# Approximation and Bayesian Mechanism Design

Jason Hartline

September 6, 2011

This tutorial surveys four recent directions for approximation in Bayesian mechanism design. Result 1: reserve prices are approximately optimal in single-item auctions. Result 2: posted-pricings are approximately optimal multi-item mechanisms. Result 3: optimal auctions can be approximated with a single-sample from the prior distribution. Result 4: BIC mechanism design reduces to algorithm design.

### Goals for Mechanism Design Theory \_\_\_\_\_

**Mechanism Design:** how can a social planner / optimizer achieve objective when participant preferences are private.

#### **Goals for Mechanism Design Theory:**

- Descriptive: predict/affirm mechanisms arising in practice.
- Prescriptive: suggest how good mechanisms can be designed.
- Conclusive: pinpoint salient characteristics of good mechanisms.
- Tractable: mechanism outcomes can be computed quickly.

### Goals for Mechanism Design Theory \_\_\_\_\_

**Mechanism Design:** how can a social planner / optimizer achieve objective when participant preferences are private.

#### **Goals for Mechanism Design Theory:**

- Descriptive: predict/affirm mechanisms arising in practice.
- Prescriptive: suggest how good mechanisms can be designed.
- Conclusive: pinpoint salient characteristics of good mechanisms.
- Tractable: mechanism outcomes can be computed quickly.

**Informal Thesis:** *approximately optimality* is often descriptive, prescriptive, conclusive, and tractable.

### Example 1: Gambler's Stopping Game \_\_\_

#### A Gambler's **Stopping Game**:

- sequence of n games,
- ullet prize of game i is distributed from  $F_i$ ,
- *prior-knowledge* of distributions.

On day i, gambler plays game i:

- realizes prize  $v_i \sim F_i$ ,
- chooses to keep prize and stop, or
- discard prize and continue.

### Example 1: Gambler's Stopping Game \_\_

#### A Gambler's **Stopping Game**:

- sequence of n games,
- ullet prize of game i is distributed from  $F_i$ ,
- prior-knowledge of distributions.

On day i, gambler plays game i:

- realizes prize  $v_i \sim F_i$ ,
- chooses to keep prize and stop, or
- discard prize and continue.

Question: How should our gambler play?

### Optimal Strategy \_\_\_\_\_

### **Optimal Strategy:**

- threshold  $t_i$  for stopping with ith prize.
- solve with "backwards induction".

### Optimal Strategy .

### **Optimal Strategy:**

- threshold  $t_i$  for stopping with ith prize.
- solve with "backwards induction".

#### **Discussion:**

- Complicated: n different, unrelated thresholds.
- Inconclusive: what are properties of good strategies?
- Non-robust: what if order changes? what if distribution changes?
- Non-general: what do we learn about variants of Stopping Game?

### Threshold Strategies and Prophet Inequality -

**Threshold Strategy**: "fix t, gambler takes first prize  $v_i \geq t$ ".

(clearly suboptimal, may not accept prize on last day!)

### Threshold Strategies and Prophet Inequality.

**Threshold Strategy**: "fix t, gambler takes first prize  $v_i \geq t$ ".

(clearly suboptimal, may not accept prize on last day!)

**Theorem:** (Prophet Inequality) For t such that  $\Pr[$ "no prize"]=1/2,

 $\mathbf{E}[\text{prize for strategy } t] \ge \mathbf{E}[\max_i v_i] / 2.$ [Samuel-Cahn '84]

### Threshold Strategies and Prophet Inequality.

**Threshold Strategy**: "fix t, gambler takes first prize  $v_i \geq t$ ".

(clearly suboptimal, may not accept prize on last day!)

**Theorem:** (Prophet Inequality) For t such that  $\Pr[$ "no prize"]=1/2,

$$\mathbf{E}[\text{prize for strategy } t] \geq \mathbf{E}[\max_i v_i] / 2.$$
 [Samuel-Cahn '84]

#### **Discussion:**

- *Simple:* one number *t*.
- Conclusive: trade-off "stopping early" with "never stopping".
- Robust: change order? change distribution above or below t?
- General: same solution works for similar games: invariant of "tie-breaking rule"

- 0. Notation:

  - $x = \Pr[\text{never stops}] = \prod_i q_i$ .
- 1. Upper Bound on  $\mathbf{E}[\max]$ :

2. Lower Bound on **E**[prize]:

- 0. Notation:

  - $x = \Pr[\text{never stops}] = \prod_i q_i$ .
- 1. Upper Bound on  $\mathbf{E}[\max]$ :

$$\mathbf{E}[\max] \le t + \mathbf{E}[\max_i (v_i - t)^+]$$

2. Lower Bound on **E**[prize]:

- 0. Notation:

  - $x = \Pr[\text{never stops}] = \prod_i q_i$ .
- 1. Upper Bound on  $\mathbf{E}[\max]$ :

$$\mathbf{E}[\max] \le t + \mathbf{E}[\max_i (v_i - t)^+]$$

$$\le t + \sum_i \mathbf{E}[(v_i - t)^+].$$

2. Lower Bound on **E**[prize]:

#### 0. Notation:

- $x = \Pr[\text{never stops}] = \prod_i q_i$ .
- 1. Upper Bound on  $\mathbf{E}[\max]$ :

$$\mathbf{E}[\max] \le t + \mathbf{E}[\max_i (v_i - t)^+]$$

$$\le t + \sum_i \mathbf{E}[(v_i - t)^+].$$

2. Lower Bound on **E**[prize]:

$$\mathbf{E}[\mathrm{prize}] \ge (1-x)t +$$

#### 0. Notation:

- $\bullet \ q_i = \Pr[v_i < t].$
- $x = \Pr[\text{never stops}] = \prod_i q_i$ .
- 1. Upper Bound on  $\mathbf{E}[\max]$ :

$$\mathbf{E}[\max] \le t + \mathbf{E}[\max_i (v_i - t)^+]$$

$$\le t + \sum_i \mathbf{E}[(v_i - t)^+].$$

2. Lower Bound on **E**[prize]:

$$\mathbf{E}[\mathrm{prize}] \geq (1-x)t + \sum\nolimits_i \mathbf{E}\big[(v_i - t)^+ \ | \ \mathrm{other} \ v_j < t\big] \ \mathbf{Pr}[\mathrm{other} \ v_j < t]$$

#### 0. Notation:

- $x = \Pr[\text{never stops}] = \prod_i q_i$ .
- 1. Upper Bound on  $\mathbf{E}[\max]$ :

$$\mathbf{E}[\max] \le t + \mathbf{E}[\max_i (v_i - t)^+]$$

$$\le t + \sum_i \mathbf{E}[(v_i - t)^+].$$

2. Lower Bound on **E**[prize]:

$$\mathbf{E}[\text{prize}] \geq (1-x)t + \sum\nolimits_i \mathbf{E}\big[(v_i-t)^+ \mid \text{other } v_j < t\big] \overbrace{\mathbf{Pr}[\text{other } v_j < t]}$$

3. Choose x = 1/2 to prove theorem.

 $\prod_{j\neq i} q_j$ 

#### 0. Notation:

- $x = \Pr[\text{never stops}] = \prod_i q_i$ .
- 1. Upper Bound on  $\mathbf{E}[\max]$ :

$$\mathbf{E}[\max] \le t + \mathbf{E}[\max_i (v_i - t)^+]$$

$$\le t + \sum_i \mathbf{E}[(v_i - t)^+].$$

2. Lower Bound on **E**[prize]:

$$\mathbf{E}[\text{prize}] \geq (1-x)t + \sum\nolimits_i \mathbf{E}\big[(v_i-t)^+ \mid \text{other } v_j < t\big] \overbrace{\mathbf{Pr}[\text{other } v_j < t]}$$

3. Choose x = 1/2 to prove theorem.

 $x \leq \prod_{j \neq i} q_j$ 

#### 0. Notation:

- $x = \Pr[\text{never stops}] = \prod_i q_i$ .
- 1. Upper Bound on  $\mathbf{E}[\max]$ :

$$\mathbf{E}[\max] \le t + \mathbf{E}[\max_i (v_i - t)^+]$$

$$\le t + \sum_i \mathbf{E}[(v_i - t)^+].$$

2. Lower Bound on **E**[prize]:

$$\begin{aligned} \mathbf{E}[\text{prize}] &\geq (1-x)t + \sum_{i} \mathbf{E} \big[ (v_i - t)^+ \mid \text{ other } v_j < t \big] \underbrace{\mathbf{Pr}[\text{other } v_j < t]} \\ &\geq (1-x)t + x \sum_{i} \mathbf{E} \big[ (v_i - t)^+ \mid \text{ other } v_j < t \big] \end{aligned}$$

3. Choose x = 1/2 to prove theorem.

 $x \leq \prod_{j \neq i} q_j$ 

#### 0. Notation:

- $\bullet \ q_i = \Pr[v_i < t].$
- $x = \Pr[\text{never stops}] = \prod_i q_i$ .
- 1. Upper Bound on  $\mathbf{E}[\max]$ :

$$\mathbf{E}[\max] \le t + \mathbf{E}[\max_i (v_i - t)^+]$$

$$\le t + \sum_i \mathbf{E}[(v_i - t)^+].$$

2. Lower Bound on **E**[prize]:

$$\begin{split} \mathbf{E}[\text{prize}] &\geq (1-x)t + \sum\nolimits_i \mathbf{E}\big[(v_i-t)^+ \mid \text{ other } v_j < t\big] \overbrace{\Pr[\text{other } v_j < t]} \\ &\geq (1-x)t + x \sum\nolimits_i \mathbf{E}\big[(v_i-t)^+ \mid \text{ other } v_j < t\big] \\ &= (1-x)t + x \sum\nolimits_i \mathbf{E}\big[(v_i-t)^+\big] \,. \end{split}$$

3. Choose x = 1/2 to prove theorem.

 $x \leq \prod_{i \neq i} q_i$ 

What is the point of a 2-approximation?

Constant approximations identify salient features of model/solution.

- Constant approximations identify salient features of model/solution.
   Example: is X important in MD?
  - no, if mech without X is constant approx
  - yes, otherwise.

- Constant approximations identify salient features of model/solution.
   Example: is X important in MD? competition?
  - no, if mech without X is constant approx
  - yes, otherwise.

- Constant approximations identify salient features of model/solution.
   Example: is X important in MD? competition? transfers?
  - no, if mech without X is constant approx
  - yes, otherwise.

#### What is the point of a 2-approximation?

- Constant approximations identify salient features of model/solution.
   Example: is X important in MD? competition? transfers?
  - no, if mech without X is constant approx
  - yes, otherwise.

[Picasso's Bull 1945-1946 (one month)]



#### What is the point of a 2-approximation?

- Constant approximations identify salient features of model/solution.
   Example: is X important in MD? competition? transfers?
  - no, if mech without X is constant approx
  - yes, otherwise.
- Practitioner can apply intuition from theory.

Picasso: Huit etats du Taureaux, 1945-1946

[Picasso's Bull 1945–1946 (one month)]

#### What is the point of a 2-approximation?

- Constant approximations identify salient features of model/solution.
   Example: is X important in MD? competition? transfers?
  - no, if mech without X is constant approx
  - yes, otherwise.
- Practitioner can apply intuition from theory.
- Exact optimization is often impossible.
   (information theoretically, computationally)

[Picasso's Bull 1945-1946 (one month)]



## Questions?

#### Overview \_

- 0. Review of auction theory
- 1. Single-dimensional preferences

(e.g., single-item auctions)

2. Multi-dimensional preferences.

(e.g., multi-item auctions)

- 3. Prior-independent mechanisms.
- 4. Computationally tractable mechanisms.

Part 0: Review of Auction Theory

[Vickrey '61, Myerson '81, etc.]

### Single-item Auction \_\_\_\_\_

#### **Single-item Auction Problems:**

#### Given:

- one item for sale.
- n bidders (with unknown private values for item,  $v_1, \ldots, v_n$ )
- Bidders' objective: maximize <u>utility</u> = value price paid.

#### Design:

Auction to solicit bids and choose winner and payments.

### Single-item Auction \_\_\_\_\_

#### **Single-item Auction Problems:**

#### Given:

- one item for sale.
- n bidders (with unknown private values for item,  $v_1, \ldots, v_n$ )
- Bidders' objective: maximize <u>utility</u> = value price paid.

#### Design:

Auction to solicit bids and choose winner and payments.

#### **Possible Auction Objectives:**

- Maximize social surplus, i.e., the value of the winner.
- Maximize seller profit, i.e., total payments.

### Example Auctions \_\_\_\_

### First-price Auction

- 1. Solicit sealed bids.
- 2. Winner is highest bidder.
- 3. Charge winner their bid.

### Example Auctions \_\_

### First-price Auction

- 1. Solicit sealed bids.
- 2. Winner is highest bidder.
- 3. Charge winner their bid.

**Example Bids:** (2, 6, 4, 1).

### Example Auctions \_

#### First-price Auction

- 1. Solicit sealed bids.
- 2. Winner is highest bidder.
- 3. Charge winner their bid.

2. Winner is highest bidder.

1. Solicit sealed bids.

3. Charge winner the second-highest bid.

**Second-price Auction** 

**Example Bids:** (2, 6, 4, 1).

### Example Auctions -

#### First-price Auction

- 1. Solicit sealed bids.
- 2. Winner is highest bidder.
- 3. Charge winner their bid.

#### Second-price Auction

- 1. Solicit sealed bids.
- 2. Winner is highest bidder.
- 3. Charge winner the second-highest bid.

**Example Bids:** (2, 6, 4, 1).

#### **Questions:**

- what are equilibrium strategies?
- what is equilibrium outcome?
- which has higher surplus in equilibrium?
- which has higher profit in equilibrium?

#### Second-price Auction Equilibrium Analysis

#### Second-price Auction

- 1. Solicit sealed bids.
- 2. Winner is highest bidder.
- 3. Charge winner the second-highest bid.

**Theorem:** [Vickrey '61] "bidding your value" is a *dominant strategy* in the second-price auction.

#### First-price Auction

- 1. Solicit sealed bids.
- 2. Winner is highest bidder.
- 3. Charge winner their bid.

How would you bid?

#### First-price Auction

- 1. Solicit sealed bids.
- 2. Winner is highest bidder.
- 3. Charge winner their bid.

#### How would you bid?

Note: first-price auction has no equilibrium in dominant strategies.

Review: Uniform Distributions \_\_\_\_\_

**Uniform Distribution:** draw value v uniformly from the interval [0,1].

#### Review: Uniform Distributions -

**Uniform Distribution:** draw value v uniformly from the interval [0,1].

Cumulative Distribution Function:  $F(z) = \Pr[v \le z] = z$ .

Probability Density Function:  $f(z) = \frac{1}{dz} \Pr[v \le z] = 1$ .

#### Review: Uniform Distributions

**Uniform Distribution:** draw value v uniformly from the interval [0,1].

Cumulative Distribution Function:  $F(z)=\Pr[{\color{red} v}\leq z]=z.$  Probability Density Function:  $f(z)=\frac{1}{dz}\Pr[{\color{red} v}\leq z]=1.$ 

**Order Statistics:** in expectation, uniform random variables evenly divide interval.

#### Review: Uniform Distributions

**Uniform Distribution:** draw value v uniformly from the interval [0,1].

Cumulative Distribution Function:  $F(z) = \Pr[v \le z] = z$ . Probability Density Function:  $f(z) = \frac{1}{dz} \Pr[v \le z] = 1$ .

**Order Statistics:** in expectation, uniform random variables evenly divide interval.



Example: two bidders (you and me), uniform values.

• Suppose I bid half my value.

- Suppose I bid half my value.
- How should you bid?

- Suppose I bid half my value.
- How should you bid?
- What's your expected utility with value v and bid b?

$$\mathbf{E}[\mathbf{utility}(v,b)] = (v-b) \times \mathbf{Pr}[\mathbf{you\ win}]$$

- Suppose I bid half my value.
- How should you bid?
- What's your expected utility with value v and bid b?

$$\begin{aligned} \mathbf{E}[\text{utility}(v,b)] &= (v-b) \times \underbrace{\Pr[\text{you win}]}_{\Pr[\text{my bid} \leq b] = \Pr[\frac{1}{2}\text{my value} \leq b] = \Pr[\text{my value} \leq 2b] = 2b} \end{aligned}$$

- Suppose I bid half my value.
- How should you bid?
- What's your expected utility with value v and bid b?

$$\begin{aligned} \mathbf{E}[\text{utility}(v,b)] &= (v-b) \times \underbrace{\mathbf{Pr}[\text{you win}]}_{\text{Pr}[\text{my bid } \leq b] = \text{Pr}\left[\frac{1}{2}\text{my value } \leq b\right] = \text{Pr}[\text{my value } \leq 2b] = 2b}_{&= (v-b) \times 2b} \\ &= 2vb - 2b^2 \end{aligned}$$

**Example:** two bidders (you and me), uniform values.

- Suppose I bid half my value.
- How should you bid?
- What's your expected utility with value v and bid b?

$$\begin{aligned} \mathbf{E}[\text{utility}(v,b)] &= (v-b) \times \underbrace{\mathbf{Pr}[\text{you win}]}_{\text{Pr}[\text{my bid } \leq b] = \text{Pr}\left[\frac{1}{2}\text{my value } \leq b\right] = \text{Pr}[\text{my value } \leq 2b] = 2b}_{&= (v-b) \times 2b} \\ &= 2vb - 2b^2 \end{aligned}$$

 $\bullet$  to maximize, take derivative  $\frac{d}{db}$  and set to zero, solve

- Suppose I bid half my value.
- How should you bid?
- What's your expected utility with value v and bid b?

$$\begin{aligned} \mathbf{E}[\text{utility}(v,b)] &= (v-b) \times \underbrace{\Pr[\text{you win}]}_{\Pr[\text{my bid } \leq \ b]} = \Pr[\frac{1}{2}\text{my value } \leq \ b] = \Pr[\text{my value } \leq \ 2b] = 2b \\ &= (v-b) \times 2b \\ &= 2vb - 2b^2 \end{aligned}$$

- ullet to maximize, take derivative  $\frac{d}{db}$  and set to zero, solve
- optimal to bid b = v/2 (bid half your value!)

**Example:** two bidders (you and me), uniform values.

- Suppose I bid half my value.
- How should you bid?
- What's your expected utility with value v and bid b?

$$\begin{aligned} \mathbf{E}[\text{utility}(v,b)] &= (v-b) \times \underbrace{\mathbf{Pr}[\text{you win}]}_{\text{Pr}[\text{my bid } \leq b] = \text{Pr}\left[\frac{1}{2}\text{my value } \leq b\right] = \text{Pr}[\text{my value } \leq 2b] = 2b}_{&= (v-b) \times 2b} \\ &= 2vb - 2b^2 \end{aligned}$$

- ullet to maximize, take derivative  $\frac{d}{db}$  and set to zero, solve
- optimal to bid b = v/2 (bid half your value!)

Conclusion 1: bidding "half of value" is Bayes-Nash equilibrium (BNE).

**Example:** two bidders (you and me), uniform values.

- Suppose I bid half my value.
- How should you bid?
- What's your expected utility with value v and bid b?

$$\begin{aligned} \mathbf{E}[\text{utility}(v,b)] &= (v-b) \times \underbrace{\mathbf{Pr}[\text{you win}]}_{\text{Pr}[\text{my bid } \leq b] = \text{Pr}\left[\frac{1}{2}\text{my value } \leq b\right] = \text{Pr}[\text{my value } \leq 2b] = 2b}_{&= (v-b) \times 2b} \\ &= 2vb - 2b^2 \end{aligned}$$

- ullet to maximize, take derivative  $\frac{d}{db}$  and set to zero, solve
- optimal to bid b = v/2 (bid half your value!)

Conclusion 1: bidding "half of value" is Bayes-Nash equilibrium (BNE).

Conclusion 2: bidder with highest value wins.

Conclusion 3: first-price auction maximizes. social surplus!

**Example Scenario:** two bidders, uniform values

Example Scenario: two bidders, uniform values

What is profit of second-price auction?

Example Scenario: two bidders, uniform values

What is profit of second-price auction?

• draw values from unit interval.



#### **Example Scenario:** two bidders, uniform values

What is profit of second-price auction?

- draw values from unit interval.
- Sort values.



**Example Scenario:** two bidders, uniform values

What is profit of second-price auction?

- draw values from unit interval.
- Sort values.



• In expectation, values evenly divide unit interval.

#### **Example Scenario:** two bidders, uniform values

What is profit of second-price auction?

- draw values from unit interval.
- Sort values.



- In expectation, values evenly divide unit interval.
- ullet  $\mathbf{E}[\mathsf{Profit}] = \mathbf{E}[v_2]$

#### Example Scenario: two bidders, uniform values

#### What is profit of second-price auction?

- draw values from unit interval.
- Sort values.



- In expectation, values evenly divide unit interval.
- $E[Profit] = E[v_2] = 1/3.$

#### **Example Scenario:** two bidders, uniform values

What is profit of second-price auction?

- draw values from unit interval.
- Sort values.



- In expectation, values evenly divide unit interval.
- $E[Profit] = E[v_2] = 1/3.$

What is profit of first-price auction?

#### **Example Scenario:** two bidders, uniform values

#### What is profit of second-price auction?

- draw values from unit interval.
- Sort values.



- In expectation, values evenly divide unit interval.
- $E[Profit] = E[v_2] = 1/3.$

What is profit of first-price auction?

• 
$$E[Profit] = E[v_1]/2 = 1/3.$$

#### Profit, by example -

#### **Example Scenario:** two bidders, uniform values

What is profit of second-price auction?

- draw values from unit interval.
- Sort values.



- In expectation, values evenly divide unit interval.
- $E[Profit] = E[v_2] = 1/3.$

What is profit of first-price auction?

•  $E[Profit] = E[v_1]/2 = 1/3.$ 

**Notice:** second-price and first-price auctions have same expected profit.

Revenue Equivalence \_\_\_\_\_

Revenue Equivalence Theorem: [Myerson '81] auctions with the same equilibrium allocation have the same equilibrium revenue.

# Part I: Approximation for single-dimensional Bayesian mechanism design

(where agent preferences are given by a private value for service, zero for no service; preferences are drawn from a distribution)

### Example 2: Single-item auction \_\_\_\_\_

Problem: Bayesian Single-item Auction Problem

- a single item for sale,
- n buyers, and
- ullet a dist.  ${f F}=F_1 imes\cdots imes F_n$  from which the consumers' values for the item are drawn.

**Goal:** seller opt. auction for  $\mathbf{F}$ .

# Example 2: Single-item auction \_\_\_\_\_

Problem: Bayesian Single-item Auction Problem

- a single item for sale,
- n buyers, and
- ullet a dist.  ${f F}=F_1 imes\cdots imes F_n$  from which the consumers' values for the item are drawn.

**Goal:** seller opt. auction for  $\mathbf{F}$ .

**Question:** What is optimal auction?

1. Thm: BNE  $\Leftrightarrow$  allocation rule is monotone.

- 1. Thm: BNE  $\Leftrightarrow$  allocation rule is monotone.
- 2. **Def:** revenue curve:  $R_i(q) = q \cdot F_i^{-1}(1-q)$ .



1. **Thm:** BNE ⇔ allocation rule is monotone.





3. **Def:** *virtual value*: 
$$\varphi_i(v_i) = v_i - \frac{1 - F_i(v)}{f_i(v_i)} = \text{marginal revenue}.$$

- 1. **Thm:** BNE ⇔ allocation rule is monotone.
- 2. **Def:** revenue curve:  $R_i(q) = q \cdot F_i^{-1}(1-q)$ .



- 3. **Def:** *virtual value*:  $\varphi_i(v_i) = v_i \frac{1 F_i(v)}{f_i(v_i)} = \text{marginal revenue}.$
- 4. Def: virtual surplus: virtual value of winner(s).

- 1. **Thm:** BNE ⇔ allocation rule is monotone.
- 2. **Def:** revenue curve:  $R_i(q) = q \cdot F_i^{-1}(1-q)$ .



- 3. **Def:** *virtual value*:  $\varphi_i(v_i) = v_i \frac{1 F_i(v)}{f_i(v_i)} = \text{marginal revenue}.$
- 4. Def: virtual surplus: virtual value of winner(s).
- 5. **Thm:** E[revenue] = E[virtual surplus]. (via "revenue equivalence")

# Optimal Auction Design [Myerson '81] \_\_\_\_\_

- 1. **Thm:** BNE ⇔ allocation rule is monotone.
- 2. **Def**: *revenue curve*:  $R_i(q) = q \cdot F_i^{-1}(1-q)$ .



- 3. **Def:** *virtual value*:  $\varphi_i(v_i) = v_i \frac{1 F_i(v)}{f_i(v_i)} = \text{marginal revenue}.$
- 4. Def: virtual surplus: virtual value of winner(s).
- 5. **Thm:** E[revenue] = E[virtual surplus]. (via "revenue equivalence")
- 6. **Def**:  $F_i$  is *regular* iff revenue curve concave iff virtual values monotone.

# Optimal Auction Design [Myerson '81] \_\_\_\_\_

- 1. **Thm:** BNE ⇔ allocation rule is monotone.
- 2. **Def**: *revenue curve*:  $R_i(q) = q \cdot F_i^{-1}(1-q)$ .



- 3. **Def:** *virtual value*:  $\varphi_i(v_i) = v_i \frac{1 F_i(v)}{f_i(v_i)} = \text{marginal revenue}.$
- 4. Def: virtual surplus: virtual value of winner(s).
- 5. **Thm:** E[revenue] = E[virtual surplus]. (via "revenue equivalence")
- 6. **Def:**  $F_i$  is regular iff revenue curve concave iff virtual values monotone.
- 7. **Thm:** for regular dists, optimal auction sells to bidder with highest positive virtual value.

# Optimal Auction Design [Myerson '81] \_\_\_\_\_

- 1. **Thm:** BNE ⇔ allocation rule is monotone.
- 2. **Def**: *revenue curve*:  $R_i(q) = q \cdot F_i^{-1}(1-q)$ .



- 3. **Def:** *virtual value*:  $\varphi_i(v_i) = v_i \frac{1 F_i(v)}{f_i(v_i)} = \text{marginal revenue}.$
- 4. Def: virtual surplus: virtual value of winner(s).
- 5. **Thm:** E[revenue] = E[virtual surplus]. (via "revenue equivalence")
- 6. **Def**:  $F_i$  is *regular* iff revenue curve concave iff virtual values monotone.
- 7. **Thm:** for regular dists, optimal auction sells to bidder with highest positive virtual value.
- 8. **Cor:** for iid, regular dists, optimal auction is *Vickrey with reserve*  $price \varphi^{-1}(0)$ .

## Optimal Auctions \_\_\_\_\_

### **Optimal Auctions:**

- *iid, regular distributions*: Vickrey with monopoly reserve price.
- *general*: sell to bidder with highest positive virtual value.

### Optimal Auctions \_\_\_\_\_

### **Optimal Auctions:**

- *iid, regular distributions*: Vickrey with monopoly reserve price.
- general: sell to bidder with highest positive virtual value.

### **Discussion:**

- iid, regular case: seems very special.
- general case: optimal auction rarely used. (too complicated?)

# Approximation with reserve prices \_\_\_\_\_

Question: when is reserve pricing a good approximation?

## Approximation with reserve prices \_

Question: when is reserve pricing a good approximation?

**Thm:** Vickrey with reserve = constant virtual price with

Pr[no sale] = 1/2 is a 2-approximation.

[Chawla, Hartline, Malec, Sivan '10]

## Approximation with reserve prices.

Question: when is reserve pricing a good approximation?

**Thm:** Vickrey with reserve = constant virtual price with

Pr[no sale] = 1/2 is a 2-approximation.

[Chawla, Hartline, Malec, Sivan '10]

**Proof:** apply prophet inequality (tie-breaking by " $v_i$ ") to virtual values.

## Approximation with reserve prices.

Question: when is reserve pricing a good approximation?

**Thm:** Vickrey with reserve = constant virtual price with

Pr[no sale] = 1/2 is a 2-approximation.

[Chawla, Hartline, Malec, Sivan '10]

**Proof:** apply prophet inequality (tie-breaking by " $v_i$ ") to virtual values.

| prophet inequality          | Vickrey with reserves            |
|-----------------------------|----------------------------------|
| prizes                      | virtual values                   |
| threshold $t$               | virtual price                    |
| <b>E</b> [max prize]        | $oldsymbol{E}[optimal\ revenue]$ |
| $\mathbf{E}[prize\;for\;t]$ | <b>E</b> [Vickrey revenue]       |

## Approximation with reserve prices -

Question: when is reserve pricing a good approximation?

**Thm:** Vickrey with reserve = constant virtual price with

Pr[no sale] = 1/2 is a 2-approximation.

[Chawla, Hartline, Malec, Sivan '10]

**Proof:** apply prophet inequality (tie-breaking by " $v_i$ ") to virtual values.

| prophet inequality          | Vickrey with reserves      |
|-----------------------------|----------------------------|
| prizes                      | virtual values             |
| threshold $t$               | virtual price              |
| <b>E</b> [max prize]        | <b>E</b> [optimal revenue] |
| $\mathbf{E}[prize\;for\;t]$ | <b>E</b> [Vickrey revenue] |

### **Discussion:**

- ◆ constant virtual price ⇒ bidder-specific reserves.
- simple: reserve prices natural, practical, and easy to find.
- robust: posted pricing with arbitrary tie-breaking works fine, collusion fine, etc.

## \_\_\_ Anonymous Reserves \_\_\_\_\_

**Question:** for non-identical distributions, is *anonymous reserve* approximately optimal?

(e.g., eBay)

## Anonymous Reserves \_\_\_\_\_

**Question:** for non-identical distributions, is *anonymous reserve* approximately optimal?

(e.g., eBay)

**Thm:** non-identical, regular distributions, Vickrey with *anonymous* reserve price is 4-approximation. [Hartline, Roughgarden '09]

## Anonymous Reserves \_\_\_

**Question:** for non-identical distributions, is *anonymous reserve* approximately optimal?

(e.g., eBay)

**Thm:** non-identical, regular distributions, Vickrey with *anonymous* reserve price is 4-approximation. [Hartline, Roughgarden '09]

**Proof:** more complicated extension of prophet inequalities.

## Anonymous Reserves —

**Question:** for non-identical distributions, is *anonymous reserve* approximately optimal?

(e.g., eBay)

**Thm:** non-identical, regular distributions, Vickrey with *anonymous* reserve price is 4-approximation. [Hartline, Roughgarden '09]

**Proof:** more complicated extension of prophet inequalities.

### **Discussion:**

- ullet theorem is not tight, actual bound is in [2,4].
- justifies wide prevalence.

\_\_\_\_ Extensions \_\_\_\_

Beyond single-item auctions: general feasibility constraints.

### Extensions \_\_\_\_\_

Beyond single-item auctions: *general feasibility constraints*.

**Thm:** non-identical (possibly irregular) distributions, *posted pricing mechanisms* are often constant approximations.

[Chawla, Hartline, Malec, Sivan '10]

### Extensions \_\_\_\_

Beyond single-item auctions: general feasibility constraints.

**Thm:** non-identical (possibly irregular) distributions, *posted pricing mechanisms* are often constant approximations.

[Chawla, Hartline, Malec, Sivan '10]

### Proof technique:

- optimal mechanism is a virtual surplus maximizer.
- reserve-price mechanisms are virtual surplus approximators.

### Extensions —

Beyond single-item auctions: general feasibility constraints.

**Thm:** non-identical (possibly irregular) distributions, *posted pricing mechanisms* are often constant approximations.

[Chawla, Hartline, Malec, Sivan '10]

### Proof technique:

- optimal mechanism is a virtual surplus maximizer.
- reserve-price mechanisms are virtual surplus approximators.

**Basic Open Question:** to what extent do simple mechanisms approximate (well understood but complex) optimal ones?

Challenges: non-downward-closed settings, negative virtual values.

# Questions?

Part II: Approximation for multi-dimensional Bayesian mechanism design

(where agent preferences are given by values for each available service, zero for no service; preferences drawn from distribution)

## Example 3: unit-demand pricing \_

**Problem:** Bayesian Unit-Demand Pricing

- a single, unit-demand consumer.
- *n* items for sale.
- ullet a dist.  ${f F}=F_1 imes\cdots imes F_n$  from which the consumer's values for each item are drawn.

**Goal:** seller optimal *item-pricing* for  $\mathbf{F}$ .

## Example 3: unit-demand pricing -

**Problem:** Bayesian Unit-Demand Pricing

- a single, unit-demand consumer.
- *n* items for sale.
- ullet a dist.  ${f F}=F_1 imes\cdots imes F_n$  from which the consumer's values for each item are drawn.

**Goal:** seller optimal *item-pricing* for  $\mathbf{F}$ .

**Question:** What is optimal pricing?

# Optimal Pricing \_\_\_\_\_

**Optimal Pricing:** consider distribution, feasibility constraints, incentive constraints, and solve!

# Optimal Pricing \_\_\_\_\_

**Optimal Pricing:** consider distribution, feasibility constraints, incentive constraints, and solve!

### **Discussion:**

- little conceptual insight and
- not generally tractable.

\_\_\_\_ Analogy \_\_\_\_

Challenge: approximate optimal but we do not understand it?

Challenge: approximate optimal but we do not understand it?

**Problem:** Bayesian Unit-demand Pricing (a.k.a., MD-PRICING)

- a single, unit-demand buyer,
- n items for sale, and
- a dist. **F** from which the consumer's value for each item is drawn.

**Goal:** seller opt. item-pricing for  $\mathbf{F}$ .

**Problem:** Bayesian Single-item Auction (a.k.a., SD-AUCTION)

- a single item for sale,
- n buyers, and
- a dist. F from which the consumers' values for the item are drawn.

**Goal:** seller opt. auction for  $\mathbf{F}$ .

Challenge: approximate optimal but we do not understand it?

**Problem:** Bayesian Unit-demand Pricing (a.k.a., MD-PRICING)

- a single, unit-demand buyer,
- n items for sale, and
- a dist. **F** from which the consumer's value for each item is drawn.

**Goal:** seller opt. item-pricing for  $\mathbf{F}$ .

**Problem:** Bayesian Single-item Auction (a.k.a., SD-AUCTION)

- a single item for sale,
- n buyers, and
- a dist. F from which the consumers' values for the item are drawn.

**Goal:** seller opt. auction for  $\mathbf{F}$ .

**Note:** Same informational structure.

Challenge: approximate optimal but we do not understand it?

**Problem:** Bayesian Unit-demand Pricing (a.k.a., MD-PRICING)

a single, unit-demand buyer,

n items for sale, and

 a dist. F from which the consumer's value for each item is drawn.

**Goal:** seller opt. item-pricing for  $\mathbf{F}$ .

**Problem:** Bayesian Single-item Auction (a.k.a., SD-AUCTION)

a single item for sale,

n buyers, and

 a dist. F from which the consumers' values for the item are drawn.

**Goal:** seller opt. auction for  $\mathbf{F}$ .

Note: Same informational structure.

**Thm:** for any indep. distributions, MD-PRICING  $\leq$  SD-AUCTION.

Challenge: approximate optimal but we do not understand it?

**Problem:** Bayesian Unit-demand Pricing (a.k.a., MD-PRICING)

- a single, unit-demand buyer,
- n items for sale, and
- a dist. F from which the consumer's value for each item is drawn.

**Goal:** seller opt. item-pricing for  $\mathbf{F}$ .

**Problem:** Bayesian Single-item Auction (a.k.a., SD-AUCTION)

- a single item for sale,
- n buyers, and
- a dist. F from which the consumers' values for the item are drawn.

**Goal:** seller opt. auction for  $\mathbf{F}$ .

Note: Same informational structure.

**Thm:** for any indep. distributions, MD-PRICING  $\leq$  SD-AUCTION.

Thm: a constant virtual price for MD-PRICING is 2-approx.

[Chawla, Hartline, Malec, Sivan'10]

Challenge: approximate optimal but we do not understand it?

**Problem:** Bayesian Unit-demand Pricing (a.k.a., MD-PRICING)

- a single, unit-demand buyer,
- n items for sale, and
- a dist. F from which the consumer's value for each item is drawn.

**Goal:** seller opt. item-pricing for  $\mathbf{F}$ .

**Problem:** Bayesian Single-item Auction (a.k.a., SD-AUCTION)

- a single item for sale,
- n buyers, and
- a dist. F from which the consumers' values for the item are drawn.

**Goal:** seller opt. auction for  $\mathbf{F}$ .

Note: Same informational structure.

**Thm:** for any indep. distributions, MD-PRICING  $\leq$  SD-AUCTION.

Thm: a constant virtual price for MD-PRICING is 2-approx.

**Proof:** prophet inequality (tie-break by " $-p_i$ "). Chawla, Hartline, Malec, Sivan'10]

### Multi-item Auctions

Sequential Posted Pricing: agents arrive in seq., offer posted prices.

### Multi-item Auctions \_\_\_

Sequential Posted Pricing: agents arrive in seq., offer posted prices.

**Thm:** in many unit-demand settings, sequential posted pricings are a constant approximation to the optimal mechanism.

[Chawla, Hartline, Malec, Sivan '10]

### Multi-item Auctions \_\_

Sequential Posted Pricing: agents arrive in seq., offer posted prices.

**Thm:** in many unit-demand settings, sequential posted pricings are a constant approximation to the optimal mechanism.

[Chawla, Hartline, Malec, Sivan '10]

### Approach:

1. Analogy: "single-dimensional analog"

(replace unit-demand agent with many single-dimensional agents)

### Multi-item Auctions —

Sequential Posted Pricing: agents arrive in seq., offer posted prices.

**Thm:** in many unit-demand settings, sequential posted pricings are a constant approximation to the optimal mechanism.

[Chawla, Hartline, Malec, Sivan '10]

### Approach:

- Analogy: "single-dimensional analog"
   (replace unit-demand agent with many single-dimensional agents)
- Upper bound: SD-AUCTION ≥ MD-PRICING (competition increases revenue)

### Multi-item Auctions —

Sequential Posted Pricing: agents arrive in seq., offer posted prices.

**Thm:** in many unit-demand settings, sequential posted pricings are a constant approximation to the optimal mechanism.

[Chawla, Hartline, Malec, Sivan '10]

### Approach:

- Analogy: "single-dimensional analog"
   (replace unit-demand agent with many single-dimensional agents)
- Upper bound: SD-AUCTION ≥ MD-PRICING (competition increases revenue)
- Reduction: MD-PRICING ≥ SD-PRICING (pricings don't use competition)

### Multi-item Auctions -

Sequential Posted Pricing: agents arrive in seq., offer posted prices.

**Thm:** in many unit-demand settings, sequential posted pricings are a constant approximation to the optimal mechanism.

[Chawla, Hartline, Malec, Sivan '10]

### Approach:

- Analogy: "single-dimensional analog"
   (replace unit-demand agent with many single-dimensional agents)
- Upper bound: SD-AUCTION ≥ MD-PRICING (competition increases revenue)
- Reduction: MD-PRICING ≥ SD-PRICING (pricings don't use competition)
- 4. *Instantiation:* SD-PRICING  $\geq \frac{1}{\beta}$ SD-AUCTION (virtual surplus approximation)

### Sequential Posted Pricing Discussion \_

Sequential Posted Pricing: agents arrive in seq., offer posted prices.

**Thm:** in many unit-demand settings, sequential posted pricings are a constant approximation to the optimal mechanism.

[Chawla, Hartline, Malec, Sivan '10]

### Sequential Posted Pricing Discussion \_

Sequential Posted Pricing: agents arrive in seq., offer posted prices.

**Thm:** in many unit-demand settings, sequential posted pricings are a constant approximation to the optimal mechanism.

[Chawla, Hartline, Malec, Sivan '10]

#### **Discussion:**

- robust to agent ordering, collusion, etc.
- conclusive:
  - competition not important for approximation.
  - unit-demand incentives similar to single-dimensional incentives.
- practical: posted pricings widely prevalent. (e.g., eBay)

### Sequential Posted Pricing Discussion \_

Sequential Posted Pricing: agents arrive in seq., offer posted prices.

**Thm:** in many unit-demand settings, sequential posted pricings are a constant approximation to the optimal mechanism.

[Chawla, Hartline, Malec, Sivan '10]

#### **Discussion:**

- robust to agent ordering, collusion, etc.
- conclusive:
  - competition not important for approximation.
  - unit-demand incentives similar to single-dimensional incentives.
- practical: posted pricings widely prevalent. (e.g., eBay)

**Open Question:** identify upper bounds beyond unit-demand settings:

- analytically tractable and
- approximable.

# Questions?



#### The trouble with priors:

• where does prior come from?

- where does prior come from?
- is prior accurate?

# The trouble with priors ———

- where does prior come from?
- is prior accurate?
- prior-dependent mechanisms are non-robust.

- where does prior come from?
- is prior accurate?
- prior-dependent mechanisms are non-robust.
- what if one mechanism must be used in many scenarios?

#### The trouble with priors:

- where does prior come from?
- is prior accurate?
- prior-dependent mechanisms are non-robust.
- what if one mechanism must be used in many scenarios?

**Question:** can we design good auctions without knowledge of prior-distribution?

### Optimal Prior-independent Mechs \_\_\_\_\_

#### **Optimal Prior-indep. Mech:** (a.k.a., non-parametric implementation)

- 1. agents report value and prior,
- 2. shoot agents if disagree, otherwise
- 3. run optimal mechanism for reported prior.

#### **Discussion:**

- complex, agents must report high-dimensional object.
- non-robust, e.g., if agents make mistakes.
- *inconclusive*, begs the question.

### Resource augmentation \_\_\_\_\_

First Approach: "resource" augmentation.

### Resource augmentation \_\_\_\_\_

First Approach: "resource" augmentation.

**Thm:** for iid, regular, single-item auctions, the Vickrey auction on n+1 bidders has more revenue than the optimal auction on n bidders. [Bulow, Klemperer '96]

#### Resource augmentation \_

First Approach: "resource" augmentation.

**Thm:** for iid, regular, single-item auctions, the Vickrey auction on n+1 bidders has more revenue than the optimal auction on n bidders. [Bulow, Klemperer '96]

Discussion: [Dhangwatnotai, Roughgarden, Yan '10]

- "recruit one more bidder" is prior-independent strategy.
- "bicriteria" approximation result.
- conclusive: competition more important than optimization.

### Resource augmentation -

First Approach: "resource" augmentation.

**Thm:** for iid, regular, single-item auctions, the Vickrey auction on n+1 bidders has more revenue than the optimal auction on n bidders.

[Bulow, Klemperer '96]

Discussion: [Dhangwatnotai, Roughgarden, Yan '10]

- "recruit one more bidder" is prior-independent strategy.
- "bicriteria" approximation result.
- conclusive: competition more important than optimization.
- non-generic: e.g., for k-unit auctions, need k additional bidders.

**Special Case:** for regular distribution, the Vickrey revenue from two bidders is at least the optimal revenue from one bidder.

**Special Case:** for regular distribution, the Vickrey revenue from two bidders is at least the optimal revenue from one bidder.

Geometric Proof: [Dhangwatnotai, Roughgarden, Yan '10]

**Special Case:** for regular distribution, the Vickrey revenue from two bidders is at least the optimal revenue from one bidder.

Geometric Proof: [Dhangwatnotai, Roughgarden, Yan '10]

each bidder in Vickrey views other bid as "random reserve".

**Special Case:** for regular distribution, the Vickrey revenue from two bidders is at least the optimal revenue from one bidder.

Geometric Proof: [Dhangwatnotai, Roughgarden, Yan '10]

- each bidder in Vickrey views other bid as "random reserve".
- Vickrey revenue =  $2 \times$  random reserve revenue.

**Special Case:** for regular distribution, the Vickrey revenue from two bidders is at least the optimal revenue from one bidder.

Geometric Proof: [Dhangwatnotai, Roughgarden, Yan '10]

- each bidder in Vickrey views other bid as "random reserve".
- Vickrey revenue =  $2 \times$  random reserve revenue.
- random reserve revenue  $\geq \frac{1}{2} \times$  optimal reserve revenue:

**Special Case:** for regular distribution, the Vickrey revenue from two bidders is at least the optimal revenue from one bidder.

Geometric Proof: [Dhangwatnotai, Roughgarden, Yan '10]

- each bidder in Vickrey views other bid as "random reserve".
- Vickrey revenue =  $2 \times$  random reserve revenue.
- random reserve revenue  $\geq \frac{1}{2} \times$  optimal reserve revenue:

$$R(q) = q \cdot F^{-1}(1 - q)$$



**Special Case:** for regular distribution, the Vickrey revenue from two bidders is at least the optimal revenue from one bidder.

Geometric Proof: [Dhangwatnotai, Roughgarden, Yan '10]

- each bidder in Vickrey views other bid as "random reserve".
- Vickrey revenue =  $2 \times$  random reserve revenue.
- random reserve revenue  $\geq \frac{1}{2} \times$  optimal reserve revenue:

$$R(q) = q \cdot F^{-1}(1 - q)$$



**Special Case:** for regular distribution, the Vickrey revenue from two bidders is at least the optimal revenue from one bidder.

Geometric Proof: [Dhangwatnotai, Roughgarden, Yan '10]

- each bidder in Vickrey views other bid as "random reserve".
- Vickrey revenue =  $2 \times$  random reserve revenue.
- random reserve revenue  $\geq \frac{1}{2} \times$  optimal reserve revenue:

$$R(q) = q \cdot F^{-1}(1 - q)$$



**Special Case:** for regular distribution, the Vickrey revenue from two bidders is at least the optimal revenue from one bidder.

Geometric Proof: [Dhangwatnotai, Roughgarden, Yan '10]

- each bidder in Vickrey views other bid as "random reserve".
- Vickrey revenue =  $2 \times$  random reserve revenue.
- random reserve revenue  $\geq \frac{1}{2} \times$  optimal reserve revenue:

$$R(q) = q \cdot F^{-1}(1 - q)$$



**Special Case:** for regular distribution, the Vickrey revenue from two bidders is at least the optimal revenue from one bidder.

Geometric Proof: [Dhangwatnotai, Roughgarden, Yan '10]

- each bidder in Vickrey views other bid as "random reserve".
- Vickrey revenue =  $2 \times$  random reserve revenue.
- random reserve revenue  $\geq \frac{1}{2} \times$  optimal reserve revenue:

Recall: revenue curve

$$R(q) = q \cdot F^{-1}(1 - q)$$



ullet So Vickrey with two bidders  $\geq$  optimal revenue from one bidder.

# Example 4: digital goods \_\_\_\_\_

**Question:** how should a profit-maximizing seller sell a *digital good* (n bidder, n copies of item)?

# Example 4: digital goods \_\_\_\_\_

**Question:** how should a profit-maximizing seller sell a *digital good* (n bidder, n copies of item)?

**Bayesian Optimal Solution:** if values are iid from known distribution, post the monopoly price  $\varphi^{-1}(0)$ . [Myerson '81]

# Example 4: digital goods \_\_\_\_\_

**Question:** how should a profit-maximizing seller sell a *digital good* (n bidder, n copies of item)?

**Bayesian Optimal Solution:** if values are iid from known distribution, post the monopoly price  $\varphi^{-1}(0)$ . [Myerson '81]

#### **Discussion:**

- optimal,
- simple, but
- not prior-independent

## Approximation via Single Sample \_\_\_\_\_

#### **Single-Sample Auction:** (for digital goods)

- [Dhangwatnotai, Roughgarden, Yan '10] 1. pick random agent i as sample.
- 2. offer all other agents price  $v_i$ .
- 3. reject i.

### Approximation via Single Sample \_\_\_\_\_

#### Single-Sample Auction: (for digital goods)

- 1. pick random agent i as sample. [Dhangwatnotai, Roughgarden, Yan '10]
- 2. offer all other agents price  $v_i$ .
- 3. reject i.

Thm: for iid, regular distributions, single sample auction on (n+1)-agents is 2-approx to optimal on n agents. [Dhangwatnotai, Roughgarden, Yan '10]

### Approximation via Single Sample \_\_\_\_

#### **Single-Sample Auction:** (for digital goods)

- 1. pick random agent i as sample. [Dhangwatnotai, Roughgarden, Yan '10]
- 2. offer all other agents price  $v_i$ .
- 3. reject i.

**Thm:** for iid, regular distributions, single sample auction on (n+1)-agents is 2-approx to optimal on n agents. [Dhangwatnotai, Roughgarden, Yan '10]

**Proof:** from geometric argument.

### Approximation via Single Sample.

#### **Single-Sample Auction:** (for digital goods)

- [Dhangwatnotai, Roughgarden, Yan '10] 1. pick random agent i as sample.
- 2. offer all other agents price  $v_i$ .
- 3. reject i.

**Thm:** for iid, regular distributions, single sample auction on (n+1)-agents is 2-approx to optimal on n agents.

[Dhangwatnotai, Roughgarden, Yan '10]

Proof: from geometric argument.

#### **Discussion:**

- prior-independent.
- conclusive,
  - learn distribution from reports, not cross-reporting.
  - don't need precise distribution, only need single sample for approximation. (more samples can improve approximation/robustness.)
- generic, applies to general settings.

#### Extensions \_\_\_\_\_

#### **Recent Extensions:**

- non-identical distributions. [Dhangwatnotai, Roughgarden, Yan '10]
- position auctions, matroids, downward-closed environments.

[Hartline, Yan '11; Ha, Hartline '11]

#### Extensions \_\_\_

#### **Recent Extensions:**

- non-identical distributions. [Dhangwatnotai, Roughgarden, Yan '10]
- position auctions, matroids, downward-closed environments.

[Hartline, Yan '11; Ha, Hartline '11]

#### **Open Questions:**

- non-downward-closed environments?
- multi-dimensional preferences?

# Questions?



# Example 5: single-minded combinatorial auction.

**Problem:** Single-minded combinatorial auction

- n agents,
- *m* items for sale.
- Agent i wants only bundle  $S_i \subset \{1, \dots, m\}$ .
- Agent *i*'s value  $v_i$  drawn from  $F_i$ .

Goal: auction to maximize social surplus (a.k.a., welfare).

# Example 5: single-minded combinatorial auction .

**Problem:** Single-minded combinatorial auction

- n agents,
- *m* items for sale.
- Agent i wants only bundle  $S_i \subset \{1, \dots, m\}$ .
- Agent *i*'s value  $v_i$  drawn from  $F_i$ .

Goal: auction to maximize social surplus (a.k.a., welfare).

**Question:** What is optimal mechanism?

# Optimal Combinatorial Auction \_\_\_\_\_

#### Optimal Combinatorial Auction: Vickrey-Clarke-Groves (VCG):

- 1. allocate to maximize reported surplus,
- 2. charge each agent their "externality".

# Optimal Combinatorial Auction \_\_\_\_

#### **Optimal Combinatorial Auction:** Vickrey-Clarke-Groves (VCG):

- 1. allocate to maximize reported surplus,
- 2. charge each agent their "externality".

#### **Discussion:**

- distribution is irrelevant (for welfare maximization).
- Step 1 is NP-hard weighted set packing problem.
- Cannot replace Step 1 with approximation algorithm.

**Question:** Can we convert any algorithm into a mechanism without reducing its social welfare?

**Question:** Can we convert any algorithm into a mechanism without reducing its social welfare?

**Recall:** BNE  $\Leftrightarrow$  allocation rule  $x_i(v_i)$  is monotone in  $v_i$ .

**Question:** Can we convert any algorithm into a mechanism without reducing its social welfare?

**Recall:** BNE  $\Leftrightarrow$  allocation rule  $x_i(v_i)$  is monotone in  $v_i$ .

**Challenge:**  $x_i(v_i)$  for alg  $\mathcal{A}$  with  $\mathbf{v}_{-i} \sim \mathbf{F}_{-i}$  may not be monotone.

**Question:** Can we convert any algorithm into a mechanism without reducing its social welfare?

**Recall:** BNE  $\Leftrightarrow$  allocation rule  $x_i(v_i)$  is monotone in  $v_i$ .

**Challenge:**  $x_i(v_i)$  for alg  $\mathcal{A}$  with  $\mathbf{v}_{-i} \sim \mathbf{F}_{-i}$  may not be monotone.

#### Approach:

• Run  $\mathcal{A}(\sigma_1(v_1),\ldots,\sigma_n(v_n))$ .

**Question:** Can we convert any algorithm into a mechanism without reducing its social welfare?

**Recall:** BNE  $\Leftrightarrow$  allocation rule  $x_i(v_i)$  is monotone in  $v_i$ .

**Challenge:**  $x_i(v_i)$  for alg  $\mathcal{A}$  with  $\mathbf{v}_{-i} \sim \mathbf{F}_{-i}$  may not be monotone.

#### Approach:

- Run  $\mathcal{A}(\sigma_1(v_1),\ldots,\sigma_n(v_n))$ .
- $\sigma_i$  calculated from max weight matching on i's type space.

**Question:** Can we convert any algorithm into a mechanism without reducing its social welfare?

**Recall:** BNE  $\Leftrightarrow$  allocation rule  $x_i(v_i)$  is monotone in  $v_i$ .

**Challenge:**  $x_i(v_i)$  for alg  $\mathcal{A}$  with  $\mathbf{v}_{-i} \sim \mathbf{F}_{-i}$  may not be monotone.

#### Approach:

- Run  $\mathcal{A}(\sigma_1(v_1),\ldots,\sigma_n(v_n))$ .
- $\sigma_i$  calculated from max weight matching on i's type space.
  - stationary with respect to  $F_i$ .
  - $x_i(\sigma_i(v_i))$  monotone.
  - welfare preserved.

# Example: $\sigma_i$

### **Example:**

| $f(v_i)$ | $v_i$ | $x_i(v_i)$ |
|----------|-------|------------|
| .25      | 1     | 0.1        |
| .25      | 4     | 0.5        |
| .25      | 5     | 0.4        |
| .25      | 10    | 1.0        |

# \_\_\_\_ Example: $\sigma_i$ \_\_\_\_

### **Example:**

| $f(v_i)$ | $v_i$ | $x_i(v_i)$ | $\sigma_i(v_i)$ |
|----------|-------|------------|-----------------|
| .25      | 1     | 0.1        | 1               |
| .25      | 4     | 0.5        | 5               |
| .25      | 5     | 0.4        | 4               |
| .25      | 10    | 1.0        | 10              |

# \_\_\_\_ Example: $\sigma_i$ \_\_\_\_

### **Example:**

| $f(v_i)$ | $v_i$ | $x_i(v_i)$ | $\sigma_i(v_i)$ | $x_i(\sigma_i(v_i))$ |
|----------|-------|------------|-----------------|----------------------|
| .25      | 1     | 0.1        | 1               | 0.1                  |
| .25      | 4     | 0.5        | 5               | 0.4                  |
| .25      | 5     | 0.4        | 4               | 0.5                  |
| .25      | 10    | 1.0        | 10              | 1.0                  |

# Example: $\sigma_i$

#### **Example:**

| $f(v_i)$ | $v_i$ | $x_i(v_i)$ | $\sigma_i(v_i)$ | $x_i(\sigma_i(v_i))$ |
|----------|-------|------------|-----------------|----------------------|
| .25      | 1     | 0.1        | 1               | 0.1                  |
| .25      | 4     | 0.5        | 5               | 0.4                  |
| .25      | 5     | 0.4        | 4               | 0.5                  |
| .25      | 10    | 1.0        | 10              | 1.0                  |

#### Note:

- $\sigma_i$  is from max weight matching between  $v_i$  and  $x_i(v_i)$ .
- ullet  $\sigma_i$  is stationary.
- ullet  $\sigma_i$  (weakly) improves welfare.

## BNE reduction discussion -

**Thm:** Any algorithm can be converted into a mechanism with no loss in expected welfare. Runtime is polynomial in size of agent's type space. [Hartline, Lucier '10; Hartline, Kleinberg, Malekian '11; Bei, Huang '11]

#### **Discussion:**

- applies to all algorithms not just worst-case approximations.
- BNE incentive constraints are solved independently.
- works with multi-dimensional preferences too.

\_\_\_\_ Extensions \_\_\_\_

#### **Extension:**

• impossibility for dominant strategy reduction.

[Chawla, Immorlica, Lucier '11]

## Extensions

#### **Extension:**

impossibility for dominant strategy reduction.

[Chawla, Immorlica, Lucier '11]

#### **Open Questions:**

- non-brute-force in type-space? e.g., for product distributions?
- other objectives, e.g., makespan? [Chawla, Immorlica, Lucier '11]

# Questions?