strategies
In this section, we observe that no threshold strategy can have better than 0.5 approximation. Our
example compares the value of all possible strategies to the optimum value, and therefore the result
holds for any upper bound on optimum. Consider again the previous superstar and assume that p
is very small. Consider the strategy in which we allocate both nodes of a pair when at least one
of them has positive value. The value that we get is p2 + 2p(1 − 2p). Now consider any pricing
strategy. The value we get when we set one of the thresholds equal to −p

1−p is at most p. If we set
both thresholds to p we get p2. In any case, the ratio of optimum to any pricing strategy goes to 2
as p → 0.
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