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Abstract

We study a setting of online auctions with expiring/perishable items: K items are sold se-
quentially, buyers arrive over time and have unit-demand and private values. The goal is to
maximize the social welfare – the sum of winners’ values. This model was previously studied
in several different papers, suggesting several different solutions for the problem. All previous
solutions are direct-revelation mechanisms, while in real-life we usually see open mechanisms,
most often a sequence of English auctions. We ask whether the previous optimal approximation
bounds can be achieved using the more popular/realistic mechanism, or a small variant of it.
We observe that a sequence of English auctions (the exact original format) does not guaran-
tee any constant approximation of the welfare, and describe two variants that bring back the
approximation guarantee.

In the first variant, the price ascent is stopped when the number of active bidders is equal to
the number of remaining items. The winner is chosen from this set of active bidders using some
tie-breaking rule. This yields a truthful deterministic 2-approximation. Moreover we show that
this ratio is the best possible for any deterministic mechanism that must charge payments at
the time of the sale. If the winner is chosen uniformly at random from the set of active bidders,
the approximation ratio decreases to e

e−1 ' 1.582 (the currently best approximation ratio for
this problem).

The second variant is to disqualify bidders that quit the auction when the number of active
bidders is larger than the number of remaining items, i.e. to disallow their participation in future
auctions. Under the assumption that the true arrival times are observed by the auctioneer
(i.e. values are the only private information) this activity rule again ensures a 2-approximation
of the social welfare when players play undominated strategies.
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1 Introduction

1.1 Background and Motivation

Auctions over the Internet are more dynamic than classic auctions, since items and bidders often
arrive and depart over time. Several theoretical models of online auctions were studied in the last
decade, trying to adjust classic theory to the new electronic settings. One such simple model of
online auctions with expiring/perishable items was studied in several papers: There are K time
units, and in each time unit there is an item that must be sold at that time unit. Buyers arrive and
depart over time and have a private value for exactly one of the items that are being sold during their
stay. The goal is to maximize the social welfare – sum of winners’ values. The common motivating
scenario is the allocation of computational resources like CPU time or network bandwidth, but
the same model captures more classic economic settings, for example selling movie tickets or other
types of items that are time-dependent.

For this model, Lavi and Nisan (2005) show that any deterministic truthful mechanism must
have an approximation ratio of at least K to the social welfare (and suggest a weaker game-theoretic
notion to solve the problem). Hajiaghayi, Kleinberg, Mahdian and Parkes (2005) give a truthful
2-approximation in the same model, assuming that departure times cannot be manipulated, and
that payments need not be collected at the time of sale but only after all items were sold. Cole,
Dobzinski and Fleischer (2008) study “prompt” mechanisms, requiring payments to be made at the
time of sale, and give a truthful 2-approximation, assuming that both arrival and departure times
cannot be manipulated.

All these are direct-revelation mechanisms, while in real-life we usually see open (indirect,
iterative) mechanisms, in particular some variant of an English auction is usually being employed.
On top of the psychological preference for open mechanisms, there are several other advantages to
such mechanisms, for example they reduce information revelation of (the private) types, and they
are more robust to changes in the utility model.1

In this paper we are therefore interested in the following question: can we obtain the same ap-
proximation bounds by using a sequence of English auctions, which are the most widely acceptable
format in reality? We study a special case, in which once a player arrives she remains for all subse-
quent auctions (i.e. no departures), and start by showing a lower bound of 2 on the approximation
ratio of any truthful deterministic mechanism with prompt payments, even for this more restricted
setup. Thus the previously suggested mechanisms remain optimal for our special case.

We then observe that the exact original format of the English auction does not guarantee any
constant approximation of the welfare. As an example to the difficulties that emerge, consider
the following scenario. Two items are sold via two consecutive ascending English auctions, one
after the other. There are two players that participate in the first auction; each player desires one
of the two items, and is indifferent between the two items. There is a certain probability that a
high-value bidder will arrive for the second auction, and in this case the loser in the first auction
will also lose the second auction. Clearly, if a player assigns a high probability to this event, she
will be willing to compete (almost) up to her value in the first auction while if she assigns a low
probability to this event, she will stop competing in the first auction at a low price. If the two
players have significantly different beliefs regarding this event, one will retire early and the other

1E.g, Dobzinski, Lavi and Nisan (2008) show how Ausubel’s clinching auction naturally extends to a utility model
with a hard budget constraint. In fact, all our results here immediately extend to a model where each player has a
private budget constraint. It is not clear if previous results hold under such an extension.
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one will win. This has a negative effect on the social welfare when the player with the higher
value incorrectly underestimates the probability of the new second-period arrival. One can easily
construct such examples for larger numbers of items, showing that without any modification to the
original English auction format there is no hope to extract a constant fraction of the optimal social
welfare.2

1.2 Main Results

We show how small but meaningful modifications to the English auction bring back the approxi-
mation guarantee. We give two different modifications for two different informational assumptions:
The first is that arrival times can be manipulated, i.e. a player can arrive after her true arrival
time, or arrive at the true arrival time and conceal her presence, if this may increase her utility.
The second is that arrival times can be observed by the designer and thus cannot be manipulated.
In both cases the resulting mechanism yields a deterministic 2-approximation, and we additionally
show how distributional/randomized considerations can further improve the bound and beat the
deterministic lower bound.

1.2.1 Unobserved Arrivals

For unobserved arrival times, we suggest the following variant of the English auction: when there
remain t items for sale (i.e. the current auction is the K − t auction), stop the price ascent when
there remain exactly t active bidders. The winner is one of these active bidders, chosen using any
arbitrary deterministic or randomized tie-breaking rule. Her payment is the price that was reached.
We show that if this seemingly small modification is employed, it is an ex-post equilibrium to play
truthfully, i.e. to arrive in the true arrival time and quit each auction exactly when the price reaches
the player’s value. We then show that, regardless of the tie-breaking rule, this guarantees that at
least half of the optimal social welfare will always be obtained.

The deterministic lower bound of 2 can be beaten by using a random tie-breaking rule in this
auction. In particular, we show that if we break the tie uniformly at random (each of the active
bidders is declared winner with equal probability), the approximation ratio becomes e

e−1 ' 1.58.
This is the best known bound even for non-truthful randomized algorithms (Bartal, Chin, Chrobak,
Fung, Jawor, Lavi, Sgall and Tichỳ, 2004), and we are able to achieve it even with the presence of
strategic players. Furthermore no randomized truthful mechanism for this problem that beats the
2-approximation guarantee was previously known.

The analysis of the welfare loss first shows that the worst-case is when exactly one new player
with value 1 arrives in every auction and in addition there are many players with value 0 that are
present from the first auction. The expected welfare in this case is simply the expected number of
1-players that win. In the first few auctions, the winners are 0-players with very high probability,
and as the number of remaining 1-players increases the probability that a 1-player will win increases.
On the other hand, if at some auction t∗ the number of remaining 1-players is at least the number of
remaining items we are guaranteed that only 1-players win from this auction onwards. Furthermore,
one can observe that the overall number of 1-players that win roughly equals t∗. We show that t∗

2Said (2008) shows that if one assumes a common-prior then this problem disappears and efficiency is regained,
while our paper (as well as all the previous literature mentioned above) studies the “robust” setting, in which no
common-prior is assumed.
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is the stopping time of a certain super-martingale process, and use this to show that its expected
value is about e−1

e K, implying the claimed bound.
From a conceptual point of view, the worst-case scenario reveals the fact that (sometimes) the

auction awards almost for free the first several items, to artificially create supply shortage and
high competition for remaining items. From the strategic aspect, this guarantees that players will
not misreport true value and will find it in their best interest to arrive as early as possible. From
the efficiency aspect, this guarantees the optimal approximation ratio that can be achieved by any
deterministic truthful mechanism, and enables the use of randomization to further improve the
bound. It remains an interesting open question whether the specific bound we obtain is the best
possible via a truthful randomized mechanism, or perhaps there is a way to obtain truthfulness
with less “supply reduction” which will imply larger overall welfare.

1.2.2 Observed Arrivals

Sellers may find it unattractive to stop the price ascent that early, when competition is still strong.
We give a second possible modification to the English auction under the assumption that arrival
times cannot be manipulated (i.e. the only private parameter of the players is their value). Arrivals
are still dynamic and are not known a-priori, but the player’s true arrival time is observed by
the auctioneer. In this case we suggest the following modification: when there remain t items for
sale (i.e. the current auction is the K − t auction), all players that quit the current auction when
there are more than t active bidders are disqualified from participating in subsequent auctions. In
addition, the price ascent of the next auction K− t+ 1 starts from the price point at auction K− t
at which there remain exactly t active bidders. Since players cannot drop too early from the auction
as they will be disqualified, this added “activity rule” has the effect of increased competition, and
therefore may be attractive to sellers.

With this modification we show that the auction again always obtains at least half of the
optimal social welfare, whenever players play any tuple of undominated strategies. This last point
deserves some more attention. As demonstrated above in the context of the original English auction,
players may wish to drop early in the auction, if they believe that future auctions will exhibit less
competition than current auction, and alternatively may compete in current auction until price
becomes very close to their value if they believe that future auctions will exhibit higher competition.
The additional activity rule does not eliminate this state of affairs, it only limits it: regardless of
the player’s beliefs, it is a dominated strategy to drop in the disqualifying range if the price is lower
than the value, and thus we assume that players will not do it. But when only t or less players
remain in auction K − t, players may still decide differently where to drop, depending on their
beliefs, and so there is no unique equilibrium choice. The analysis therefore does not assume a
certain drop point for all players, instead it hold for all possible drop points in the valid range. Our
activity rule carefully chooses the valid range, so that the efficiency loss will be minimized.

While the worst-case bound here is again 2, it makes sense that “usually” the obtained welfare
will be much higher than half of the optimum. However it is not clear how to formally justify such
a statement. The usual average-case analysis requires making specific assumptions on the exact
nature of the underlying distribution, assumptions that on the other hand make the analysis very
specific, so the generality of the conclusions is questionable. We choose here the following middle-
ground method that we feel does not restrict generality too much. While a worst-case analysis
assumes an adversary that is allowed to determine the number of players, their arrival times, their
values, and their (undominated) strategies, we conduct (on top of the worst-case analysis that
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shows the 2-approximation) an analysis that assumes a slightly weaker adversary: it has powers
almost as before, except that instead of assigning arbitrary worst case values to the players, the
adversary now has to choose (any) probability distribution, and draw the values independently
from that distribution. The adversary can still set all other parameters freely, as before.

Under these very weak average-case assumptions – in fact the only additional assumption is that
players’ values are drawn i.i.d. from some arbitrary distribution – we analyze the ratio between
the expected welfare of the auction and the expected optimal welfare, for the special case of two
items. We first show that the worst possible probability distribution is a Bernoulli distribution
(i.e. with some probability p the value is 0 and with probability 1 − p the value is 1). Second, we
find the exact worst p, and as a result obtain that the ratio between the expected welfare of the
sequential English auction with activity rule and the expected welfare of the optimal allocation is
at least

√
2/2 ' 0.707. Of-course, this bound is achieved only for the worst possible distribution.

For example, if we take the uniform distribution over some interval then the ratio will increase to
80%. This exercise strengthens our basic intuition that a worst case bound of 2 implies much better
bounds even with very mild distributional assumptions. The analysis itself seems interesting, and
may potentially be applied to other relevant models.

1.3 Paper Organization

Section 2 describes the model and the lower bound of 2 for deterministic truthful mechanisms.
Section 3 describes our results for the case of unobserved arrival times, and section 4 describes our
results for the case of observed arrival times.

2 The Setting

A seller sells K identical items using a sequence of K single-item ascending auctions. There are
n unit-demand bidders with private values and quasi-linear utilities: a bidder has value vi for
receiving an item; her utility is vi − pi if she wins an item and pays pi, and 0 if she loses. We
study a dynamic setting where bidders arrive over time. Formally, bidder i’s type includes, besides
her value vi, an arrival time ri which is an integer between 1 and K, indicating that bidder i may
participate only in the auctions for items ri, ...,K. Thus, a bidder’s type is a pair θi = (ri, vi), and
the set of possible types for bidder i is Θi. We denote Θ = Θ1×· · ·×Θn. We study two variants of
the model: in the unobserved arrival time version, the value and the arrival time of a player is her
private information, and therefore a player may choose to arrive strictly after her true arrival time
if she finds it strategically useful. In the observed arrival time version the auctioneer knows the true
arrival time of the player when the player truly arrives. We wish to maximize the social welfare –
sum of winners’ values – and evaluate a given mechanism according to its approximation ratio: the
worst-case ratio over all tuples of types between the optimal (i.e. maximal possible) social welfare
and the social welfare that the mechanism obtains. As we next show, any deterministic mechanism
has an approximation ratio of at least 2 in any ex-post equilibrium.

2.1 Deterministic Lower Bound

By the direct-revelation principle, we focus on direct mechanisms in which truthful reporting of
the type is a dominant-strategy. We also assume ex-post Individual Rationality: a winner pays
at most her declared value and a loser pays at most zero. We show that there is no deterministic
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truthful mechanism with approximation ratio strictly smaller than 2, even for the very restrictive
setting of two items and three players, where it is common knowledge that players 1 and 2 arrive
for the first auction and player 3 arrives for the second auction. This restriction only strengthens
the impossibility.

Definition 1 (A limited direct mechanism). A direct mechanism for two items and three players
is a set of four functions: w1(v1, v2) determines the winner (either 1 or 2) of the first item, and
she pays a price p1(v1, v2), where p1(v1, v2) ≤ vw1(v1,v2). w2(v1, v2, v3) determines the winner of
the second item (either 1, 2, or 3, but not w1(v1, v2)), and she pays a price p2(v1, v2, v3), where
p2(v1, v2, v3) ≤ vw2(v1,v2,v3). Such a mechanism is called “truthful” if it is a dominant-strategy of
every player to report her true type.

Theorem 1. Every truthful and individually rational limited direct mechanism obtains in the worst-
case at most half of the optimal social welfare.

Proof. Fix any 1
2 ≥ ε > 0. Suppose by contradiction that their exists a truthful mechanism

M = (w1(·, ·), p1(·, ·), w2(·, ·, ·), p2(·, ·, ·)) that always obtains at least 1
2 + ε of the optimal social

welfare. We first show three short claims.

Claim 1. If v2 >
v1
2ε then w1(v1, v2) = 2, i.e. player 2 must be the winner of the first auction.

Proof. Suppose by contradiction that there exists an instance (v1, v2, v3) such that v2 >
v1
2ε and

w1(v1, v2) = 1. Consider another instance (ṽ1, ṽ2, ṽ3), where ṽ1 = v1, ṽ2 = v2, and ṽ3 = v2. The
optimal social welfare in this instance is 2 · v2. We have w1(ṽ1, ṽ2) = w1(v1, v2) = 1, and therefore
the social welfare that the mechanism obtains is v1 + v2. But v1+v2

2v2
< 1

2 + ε which contradicts the

fact that the mechanism always obtains at least 1
2 + ε of the optimal social welfare.

Claim 2. If v1 = 1, v2 >
1−2ε
1+2ε , and w1(v1, v2) = 2, then p1(v1, v2) ≤ 1−2ε

1+2ε (note that 1−2ε
1+2ε < 1).

Proof. First note that in the instance (v1 = 1, v2 >
1−2ε
1+2ε , v3 = 0) players 1 and 2 must win, since

any other set of winners has welfare strictly less than a fraction of 1
2 +ε of the optimal social welfare

of this instance.
Now, suppose a contradicting instance (v1, v2, v3) where p1(v1, v2) > 1−2ε

1+2ε + δ for some δ > 0.
Note that player 2 wins item 1 and pays the same price in the instance (v1, v2, 0) (call this “instance
2”). Consider a third instance (ṽ1, ṽ2, ṽ3), where ṽ1 = 1, ṽ2 = 1−2ε

1+2ε + δ, and ṽ3 = 0. By the first
paragraph, player 2 must be a winner in instance 3, and by individual rationality she pays at most
1−2ε
1+2ε + δ. Therefore, in instance 2, player 2 has a false announcement (1−2ε

1+2ε + δ instead of v2) that
strictly increases her utility, a contradiction to truthfulness.

To reach a contradiction and conclude the proof, consider the instance (1, 1, 5). Suppose
w.l.o.g. that w1(1, 1) = 1. To obtain at least half of the optimal welfare we must have w2(1, 1, 5) = 3.
Thus player 2 loses and has zero utility. However if she declares some ṽ2 >

1
2ε instead of her true

type v2 = 1 then by claim 1 she will win the first item and by claim 2 she will pay a price of at most
1−2ε
1+2ε < 1. Thus she is able to strictly increase her utility by some false declaration, contradicting
truthfulness.
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3 Unobserved Arrivals

3.1 A Modification to the English Auction

We suggest the following modification to each English auction. In the (K − t)’th auction (t =
0, ...,K − 1), the price ascent stops when there remain exactly t bidders that have not dropped
yet (note that t is equal to the number of unsold items). The winner is chosen by some arbitrary
tie-breaking rule, and she pays the price that was reached. To summarize, the auction is as follows:

• All players that are present may participate, and a single price ascends continuously from
zero.

• Each player continuously decides whether to quit the current auction.

• When the number of remaining players exactly equals the number of remaining items the
price ascent stops. Let this price be pt, and denote the set of players that are active in this
price by Bt.

• The winner in the auction is chosen from Bt by some tie-breaking rule. Her payment is pt.

Two additional technicalities need to be discussed. First, to avoid pathological situations the
auction artificially adds K “dummy” players with value zero that arrive for the first auction. This
way, the number of players in each auction is not less than the number of remaining items. The
optimal allocation is obviously not affected by the dummy players, and our efficiency bounds hold
even if some of the dummy players are chosen to win some of the items (meaning that that item is
left unallocated). Second, if several players quit at the same price in some auction, and this makes
the number of remaining players strictly below t, then the auctioneer includes some of the players
that have dropped at pt in Bt, to make its size exactly equal to t. The choice which of the players
who dropped at pt to include is made by some arbitrary “B completion rule”.

We first argue that the truthful strategy of arriving at the true arrival time and in each auction
quitting exactly when the price is equal to one’s value, forms a symmetric ex-post equilibrium.
We prove this by induction on K. For K = 1 the auction is the regular English auction which
implies the claim. Assume correctness for K − 1 and let us prove for K. It is enough to prove only
that a player i that arrives at time 1 maximizes her utility by staying in the first auction until the
price reaches her value, since (i) if the player first deviates from the truthful strategy in some later
auction and as a result increases her utility we can construct an instance with fewer items for which
deviating in the first auction will increase utility, a contradiction to the inductive assumption (and
thus we can assume that in all subsequent auctions the player stays until her value in the auction),
and (ii) delaying arrival to a later auction is strategically equivalent to quitting at price zero in the
first auction.

We assume that all players besides i play truthfully and wish to prove that i maximizes her
utility by remaining in the first auction until the price equals her value. Let p1 be the price of
the first item when player i is truthful. If vi < p1 then player 1 cannot obtain a positive utility
regardless of her actions. Thus assume vi ≥ p1 and i ∈ B1. If player i wins the first auction when
truthful then there is no beneficial deviation since prices of subsequent items must be at least p1

as all other players in B1 will be present in all subsequent auctions. If player i does not win the
auction and the same player j wins the auction when i is truthful and when i deviates then i obtains
the same utility since in subsequent auctions she remains until her value in both cases. If player i
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does not win the auction and the deviation causes a different player j′ /∈ B1 to win the first auction
then, since all players in B1 continue to subsequent auctions, subsequent prices can only increase,
which implies that i’s utility can only decrease. We get:

Proposition 1. The truthful strategy is a symmetric ex-post equilibrium.

Our main goal is to analyze the efficiency of this equilibrium outcome. Let WA(θ) denote the
resulting welfare of our auction (with any fixed tie-breaking rule), when players’ types are θ, and
they play the equilibrium strategy. Similarly let WA(U)(θ) denote the welfare of our auction when
the winner is chosen uniformly at random among all players in Bt. Note that WA(U)(θ) is a random
variable. Let WOPT (θ) denote the optimal welfare for the scenario θ. This variable is constructed
deterministically by taking in each auction a player with the maximal value among all participating
players.

Theorem 2. For any tuple of players’ types θ, the expected social welfare of the sequential auction,
when players play the equilibrium strategies, is at least half of the optimal welfare for θ. Moreover,
if the winner is chosen uniformly at random among all players in Bt, then,

inf
θ∈Θ

E[WA(U)(θ)]

WOPT (θ)
≥ 1− 1

e
.

where e = 2.718... is “Euler’s number”.

The rest of this section proves this theorem, in two parts. We first identify a concrete set of
tuples of types (“scenarios”), {θ∗K}K=1,2,..., that are worst-case (in an exact sense to be defined
below). We then analyze the auction-to-optimal ratio over this set of types.

3.2 A family of worst-case scenarios

Definition 2. For a given number of items K, θ∗K is a tuple of at least 2K players. Players 1, ...,K
(the “1-players”) all have a value of 1, and the arrival time of player i = 1, ...,K is ri = i. All
other players (the “0-players”) have value zero. At least K 0-players arrive for the first auction.

Although θ∗K is not uniquely defined, all tuples of types that satisfy the definition of θ∗K are equiv-
alent for our purposes since the number of zero players does not change the optimal welfare, nor
the outcome of the auction (besides perhaps the identity of the zero-players that win). Clearly,
WOPT (θ∗K) = K for any K. We first show:

Lemma 1. For any scenario θ ∈ Θ over K items,

E[WA(θ)]

WOPT (θ)
≥ min

K′∈{1,...,K}

E[WA(θ∗K′)]

K ′

We prove this in two steps: We first give a procedure to change the players’ values so that the
new resulting values are either 0 or 1, and the ratio E[WA(θ)]

WOPT (θ) only decreases. We then add more

zero-players, and remove 1-players or change their arrival times, until we reach a scenario θ∗K′ for

some K ′ ≤ K. We again show that these operations can only decrease the ratio E[WA(θ)]
WOPT (θ) .

First Step. For any given scenario we construct a different scenario for which the values are
either 0 or 1 and the ratio E[WA(θ)]

WOPT (θ) is weakly lower. We rely on three claims whose proofs are given
in the appendix.
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Claim 3. Fix any two scenarios θ, θ′ with the same set of players, such that ri = r′i for every
player i, and for any two players i, j, vi ≥ vj if and only if v′i ≥ v′j. Then there exists a specific B
completion rule such that, when using this rule, the probability that a given player wins is the same
in both scenarios.

Claim 4. Changing the B completion rule does not change the expected welfare of the auction.

Claim 5. Fix arbitrary non-negative real values x1, ..., xL and arbitrary non-negative real weights
α1, ..., αL and β1, ..., βL. Let l = argmaxj=1,...,L

αj

βj
, and fix any real number x′l < xl. Then∑L

j=1 αjxj∑L
j=1 βjxj

≥
∑

j 6=l αjxj+αlx
′
l∑

j 6=l βjxj+βlx
′
l
.

Proof. Follows since the partial derivative of the left-hand-side with respect to xl is non-negative,
regardless of the values x1, ..., xL.

With these three claims we prove the first step by performing the following procedure iteratively,
starting with the original scenario:

1. Denote the current scenario by θ. Let pi denote the probability that player i wins one of
the auctions, and let yi be an indicator that denotes whether i wins an item in the optimal
allocation (both are for the current scenario θ).

2. Let x1, ..., xL denote the set of distinct positive values of players in θ in decreasing order. For
any 1 ≤ j ≤ L, define αj =

∑
i : vi=xj

pi and βj =
∑

i : vi=xj
yi.

3. If L = 1 then stop. Otherwise choose an index l with maximal αl
βl

. Form a new scenario θ′ by

decreasing the values of all players i with vi = xl to have value v′i = xl+1 (where xL+1 ≡ 0).
All other players’ types remain unchanged.

We argue that in every iteration of this process the auction-to-optimal welfare ratio cannot

increase, that is E[WA(θ)]
WOPT (θ) ≥

E[WA(θ′)]
WOPT (θ′) . By claim 3 we have that pi = p′i where p′i denotes the

probability that player i wins in θ′ if the auction uses the specific B completion rule of claim 3
(denote this auction as A′). Thus E[WA′(θ

′)] =
∑

j 6=l αjxj + αlx
′
l. We also have WOPT (θ′) =∑

j 6=l βjxj +βlx
′
l since the relative order among the players’ values is the same in θ and θ′. Claim 5

implies E[WA(θ)]
WOPT (θ) ≥

E[WA′ (θ
′)]

WOPT (θ′) , and claim 4 implies
E[WA′ (θ

′)]
WOPT (θ′) = E[WA(θ′)]

WOPT (θ′) . By repeating this procedure
we end up with a scenario in which all positive values are identical. Changing all positive values
to 1 will keep the same ratio. This concludes the first step.

Second Step. Let θ be some scenario such that vi ∈ {0, 1} for any player i. We now wish to
prove that

E[WA(θ)]

WOPT (θ)
≥ min

K′≤K

E[WA(θ∗K′)]

K ′

which will conclude the proof of Lemma 1. We rely on two claims whose proofs are given in the
appendices.

Claim 6. Fix a scenario θ such that vj ∈ {0, 1} for any player j. Additionally let i be some player
with ri = 1 and vi = 1. Then E[WA(θ)] ≤ 1 + E[WA(θ−i)].
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Claim 7. Fix two scenarios θ, θ′ such that vj ∈ {0, 1} for any player j in θ, and θ′ is a modification
of θ such that one of the following holds:

• one player arrives one auction later, i.e. there exists a player i such that θ′j = θj for any
j 6= i and θ′i = (vi, ri + 1) (if ri = K then θ′ = θ−i), or

• the set of types in θ′ includes θ plus some additional zero players that arrive for the first
auction.

Then E[WA(θ)] ≥ E[WA(θ′)].

We now prove step 2. We start from a scenario θ such that vi ∈ {0, 1} for any player i in θ.
By claim 7 we can assume that θ contains at least K zero players that arrive for the first auction
(otherwise we add them and the auction-to-optimal welfare ratio does not increase). Let at for
t = 1, ...,K denote the number of players with positive value in θ that arrive in auction t. If there
exists an auction t with at ≥ 2 then by claim 7 we move to θ′ in which some player with ri = t
now has r′i = t + 1 (and if t = K then θ′ = θ−i) and have E[WA(θ)] ≥ E[WA(θ′)]. We also have
OPT (θ) = OPT (θ′) since the optimal allocation chooses in each auction a participating player with
maximal value and one can verify that in θ and θ′ the maximal value in each auction is the same.

Thus E[WA(θ)]
WOPT (θ) ≥

E[WA(θ′)]
WOPT (θ′) . By repeatedly performing this step we reach a scenario where at ≤ 1 for

any auction t. If at = 1 for any auction t then this is θ∗K , and we are done. Otherwise if a1 = 0 then
we actually have a scenario over K − 1 items and by an inductive argument we conclude the claim.
Otherwise a1 = 1 and there exists some t > 1 with at = 0. By claim 7 we move to θ′ in which the
1-player with ri = 1 now has r′i = t, and E[WA(θ)] ≥ E[WA(θ′)]. We also have OPT (θ) = OPT (θ′)
since the optimal allocation chooses all players with positive values in both scenarios. Since θ′ is a
scenario over K − 1 items the claim follows by induction.

3.3 Bounding the inefficiency of θ∗K

We now wish to prove the approximation ratio. Fix any K ∈ N. Recall that in θ∗K there are K
zero-value players that arrive for the first auction, and in every auction t = 1, ...,K arrives one
additional player with value 1. To analyze E[WA(θ∗K)], define a variable Zt for t = 1, ...,K whose
value is the number of zero players that were chosen as winners in auctions 1, ..., t in θ∗K . Zt may
be a random variable. The number of 1-players that participate in auction t+ 1 is exactly Zt + 1:
there are Zt 1-players that arrived in auctions 1, ..., t and were not winners in those auctions since
zero-player that is a winner there is a corresponding 1-player which is a loser. An additional 1-
player arrives for auction t + 1. Let Pt = Zt+1

K−t . If Pt ≤ 1 then it exactly equals the fraction of
1-player in Bt+1, since there are Zt + 1 1-players at time t + 1 and |Bt+1| = K − t (t items were
already sold so the number of remaining items is K − t).

Define an additional variable t∗ to be the first auction t for which Pt ≥ 1, t∗ = argmin1≤t≤K(Pt ≥
1). In other words, in auctions t∗ + 1, ...,K the winners must all be 1-players. We also know that
the number of 1-players that are winners in auctions 1, ...t∗ is t∗ − Zt∗ . Thus the total number of
winners with value of 1 is WA(θ∗K) = (K − t∗) + (t∗ − Zt∗) = K − Zt∗ . Note that it must be that

t∗ ≥ K/2 since before this time not enough 1-players have arrived. Since 1 > Pt∗−1 =
Zt∗−1+1
K−(t∗−1) ,

we get Zt∗−1 < K − t∗ and therefore Zt∗ ≤ K − t∗. Thus WA(θ∗K) = K − Zt∗ ≥ t∗ ≥ K/2. This
implies the first part of theorem 2.
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To prove the second part we show that, for any K ∈ N,
E[W

A(U) (θ∗K)]

K ≥ 1− 1
e . Since WA(U)(θ∗K) =

K − Zt∗ it is enough to show that E[Zt∗ ] ≤ K
e .

With the uniformly-at-random tie-breaking rule, when Pt ≤ 1 it exactly equals the probability
that a 1-player will be the winner in auction t+ 1, since there are Zt + 1 1-players and the winner
is chosen uniformly at random from a set of players of size K− t that contains all the participating
1-players. If Pt ≥ 1 then as before the winner of auction t + 1 will be a 1-player with probability
1. Thus

Zt+1 =

{
Zt with prob. min(Pt, 1)
Zt + 1 with prob. 1−min(Pt, 1)

and Z0 = 0. To bound E[Zt∗ ] we super-martingales. A stochastic process X1, ..., XK is a “super-
martingale” if, for any 1 ≤ t < K, E[Xt+1 | Xt = l] ≤ l for any possible value l of Xt. A “stopping
time” for X1, ..., XK is a random variable T with the property that for each 1 ≤ t ≤ K, the
occurrence or non-occurrence of the event T = t depends only on the values of X1, ..., Xt. Therefore
t∗ is a stopping time for Z1, ..., ZK . If X1, ..., XK is a super-martingale, and t∗ is a stopping time,
then E[Xt∗ ] ≤ E[X1] (Williams, 1991). Back to our setting, we construct an auxiliary process: for
any t ≤ t∗,

Xt = Zt −
t−1∑
j=0

K − t
K − j

,

and for t > t∗ set Xt = Xt−1. For t ≥ t∗ we have E[Xt+1 | Xt = l] = l since Xt+1 = Xt. To
show that Xt is a super-martingale we compute, for any t < t∗, E[Zt+1 | Zt = l < K − t − 1] =
Pt · l + (1− Pt)(l + 1) = (l + 1)K−t−1

K−t .

Now, E[Xt+1 | Xt = l]

= E

Zt+1 | Zt = l +

t−1∑
j=0

K − t
K − j

− t∑
j=0

K − t− 1

K − j

=
K − t− 1

K − t
(l +

t−1∑
j=0

K − t
K − j

+ 1)−
t∑

j=0

K − t− 1

K − j

=
K − t− 1

K − t
· l ≤ l,

implying that X1, ..., XK is a super-martingale. We have that E[Z1] = 1 · K−1
K + 0 · 1

K and therefore
E[X1] = E[Z1]− K−1

K = 0. Hence

0 = E[X1] ≥ E[Xt∗ ] = E

Zt∗ − t∗−1∑
j=0

K − t∗

K − j

 ,
or, in other words, E[Zt∗ ] ≤ E

[
(K − t∗)

∑t∗−1
j=0

1
k−j

]
. Since

E

(K − t∗)
t∗−1∑
j=0

1

K − j

 ≤ max
t=1,...K

(K − t)
t−1∑
j=0

1

K − j

11



we upper bound the RHS by K
e . We use the fact that, for any integer n, if we set εn =

∑n
j=1

1
j−ln(n),

then 0 < εn+1 < εn. As a result, for any t,

t−1∑
j=0

1

K − j
=

K∑
j=1

1

j
−
K−t∑
j=1

1

j

= ln(K) + εK − ln(K − t)− εK−t < ln(
K

K − t
),

and max
t=1,...K

(K − t)
t−1∑
j=0

1

K − j
≤ max

0≤t<K
(K − t) ln(

K

K − t
)

= max
0<y≤K

y ln(
K

y
) =

K

e
.

where the last equality follows since the function y ln(Ky ) obtains its maximum at y∗ = K
e and

y∗ ln(Ky∗ ) = K
e . Therefore we have shown that E[Zt∗ ] ≤ K

e , which implies the second part of
theorem 2.

4 Observed Arrivals

4.1 A Second Modified English Auction

We now return to the original sequential English auction format, and suggest a second modification.
While it may seem that bidders who do not belong to the top K − t+ 1 in round t have no chance
to win in a later round even in the original format if players play undominated strategies, in fact
this is not true and very strange strategies are in fact undominated. This is true even in the special
case of two items and three bidders, and in particular we show in Appendix A that for this special
case, the strategy of quitting at price 0 in the first auction, and remaining until price equals value
in the second auction, is not dominated. Clearly without ruling out such strategies we cannot hope
to obtain good efficiency bounds, therefore we suggest the following “activity rule” that will force
players to compete at least until a carefully-chosen cut-off point, where the number of remaining
players is equal to the number of remaining items:

An English auction with an activity rule: At auction t (for t = 1, ...,K), let pt be the price
point at which there remain exactly K − t+ 1 bidders who have not dropped yet from the current
auction (this is the point where the number of remaining bidders is equal to the number of unsold
items). If several bidders drop together at pt, so that more than K− t+ 1 bidders are active before
pt and less than K − t+ 1 bidders are active after pt, the auction orders them so that it has a set
of players of size exactly K − t+ 1 that dropped last. We refer to pt as the cutoff price at auction
t (note that pt can be strictly below the end price of auction t, as at pt there are K − t + 1 > 1
players that are still active). Then,

1. Bidders that do not belong to the set of K − t+ 1 bidders that dropped last are not allowed
to participate in subsequent auctions. This implies that K − t of the bidders that participate
in this auction are qualified to participate in the next auction, and one additional bidder wins
this auction.
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2. The next auction t+ 1 starts from price pt.

As was in the previous auction, we add K dummy players with value zero that arrive for the
first auction, to ensure that the number of players in each auction is not less than the number of
remaining items. Here as well, our efficiency bounds hold even if some of the dummy players are
chosen to win some of the items (meaning that that item is left unallocated).

Since player i obtains zero utility if she drops before the cutoff price, it is clearly a dominated
strategy to do so. Thus, we assume throughout that in every auction t = ri, ...,K, bidder i does
not drop before the cutoff price pt, unless her value is lower than pt. If indeed the price reaches
the player’s value, and this point is lower than pt, the player drops at this point since subsequent
prices will not be lower than pt, and thus the player cannot obtain positive utility regardless of her
actions.

We should remark at this point that the solution concept of undominated strategies is much
stronger than the more standard ex-post equilibrium notion. For example, a player that follows
an equilibrium strategy assumes that the other players are rational enough to also follow the same
equilibrium, while a player that follows an undominated strategy does not need to assume anything
about the other players. Thus the additional assumption of known arrivals enables us to significantly
strengthen the solution concept.

To analyze the resulting efficiency, we first show that, as a direct result of this activity rule, the
bidders with the K − t+ 1 highest values among all bidders that arrive up to time t and have not
won yet are qualified for auction t+ 1. Formally, let Λt be the set of bidders that arrive up to time
t and does not win any item 1, ..., t. Let Xt denote the set of bidders that participate in auction t,
and let Qt ⊆ Λt be the set of players at auction t that are qualified for auction t+ 1. We prove in
the appendix that,

Proposition 2. If |Xt| < K − t + 1 then no player was disqualified at any auction s ≤ t. If
|Xt| ≥ K − t+ 1 then the K − t+ 1 highest-value bidders in Λt have the same set of values as the
bidders in Qt.

4.2 Worst-case Efficiency

We now turn to analyze the social efficiency of the sequential auction with the activity rule, under
the assumption that players may choose to play any tuple of undominated strategies. We use the
same notation of section 3: WA(θ) denotes the resulting welfare of the auction, when players’ types
are θ, and they play some tuple of undominated strategies, and WOPT (θ) is the optimal welfare for
θ.

We wish to prove that WA(θ)
WOPT (θ) ≥ 1/2 for any tuple of types θ. For two items the proof is simple,

since the player with the highest value in θ must win an item: if this player arrived for the first
auction but was not a winner in the first auction then by proposition 2 she was qualified for the
second auction. In the second auction, since all players remain up to their values, the highest player
wins. This immediately implies the claimed ratio. When we consider more items the appropriate
generalization of this fact is the following lemma.

Fix any tuple of types θ. For simplicity of notation we omit repeating θ throughout. Let
OPT be a valid assignment with maximal welfare, and let A be an assignment that results from
the sequential auction with the activity rule, when all players play some tuple of undominated
strategies. Let vOPT1 , ..., vOPTK be the values of the winners of OPT, ordered in a non-increasing
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order (i.e. vOPT1 ≥ vOPT2 ≥ · · · ≥ vOPTK ). (we also set vOPTK+1 = 0 for notational purposes). Similarly,
let vA1 , ..., v

A
K be the values of the winners of A, again in a non-increasing order.

Lemma 2. For any index 0 ≤ l ≤ bK2 c, v
A
l+1 ≥ vOPT2l+1 .

Proof. Assume by contradiction that there are at most l winners in A with values that are larger
or equal to vOPT2l+1 . Let K − t be the last auction at which the winner in A has value strictly smaller

than vOPT2l+1 . After this auction there remain exactly t more auctions, hence there are at least t

players in A with value at least vOPT2l+1 . Thus, by the contradiction assumption, t ≤ l.
Let X be the set of players in OPT with the 2l + 1 highest values. Let Y = {i ∈ X | ri ≤ K−t}.

Note that |Y | ≥ (2l+1)−t: there are only t auctions after time K−t, so there are at least (2l+1)−t
players in X that receive an item in OPT at or before time K − t, and these must have an arrival
time smaller or equal to K− t. Let Z be the set of players in Y that win in A before auction K− t.
Thus Y \ Z ⊆ ΛK−t.

Note that |Z| ≤ l − t, since after auction K − t all winners in A have values at least vOPT2l+1 and
all players in Z win in A an item from 1, ...,K − t. Therefore by the contradiction assumption
|Z|+ t ≤ l. This implies that |Y \ Z| ≥ (2l + 1− t)− (l − t) = l + 1 ≥ t+ 1.

Since Y \Z ⊆ ΛK−t and |Y \Z| ≥ t+1, then the (t+1)-highest-value in ΛK−t is larger or equal
than the minimal value in Y \ Z. By proposition 2, the winner in A at auction K − t must have
value at least as large as the (t+ 1) highest value in ΛK−t. Thus the winner in A at auction K − t
has value at least as large as the minimal value in Y \ Z. But all players in Y \ Z have values at
least vOPT2l+1 , and this contradicts our assumption that the winner of auction K− t has value strictly

smaller than vOPT2l+1 .

This lemma implies thatWOPT (θ) is at most twiceWA(θ), since vOPT1 , vOPT2 ≤ vA1 , vOPT3 , vOPT4 ≤
vA2 , and so on, and thus WOPT (θ) ≤ 2

∑bK
2
c+1

k=1 vAk ≤ 2WA(θ).

Theorem 3. WOPT (θ) ≤ 2WA(θ) for any θ.

The following simple example shows that the analysis is tight. Suppose two items and two
players that arrive at time 1, with values v1 = 0, v2 = 1. The cutoff price at the first auction is
therefore zero, and therefore suppose that player 1 wins the first auction, and player 2 continues
to the second auction. In the second auction arrives a third player with v3 = 1. Regardless of the
winner in the second auction, the resulting welfare of the auction is 1, while the optimal welfare is
2.

4.3 Average-case Efficiency for Two Items

The traditional worst-case analysis is very pessimistic, and it would be more reasonable to assume
that the input is not completely adversarial. In this section we will concentrate on the special case
where there are only two items for sale (for which the worst-case bound is also 2), and demonstrate
that even a minor shift from the worst-case setting towards an average-case setting will improve
the efficiency guarantee quite significantly.

Formally, we assume an adversary that is allowed to choose the number of players, n, and their
arrival times. Thus, the adversary determines a number r ≤ n, such that the first r players arrive
for the first auction, and the remaining n− r players arrive for the second auction. The adversary
then chooses a cumulative probability distribution F with some support in [0,∞], and draws the
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values of the players from this distribution, i.e. the values are i.i.d. The adversary then determines
the undominated strategy of each player (the choice of the strategy may depend on the random
result of the players’ values, as to “fail” the auction). Comparing this setup to the setup of the
previous section, we can see that the only change is that now the adversary must draw the players’
values from some fixed distribution (but the adversary can choose what distribution to use). We
will show that this modification towards an average-case setup implies a significant increase in the
efficiency of the sequential auction: the auction will obtain at least

√
2/2 ' 0.7 of the optimal

efficiency, for any number of players, their arrival times, the chosen distribution of the players’
values, and any choice of undominated strategies. Moreover, we show that this bound is tight,
i.e. there exists a sequence of distributions that approach this efficiency guarantee in the limit.

The analysis is carried out in the following way. Fixing the number of players, n, the number
of players r ≤ n that arrive for the first auction, and the cumulative distribution F , we define two
random variables: OPTr,n is the highest value among all players that arrive at time 1 plus the
highest value among all other players (including those that arrive at time 2). Note that OPTr,n is
indeed equal to the optimal welfare, given a specific realization of the values. The second random
variable, Ãr,n, is equal to the second highest value among all players that arrive at time 1 plus
the highest value among all the remaining players (including those that arrive at time 2). By
proposition 2 the winner in the first auction has a value larger or equal to the second highest value
among all players present in the first auction, and the winner in the second auction has the largest
value among all remaining players. Thus, A’s welfare is at least the value of Ã.3 We show:

Theorem 4. For any choice of the parameters n, r, F ,

EF [Ãn,r]

EF [OPTn,r]
≥
√

2

2
' 0.707.

The proof proceeds in two parts. We first analyze Bernoulli distributions over {0, 1}, and
bound the ratio of expectations over all such distributions. We then show in a formal way that the
worst-case over all distributions is lower bounded by the worst-case over all Bernoulli distributions.

4.3.1 A bound on any Bernoulli distribution

We have n players with i.i.d. values such that Pr(vi = 0) = p and Pr(vi = 1) = 1 − p for some
0 ≤ p < 1. Players 1, ..., r arrive for the first auction (at time 1), and players r + 1, ..., n arrive
for the second auction, at time 2, where p, n, r are parameters. We ask what values of p, n, r will

minimize the ratio
EFp [Ãn,r]

EFp [OPTn,r] , where Fp denotes the above-mentioned Bernoulli distribution.

Observe that, since a player’s value is either zero or one, the random variables OPTn,r and Ãn,r

3There always exists a tuple of undominated strategies such that A’s value exactly equals Ã’s value. Recall that
the adversary here may choose the strategy after she knows the values of the bidders. Therefore she can choose
the following strategies: at the first auction, the player with the highest value quits when the number of remaining
bidders is equal to the number of remaining items and all other players quit when the price reaches their value. (In
the second auction the only allowed strategy is to quit when price equals value). These strategies ensure that the
winner of the first auction is the player with the second highest value.
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can take only the values 0, 1, 2. We calculate:

Pr(Ãn,r = 0) = pn,

Pr(Ãn,r = 1) = pr(1− pn−r) + r(1− p)pr−1,

Pr(Ãn,r = 2) = 1− pr − r(1− p)pr−1.

For example, Ã = 1 if all values at the first auction are 0 and at least one value at auction 2 is
1 (this happens with probability pr(1 − pn−r)), or if there exists exactly one value that is equal
to 1 at the first auction, and then it does not matter what are the values at the second auction
(this happens with probability r(1 − p)pr−1). Similarly, we also have that Pr(OPTn,r = 0) = pn,
Pr(OPTn,r = 1) = pr(1− pn−r) + r(1− p)pn−1, and Pr(OPTn,r = 2) = 1− pr− r(1− p)pn−1. Using
this, we show in appendix G that

Proposition 3. For any n, r, and 0 ≤ p < 1,

EFp [Ãr,n]

EFp [OPTr,n]
=

2− pr − pn − r(1− p)pr−1

2− pr − pn − r(1− p)pn−1
≥
√

2

2

The calculations first show that this ratio decreases with n (for any r, p), so it suffices to compute
a lower bound on the limit of the ratio of expectations when n → ∞. In that case, a minimum is
achieved for r = 2 and p = 2−

√
2. Note that for p = 1, the two expectations become zero and the

ratio is undefined.
The worst-case scenario of section 4.2 requires three players, but here we need the infinitely

many players to approach the worst ratio. These additional players arrive for the second auction,
which may seem counterintuitive at first, as in the second auction the player with the highest value
wins. What is the effect of adding more players to the second auction? To explain this, note that
the only events that differentiate OPT and Ã are those in which, at the first auction, exactly one
player has value 1 and the other players have value 0, and at the second auction there exists at least
one additional player with value 1. In these events OPT = 2 and Ã = 1. As the number of players
increases (while keeping r constant), these events get more probability, hence the above-mentioned
effect.

4.3.2 Generalizing to any other distribution

To explore the case of a general distribution F with a support in [0,∞), we must take a closer
look at the expression for the expectation of OPT and Ã. We denote by Xn−j:n the j’th order
statistic of the random variables v1, ..., vn (the players’ values), which denotes the (j+1)’th highest
value of the players, i.e., Xn:n is a random variable that takes the maximal value among v1, ..., vn;
Xn−1:n is a random variable that takes the second largest value among v1, ..., vn, and so on. If the
player with the highest value at time 1 has the j+1’th highest value among all the n players4, then
OPTn,r = Xn−j:n +Xn:n. Hence

E[OPTn,r| highest at time 1 is (j+1)-highest overall ]

= E[Xn−j:n +Xn:n].

4If the distribution is discrete we use an arbitrary deterministic tie-breaking rule to ensure that the events (indexed
by j) “highest player at time 1 has the (j+1)-highest value overall” are mutually exclusive.
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Denote by qn,rj the probability that the highest value at time 1 is the j + 1’th highest value among
all the n players. It follows that:

EF [OPTn,r] = qn,r0 (EF [Xn−1:n] + EF [Xn:n]) (1)

+
n∑
j=1

qn,rj (EF [Xn−j:n] + EF [Xn:n]).

We remark that the highest player among the players that arrive at time 1 is at least the n−r+1
highest player among all players; therefore qn,rj = 0 when j > n − r. It will be important for the
sequel to verify that the probability qn,rj does not depend on the distribution F . First, note that
since the values are drawn i.i.d. then each value-ordering of the players has equal probability. Thus,
the probability of any specific order of all the players is 1/n!, and the probability that the order of
values will satisfy any specific property is simply the number of orderings that satisfy this property,
divided by n!. To find qn,rj , we thus ask in how many orderings, the highest player among the first
r players is exactly the j + 1 highest among all players. To get one such ordering, one needs to
choose one player (say i) out of the r players of time 1 (this is the highest player at time 1), to
choose j players out of the n− r players of time 2 (these are the players that are higher than i), to
order them in one of the j! orderings, then to place i, and then to order the remaining n − j − 1
players. Thus, for any 0 ≤ j ≤ n − r, qn,rj = 1

n! · r ·
(
n−r
j

)
· j! · (n − j − 1)!, and qn,rj = 0 for any

n− r + 1 ≤ j ≤ n.
Similarly, given that the second-highest player at time 1 is the j+ 1’th highest player among all

the n players, the expected welfare of Ã is E[Xn−j:n +Xn:n]. Denoting by pn,rj the probability that
the second-highest player at time 1 is the j + 1’th highest player among all the n players (where
again this probability does not depend on F ), it follows that:

EF [Ãn,r] =
n∑
j=1

pn,rj (EF [Xn−j:n] + EF [Xn:n]) (2)

(and we set pn,rj = 0 for any n− r + 2 ≤ j ≤ n).
We now consider the terms E[Xn−j:n]. Let Fn−j:n(x) be the probability distribution of Xn−j:n.

The probability that Xn−j:n ≤ x is the probability that at most j values will be higher than x, and
the remaining at least n− j values will be smaller than x, or, in other words,

Fn−j:n(x) = Pr(Xn−j:n ≤ x) =

j∑
k=0

(
n

k

)
(1− F (x))k(F (x))n−k

Therefore, Fn−j:n(x) is a polynomial in F (x), where the coefficients of the polynomial do not
depend on the distribution F . A well-known formula for the expectation of an arbitrary non-
negative random variable Y with cumulative distribution G is E[Y ] =

∫∞
0 (1 − G(y))dy. In

particular, E[Xn−j:n] =
∫∞

0 (1 − Fn−j:n(x))dx. In other words, the expectation of the j’th or-

der statistic is an integration over a polynomial in F (x), i.e. there exist coefficients w
(j)
l for

l = 0, ..., n and j = 1, ..., n (that does not depend on the distribution F ) such that EF [Xn−j:n] =∫ 1
0 [
∑n

l=0w
(j)
l (F (x))l]dx. Combining this equation with equations (2) and (1), we get that both

EF [OPTn,r] and EF [Ãn,r] are an integration over a polynomial in F (x), i.e. there exist coeffi-

cients β
(n,r)
0 , ..., β

(n,r)
n and γ

(n,r)
0 , ..., γ

(n,r)
n , that do not depend on the distribution F , such that

EF [OPTn,r] =
∫∞

0 [
∑n

l=0 β
(n,r)
l (F (x))l]dx and EF [Ãn,r] =

∫∞
0 [
∑n

l=0 γ
(n,r)
l (F (x))l]dx.
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One additional important observation is that
∑n

l=0 β
(n,r)
l =

∑n
l=0 γ

(n,r)
l = 0. To see this,

take some distribution F with a bounded support, say [0, 1]. The above equality implies that

EF [OPTn,r] >
∫∞

1 [
∑n

l=0 β
(n,r)
l ]dx, which is unbounded if

∑n
l=0 β

(n,r)
l 6= 0. But clearly EF [OPTn,r]

is a finite number since the support is bounded; hence it must be that
∑n

l=0 β
(n,r)
l = 0. The same

argument implies that
∑n

l=0 γ
(n,r)
l = 0.

The Bernoulli distribution Fp (0 ≤ p < 1) gives a fixed function over the interval [0, 1), specif-
ically Fp(x) = p for any 0 ≤ x < 1, and Fp(x) = 1 for x ≥ 1. Thus for this distribution the
integration cancels out, and,

EFp [OPTn,r] =
n∑
l=0

β
(n,r)
l pl, EFp [Ãn,r] =

n∑
l=0

γ
(n,r)
l pl. (3)

We next show how all the above implies:

Proposition 4. Fix any α such that
EFp [Ãn,r]

EFp [OPTn,r] ≥ α, for any n, r and 0 ≤ p < 1. Then, for any

other cumulative distribution F with EF [OPTn,r] > 0, it must be that
EF [Ãn,r]

EF [OPTn,r] ≥ α.

Proof. We need to show that
EF [Ãn,r]

EF [OPTn,r] ≥ α, or, equivalently, that EF [Ãn,r] − αEF [OPTn,r] ≥ 0.

Using the above equations, this term becomes∫ ∞
0

[
n∑
l=0

γ
(n,r)
l (F (x))l − α

n∑
l=0

β
(n,r)
l (F (x))l]dx.

We will show that, for every x ≥ 0,
∑n

l=0 γ
(n,r)
l (F (x))l−α

∑n
l=0 β

(n,r)
l (F (x))l ≥ 0, which implies

the above inequality. Fix some x ≥ 0, if F (x) = 1 then indeed

n∑
l=0

γ
(n,r)
l (F (x))l − α

n∑
l=0

β
(n,r)
l (F (x))l = 0− α · 0 = 0.

Otherwise, denote p = F (x) < 1. Thus

n∑
l=0

γ
(n,r)
l (F (x))l − α

n∑
l=0

β
(n,r)
l (F (x))l =

EFp [Ãn,r]− αEFp [OPTn,r] ≥ 0,

where the equality follows from Eq. (3), and the inequality follows from the assumption in the
claim.

Corollary 1. For any cumulative probability distribution F , and any n, r,
EF [Ãn,r]

EF [OPTn,r] ≥
√

2
2 ' 0.707.

This completes the proof of theorem 4.
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A The need for an activity rule

To exemplify the need to add an activity rule to the auction, consider a setting of two items and
three bidders that arrive in time 1. In the second auction, it is rather immediate that the strategy
of “remaining until price reaches value” weakly dominates all other strategies. In the first auction,
it is not hard to verify that there are at least two weakly undominated strategies:

1. In both auctions, remain until price reaches value (call this bvaluei ).

2. In the first auction, remain until exactly one other bidder remains, and in the second auction,
remain until your value (call this bEPDi , where EPD stands for Earliest Possible Dropping).

With our activity rule, these are the only undominated strategies, when there are two items.
Without the activity rule, these two strategies do not weakly dominate all other strategies, as we
next show. Suppose three bidders 1, 2, 3 arrive at time 1, with v1 > v2 > v3, and let us consider the
strategy b01 for bidder 1, in which she drops at price 0 in the first auction, and remains until her
value in the second auction. None of the above two strategies dominates b01, due to the following
reasoning.

Consider first the strategy bvalue1 . This strategy performs strictly worse than b01 in case both 2
and 3 choose to do the same (remain until their value in both auctions, i.e. play bvalue2 , bvalue3 ), due
to the following. By playing bvalue1 , bidder 1 will win the first auction and will pay v2. By playing
b01, bidder 1 will lose the first auction and will win the second auction for a lower price of v3.

Consider next the strategy bEPD1 . This strategy performs strictly worse than b01 when bidder 3
plays the strategy bvalue3 and 2 uses the following strategy: In the first auction, if bidder 1 drops at
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price 0 then bidder 2 continues until her value, and if bidder 1 does not drop at price 0 then bidder
2 drops immediately after that. In the second auction, bidder 2 remains until her value5. In this
case, if bidder 1 follows b01 and drops at 0 then bidder 2 will win the first auction, bidder 1 will win
the second auction, and will pay v3. If bidder 1 follows bEPD1 then bidder 2 drops, and bidder 1
drops immediately after that (since now only bidder 3 remains besides 1). Thus, bidder 3 wins the
first auction, bidder 1 again wins the second auction, but this time pays v2 which is larger than v3.

B Proof of Claim 3

Throughout the following appendices we use the following notation. For a scenario θ, denote
θ|2,...,K = { (vi,max(ri, 2) | (vi, ri) ∈ θ }, i.e. it is a scenario on K − 1 items with the same players’
types, except that players that previously arrived for the first auction now arrive for the second
auction, and the first auction is virtually deleted. Note that when j is the winner of the first auction
then θ−j |2,...,K describes the scenario for the remaining K-1 items auction.

Fix any two scenarios θ, θ′ with the same set of players, such that ri = r′i for every player i,
and for any two players i, j, vi ≥ vj if and only if v′i ≥ v′j . We show that there exists a specific
B completion rule such that, when using this rule, the probability that a given player wins is the
same in both scenarios.

Suppose the following B completion rule: if either vi > vj or v′i > v′j then i is preferred over j
(if vi = vj and v′i = v′j the preference is arbitrary). We prove the claim by induction on the number
of items K. For K = 1 the claim is immediate. Now assume correctness for K − 1. Let B1, B

′
1

denote the set of possible winners in the first auction for θ, θ′, respectively. Because of the specific
B completion rule, B1 = B′1, and the induction assumption implies Pr(i wins in θ−j |2,...,K) =
Pr(i wins in θ′−j |2,...,K). Thus,

Pr(i wins in θ) = Pr(i wins 1st auction in θ)+∑
j∈B1\{i}

Pr(j wins 1st auction in θ)·Pr(i wins in θ−j |2,...,K)

= Pr(i wins 1st auction in θ′)+∑
j∈B′1\{i}

Pr(j wins 1st auction in θ′)·Pr(i wins in θ′−j |2,...,K)

= Pr(i wins in θ′)

C Proof of Claim 4

We prove that changing the B completion rule does not change the expected welfare of the auction
by induction. For K = 1 the claim is immediate. For K > 1, the expected welfare obtained in
the first auction is the same, regardless of the B completion rule, since any player chosen by any B
completion rule has value that is equal to p1. The B completion rule also does not change the set
of types that continue to the second auction (i.e. there exists a one-to-one mapping π from players
that continue in one B completion to players that continue in the other B completion such that
vi = vπ(i) for any player i), hence by the inductive assumption the expected welfare of the auction
is the same.

5Formally, b2((1, v2), h(t = 1, p, k)) = R iff [p = 0 or (0 < p < v3 and 1 /∈ I1(0, s10))].
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D Proof of Claim 6

Fix a scenario θ such that vj ∈ {0, 1} for any player j. Additionally let i be some player with ri = 1
and vi = 1. We show that E[WA(θ)] ≤ 1 + E[WA(θ−i)].

We prove by induction on the number of items K. For K = 1, E[WA(θ)] ≤ 1 which implies the
claim. Now assume correctness for K − 1 and let us prove for K. Let p be the probability that a
1-player will be chosen at the first auction. We have

E[WA(θ)] ≤p[1 + E[WA(θ−i|2,...,K)]]

+ (1− p)E[WA(θ|2,...,K)].

By the induction assumption

E[WA(θ|2,...,K)] ≤ 1 + E[WA(θ−i|2,...,K)],

and the claim follows.

E Proof of Claim 7

Fix two scenarios θ, θ′ such that vj ∈ {0, 1} for any player j in θ, and θ′ is a modification of θ such
that one of the following holds:

• one player arrives one auction later, i.e. there exists a player i such that θ′j = θj for any j 6= i
and θ′i = (vi, ri + 1) (if ri = K then θ′ = θ−i), or

• the set of types in θ′ includes θ plus some additional zero players that arrive for the first
auction.

We show that E[WA(θ)] ≥ E[WA(θ′)]. We prove by induction on the number of items K. For
K = 1 the claim is immediate. Assume correctness for K − 1 and let us prove for K. Let p, p′ be
the probability that a 1-player will be chosen at the first auction in θ, θ′, respectively. If all players
that arrive for the first auction have value 0 the claim clearly holds. Otherwise fix some 1-player j
with rj = 1. We have

E[WA(θ)] =p[1 + E[WA(θ−j |2,...,K)]]

+ (1− p)E[WA(θ|2,...,K)], and

E[WA(θ′)] =p′[1 + E[WA(θ′−j |2,...,K)]]

+ (1− p′)E[WA(θ′|2,...,K)].

To prove that E[WA(θ)] ≥ E[WA(θ′)] we use the following fact: given two real intervals [a, b] and
[a′, b′] such that a′ ≤ a and b′ ≤ b, and 0 ≤ p′ ≤ p ≤ 1, one can verify that pb + (1 − p)a ≥
p′b′ + (1 − p′)a′. We set a = E[WA(θ|2,...,K)], b = 1 + E[WA(θ−j |2,...,K)]. Note that claim 6
implies a = E[WA(θ|2,...,K)] ≤ 1 + E[WA(θ−j |2,...,K)] = b. Similarly we set a′ = E[WA(θ′|2,...,K)],
b′ = 1 + E[WA(θ′−j |2,...,K)] and again note that a′ ≤ b′. If the player i from the statement of
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the claim is player j then θ−j |2,...K = θ′−j |2,..,K and θ|2,...,K = θ′|2,...,K . Otherwise the induction
assumption implies

E[WA(θ−j |2,...,K)] ≥ E[WA(θ′−j |2,...,K)] and

E[WA(θ|2,...,K)] ≥ E[WA(θ′|2,...,K)].

Thus a′ ≤ a and b′ ≤ b. Since p′ ≤ p the claim follows.

F Proof of Proposition 2

We first show that if |Xt| < K − t + 1 then no player was disqualified at any auction s ≤ t. We
prove that if a player is disqualified at auction s then for every t ≥ s, |Xt| ≥ K− t+1, by induction
on t. For t = s, since some player was disqualified, then by definition |Xs| ≥ K − s + 1. Assume
the claim is true for t, and let us verify it for t + 1. Since |Xt| ≥ K − t + 1 then by definition
|Qt| = K − t+ 1; hence |Xt+1| ≥ |Qt| − 1 = K − t = K − (t+ 1) + 1, and the claim follows.

We now show that if |Xt| ≥ K − t+ 1 then the K − t+ 1 highest-value bidders in Λt have the
same set of values as the bidders in Qt. We show that for every player i ∈ Λt \Qt and player j ∈ Qt
we have vj ≥ vi, which implies the claim.

First observe that this holds for i ∈ Xt \ Qt and j ∈ Qt: all players in Xt but not in Qt have
values smaller or equal to the cutoff price pt, and all players in Qt have values greater or equal to
pt, hence vj ≥ vi. This also implies that the K − t+ 1 highest-value bidders in Xt belong to Qt.

We now prove the claim by induction on t. For t = 1, Λt = Xt and the claim follows from the
above argument. Assume the claim is correct for any t′ < t, and let us prove it for t. If i ∈ Xt then
again the above argument holds. Otherwise i ∈ Λt \Xt, which implies that i arrived strictly before
time t and was disqualified at or before time t− 1. Note that by the first part of this proposition
we have that |Qt−1| = K− (t− 1) + 1. Since player i was disqualified, we have i ∈ Λt−1 \Qt−1. Let
j′ be the player with minimal value in Qt−1. By the induction assumption we have that vj′ ≥ vi.
There are K − t + 2 players in Qt−1, out of them K − t + 1 continue to auction t (i.e. belong to
Xt), all with values larger or equal to vj′ . Thus, again by the argument in the previous paragraph,
any player j ∈ Qt has vj ≥ vj′ ≥ vi, and the claim follows.

G Proof of Proposition 3

We need to show that, for any n, r, and 0 ≤ p < 1,

EFp [Ãr,n]

EFp [OPTr,n]
=

2− pr − pn − r(1− p)pr−1

2− pr − pn − r(1− p)pn−1
≥
√

2

2
. (4)

We first differentiate this expression with respect to n, to show that it decreases as n increases.

d

dn

((
2− pr − pn − r (1− p) pr−1

)
(2− pr − pn − r (1− p) pn−1)

)
=

rpn−2 (ln p) (1− p)
(
2p− rpr + pr+1 (r − 2)

)
(−rpn−1 − pr + (r − 1) pn + 2)2 .
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We concentrate on the term
G (p, r) = 2p− rpr + pr+1(r − 2)

and claim that it is nonnegative for every 2 ≤ r ≤ n and p ∈ [0, 1]. For p = 0 we have G(0, r) = 0
and for p = 1 we have G(1, r) = 0. Moreover

d2

dp2
G (p, r) = rpr−2 ((r + 1) (r − 2) p− r (r − 1))

and since
r (r − 1)

(r + 1) (r − 2)
> 1

for every r ≥ 2 we know that d2

dp2
G (p, r) ≤ 0 and G (p, r) is concave in p. We thus conclude that

G (p, r) ≥ 0 for every 2 ≤ r ≤ n and p ∈ [0, 1] and consequently that d
dn

(
(2−pr−pn−r(1−p)pr−1)
(2−pr−pn−r(1−p)pn−1)

)
≤ 0.

We take n to infinity:

lim
n→∞

((
2− pr − pn − r (1− p) pr−1

)
(2− pr − pn − r (1− p) pn−1)

)
= 1− r (1− p) pr−1

(2− pr)

and therefore the minimum of 1 − r(1−p)pr−1

(2−pr) will give us a lower bound for (4), for every n, since

we obtained that (4) decreases towards the limit as n increases. Equivalently, we look for the

maximum of H (p, r) = r(1−p)pr−1

(2−pr) . Now,

d

dr
H (p, r) = −p

r−1 (1− p) (−2r ln p+ pr − 2)

(2− pr)2

d

dp
H (p, r) = rpr−2 (2r (1− p) + pr − 2)

(2− pr)2 .

Therefore if there exists a global maximum at 0 < p < 1 and 2 < r then we must have −2r ln p =
2−pr and 2r (1− p) = 2−pr but this is not possible since for every 0 < p < 1 we have − ln p > 1−p.
We thus conclude that the maximum is achieved on the boundary. For p = 0, we have H (0, r) = 0
and for p = 1, we have H (1, r) = 0; therefore we conclude that the maximum is achieved on the
boundary where r = 2. We find p that solves

max
p∈(0,1)

H (p, 2) = max
p

2 (1− p) p
(2− p2)

and the solution is p∗ = 2−
√

2. Finally, for r = 2, p∗ = 2−
√

2 and n→∞ we have

EFp [Ãr,n]

EFp [OPTr,n]
=

√
2

2
' 0.707 11.
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