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Abstract

In the bipartite rationing problem, a set of agents share a single re-
source available in different “types”, each agent has a claim over only a
subset of the resource-types, and these claims overlap in arbitrary fash-
ion. The goal is to divide fairly the various types of resource between the
claimants, when resources are in short supply.

With a single type of resources, this is the classic rationing problem
(O’Neill [20]), of which the three benchmark solutions are the propor-
tional, uniform gains, and uniform losses methods. We extend these and
other methods to the bipartite context, imposing the familiar consistency
requirement: the division is unchanged if we remove an agent (resp. a
node), and take away at the same time his share of the various resources
(resp. reduce the claims of the relevant agents).

We find that most parametric rationing methods (Young [25]) can-
not be consistently extended, and come close to characterize the subset
of those that can. The latter reduce essentially to the loss calibrated ra-
tioning methods, a new family of methods containing the proportional
method, and the uniform gains and uniform losses as limit points. They
admit a single consistent extension, although uniform gains and uniform
losses admit infinitely many.

* Rice University, moulin@rice.edu
** Columbia University, jay@ieor.columbia.edu

1 The problem and the punchline

Consider the problem of dividing a max-flow in an arbitrary bipartite graph
between source and sink nodes. Each source holds a finite amount of the com-
modity (say homogenous freight; more examples below), each sink has a finite
capacity to store freight, and all edges have infinite capacity. If each node wishes
to send or receive as much freight as possible, it is optimal to implement a max-
flow, but there are typically many of those: our goal is to propose a fair way to
select one max-flow in any such problem.

A familiar consequence of the max-flow min-cut theorem ([1]) is that we can
decompose any max-flow problem in (at most) two simpler subproblems that
can be treated separately. In one subproblem the sink nodes are overdemanded,
in the sense that they can be filled to capacity while the underdemanded source
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nodes must be rationed (ship less freight than they could); the situation is
reversed in the other subproblem, where the overdemanded source nodes can
unload all their freight to the underdemanded storage nodes. The key fact is
that there is no edge between two undermanded nodes. This decomposition cuts
our fair division problem in half: we need only to propose a rule for problems
where the sinks are overdemanded, then exchange the role of sources and sinks
to apply the same rule to problems with overdemanded sources (see Remark 1
in Section 2).

To fix ideas we discuss throughout the paper the case of overdemanded
sinks. In the simple case of a single sink, this is the simplest and oldest fair
division problem, going back to Aristotle and the Talmud [2], and known as the
rationing model since its formalization by O’Neill [20]. A storage facility with a
given capacity must be shared between users who each have a claim on a certain
quantity of storage space, but the available space falls short of the sum of all
claims. Our generalization consists of introducing multiple storage facilities and
arbitrary bipartite constraints between agents wishing to ship their freight and
storage sinks, while maintaining the assumption that storage is overdemanded.
We speak of the bipartite rationing problem, to contrast with the standard
problem with a single sink.

It is convenient to think of each sink as a different “type” of resource, so that
each agent can only consume a subset of the resource-types, and these claims
overlap in arbitrary fashion. Inasmuch as not every agent can consume every
type of the resource, different types are heterogenous commodities. However
from the point of view of a given agent, all types he can consume are perfect
substitutes, so his claim applies to all these types and he only cares about the
total amount of resource he receives, irrespective of type. Our goal is to propose
a fair division of all types of resource between the claimants, when resources are
in short supply.

The normative literature initiated by O’Neill [20] emphasizes the relevance of
standard rationing to taxation schedules ([25], [26]) and bankruptcy rules ([14]).
It develops a rich axiomatic analysis confirming the central role of the three
benchmark methods emerging from the empirical social-psychology literature
([21], [12], [11]), where the model is applied to the division of any resource
according to individual characteristics. Individual shares can be proportional
to claims (proportional method), as equal as possible provided that they do not
exceed one’s claim (uniform gains method), or the individual losses can be as
equal as possible under the same provision (uniform losses method). Unlike
its predecessors, the axiomatic analysis identifies rich families of new methods,
providing flexible compromises between the three benchmarks: a good example
is the family of equal sacrifice methods due to Young [25]. (For an overview of
the axiomatic approach, see Moulin [18] and Thomson [23].)

Examples where the rationed commodity comes in several types, and bilat-
eral constraints restrict which agents can claim/consume which resource, in-
clude:

1. Load balancing: The resources are different types of work, each one with
a given size (processing time); the agents are workers, each one able to execute
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only certain types of work, and with a capacity constraint on total individual
workload. We want to divide the workload between the workers who all care
about their total load (they all prefer more, or they all prefer less).

2. Earmarked funds: The resources are sponsors with a given total budget to
fund the research of some of the agents; each agent submits a project with a total
price tag, and each sponsor attaches some strings to the projects it will consider
(e.g., must have an environmental dimension, must involve minorities, etc.);
each project is submitted to all the sponsors of which it meets the constraints.
Agents care about their total funding, irrespective of origin.

3. Cleaning polluted sites: The resource-types are different sites, each with
a known clean-up cost for the pollution generated by several firms (who are the
agents); experts determine which firm pollutes which sites, and firms are jointly
liable for cleaning “their” sites. In the absence of data breaking up costs at each
site between the liable firms, the judge can only use a one-dimensional proxy
(e.g., total output) of each firm’s total liability.

4. Blood transfusion: Each agent needs a certain amount of blood, and
blood is available in limited quantity, and in four types O, A, B, AB; an agent
with blood type O can only receive O-blood, one of type AB can receive from
all types, and so on.

5. Distribution of utilities (water, power,..) after a natural disaster: Some
of the normal lines and sources of supply are unavailable creating new bilateral
constraints; individual claims are the normal consumption levels, that must now
be rationed.

We ask if and how it is possible, in the contexts just described, to extend a
standard rationing method to a bipartite one.

One way to approach this question is to regard the compatibility constraints
as devoid of any normative content: agents are not held responsible for their in-
ability to consume certain resources, so no one should derive an advantage from
being compatible with more types than others. This interpretation is com-
pelling in the blood transfusion and emergency distribution examples. It leads
to extend the uniform gains method, for instance, by simply picking the most
egalitarian profile of (total) shares, under the bilateral feasibility constraints1.
One can similarly define an extension of the proportional or uniform losses meth-
ods by equalizing individual shares divided by individual claims, or equalizing
individual losses, respectively.

Yet if it is natural in some problems to regard the compatibility constraints
as normatively neutral, in other cases it is ethically compelling to hold claimants
responsible for their bilateral constraints and reward accordingly those who can
consume more types of resources: This is very clear in the clean-up example; in
the funding story, a project relevant to more agencies deserves better funding,
and the same remark applies to load balancing.

To make this key point formally, consider two resource-types a, b, both with
2 units to share, Ann and Bob each with a claim of 4 units, and suppose Ann

1This selction is unambiguous because there is a profile of individual total shares that
Lorenz dominates any other feasible profile: see Bochet et al. [6].
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can consume both types, while Bob can only consume the b type. If Bob should
not be penalized for his limited options, both would get 2 units by the symmetry
of the relevant parameters. But if Bob is held responsible for being unable to
consume the a type, then Ann should get all of type a, and she will still have a
claim of 2 units over the type b resource.

The celebrated consistency axiom captures in our model the idea that agents
are responsible for their own compatibilities with the different types of resources.
This axiom has emerged in a variety of contexts (including TU games, matching,
assignment, etc.) as a compelling rationality property for fair division (see e.g.,
[16] and [24]). A standard rationing method is consistent if, when we take away
one agent from the set of participants, and subtract his share from the available
resources, the division among the remaining set of claimants does not change.
It is satisfied by the three benchmark methods above, and many more.

It is easy to define a version of consistency appropriate for bilateral rationing
methods. We can now take away either an agent or a type of resource: if the
former, we subtract from each resource-type the share previously assigned to
the departing agent; if the latter, we subtract from the claim of each agent the
share of the departing resources he was previously receiving; in each case we
insist that the division in the reduced problem remain as before. A stronger
form of consistency can be applied to each edge of the graph: when we remove
a certain edge, we subtract its flow from the capacity of both end nodes, and
require as above that the solution choose the same flow in the reduced problem.

To see why a consistent method rewards agents compatible with more resource-
types, assume agents have identical claims, very large with repect to the avail-
able resources. After dropping all but one resource-type, the remaining claims
of the agents will still be nearly identical, relative to the remaining resource, so
it will be shared nearly equally. We end up sharing equally each resource-type
among all “its” agents.2

In addition to the consistency requirement, we insist on a symmetric treat-
ment of agents and types, in the usual sense of equal treatment of equals. More-
over we do not want the artificial creation of new resource-types to matter, in
the following sense: if two types are compatible with exactly the same set of
agents, merging them into a single type while adding their resources is of no
consequence to any agent. We call this property Invariance to the Merging of
Types.

1.1 Overview of our results

We are looking for symmetric and continuous standard methods that can be
extended to a consistent bipartite method, also invariant to the merging of
types. We simply call such a method extendable.

2We stress that there are also non consistent methods capturing the responsibility idea
in a different way. One instance is the Shapley value of the stand alone cooperative game,
where the value of a coalition is the total amount it can consume, given the constraints. See
a numerical example below.
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We observe first (Lemma 1) that an extendable standard method must satisfy
a property in the spirit of, though not logically related to, consistency and the
lower composition axiom (see Moulin [18] and Thomson [23]): If we distribute
15% of the final shares, reduce claims and resources accordingly, then in the
smaller problem everyone gets the remaining 85% of his original share3. We use
this technical property to deduce that many familiar rationing methods are not
extendable as desired. Examples include the Talmudic and most equal sacrifice
methods.

Our first main result (Theorem 1) is that the standard proportional method
is uniquely extendable. Its extension can be described in two equivalent ways:
it minimizes the sum of two entropies, that of a max-flow plus that of the
corresponding profile of losses (claim minus actual share); alternatively it assigns
a positive weight wi to each agent i and divides each resource-type between
agents who can consume it, in proportion to the wi; moreover individual losses
are proportional to the wi-s as well. The weights are not the individual claims,
instead they solve a system of nonlinear equations. We give a numerical example
in the next subsection.

We define next a family of standard methods, new to the literature, that
we call loss calibrated. Every such method is defined by a weakly increasing
real-valued function β of a single variable such that β(0) = 0 and such that
β(z) is positive if z is4. Given a profile of claims x, the shares y are chosen
so that the ratio yi

β(xi−yi) is the same for all agents. Thus the loss calibrated

methods equalize individual shares weighted by a measure of individual losses.
For β(z) = z we find the proportional method.

Our second main result (Theorem 2) goes a long way toward characterizing
all extendable standard methods. Each loss calibrated method is uniquely ex-
tendable. Conversely if a standard method is strictly resource monotonic5 and
extendable, it must be a loss calibrated method.

We also show that the standard proportional method is the only loss cal-
ibrated one satisfying any one of three familiar axioms: Lower Composition,
Upper Composition, and Self-Duality. This in turn yields several characteriza-
tions of the bipartite proportional method.

We discuss finally the extendability of the two other benchmark methods,
uniform gains and uniform losses. They are both limit points of the loss cali-
brated family, yet not strictly resource monotonic. Each is extendable, but in
infinitely many ways (Propositions 1 and 2).

3Formally, if the profile of shares is y when claims are x and we divide r units of resource,
then for any λ ∈ [0, 1], in the problem with claims x− λy and resources (1− λ)r, the shares
must be (1− λ)y.

4If our method is scale invariant, the function β is a power function; see Section 4.
5That is, if we have more resources to share, every individual share increases strictly.

Clearly every loss calibrated method meets this property.
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1.2 A numerical example

We have three agents 1, 2, 3 and two resource-types a, b. Agent 1 can consume
type a only; agent 3 can consume type b only; and agent 2 can consume both
types. Claims are identical x1 = x2 = x3 = 2, but there is 1 unit of type a and
2 units of type b. The resources are strictly overdemanded (as defined in section
2). See Figure 1.

2

3

a

b

12

2

2

1

2

Figure 1: An example with 3 sources and 2 sinks

When agents are not held responsible for their ability or inability to consume
certain resources, the egalitarian viewpoint equalizes the total share of each
participant as much as permitted by the feasibility constraints. In our example
this gives 1 unit of resource to each one of the three agents by means of the flow

ϕ1a = 1;ϕ2a = 0;ϕ2b = ϕ3b = 1, (1)

where ϕ1a is agent 1’s consumption of type a, etc.
But this is not consistent with the egalitarian viewpoint on smaller problems:

dropping resource b and subtracting 1 from agent 2’s claim, we are left with a
standard rationing problem where 1 unit is shared between agents 1 and 2 with
claims 2 and 1, so the egalitarian outcome ϕ̃1a = ϕ̃2a = 1

2 contradicts the above
shares.

One consistent extension of the standard uniform gains method selects the
flow ϕ minimizing (ϕ2

1a + ϕ2
1b + ϕ2

2a + ϕ2
2b) over all max-flows (Proposition 1).

This gives the shares

ϕ̃1a =
1

2
; ϕ̃2a =

1

2
; ϕ̃2b = ϕ̃3b = 1 (2)

where agent 2 is rewarded for being able to claim both resource-types. Dropping
resource b and subtracting 1 from agent 2’s claim prompts no revision in the
division of resource a.6

6The Shapley value of the stand alone game (Footnote 2) gives, coincidentally, the same
allocation.
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Turning to the proportionality viewpoint, we can similarly hold that agents
are not responsible for their edges, or lack thereof, and assign total shares in
proportion to individual claims. As claims are equal in our example, this would
lead to the flow (1), and to a similar contradiction of consistency: after dropping
b the reduced claims of agents 1, 2 over a are 2 and 1, so proportional division
gives 2

3 to agent 1.
The consistent proportional method described in Theorem 1 relies on three

strictly positive weights w1, w2, w3 summing to 1; it divides each resource-type
in proportion to the weights of agents claiming this resource. In our example:

ϕia =
wi

w1 + w2
· 1 for i = 1, 2; ϕib =

wi
w2 + w3

· 2 for i = 2, 3

In addition we require individual losses to be proportional to these same weights.
In the example total deficit is 3, therefore we need

2− ϕ1a

w1
=

2− (ϕ2a + ϕ2b)

w2
=

2− ϕ3b

w3
= 3

It is easy to check that the above system has the unique solution

w1 =
1

3
(4−

√
7);w2 =

1

9
(5
√

7− 11);w3 =
2

9
(4−

√
7)

leading to the flow

ϕ1a =
3√

7 + 2
= 0.646;ϕ2a =

2√
7 + 3

= 0.354

ϕ2b =
6√

7 + 4
= 0.903;ϕ3b =

4√
7 + 1

= 1.097

When we keep the same compatibilities but vary individual claims and re-
sources, the above system can be solved explicitely because it remains quadratic.
This is no longer true with three or more resource-types.

1.3 Related literature

As mentioned earlier, Bochet et al. [6] take a neutral view of the compatibil-
ity constraints. Furthermore, they work with a model in which each agent has
single-peaked preferences (instead of a “claim”), all the resources must be di-
vided between the agents, so an agent may end up with more than her preferred
share. The division of the resources achieving the most egalitarian individual
shares (in the sense of Lorenz dominance) is strategyproof: truthful report of
one’s preferred share is a dominant strategy. This is a key ingredient in the
characterization of this method in [6]. It is easy to check that the consistent
extensions of uniform gains (Subsection 8.1) are also strategyproof in the model
of [6].

Strategyproofness is not our concern in this paper (where it would select the
consistent extensions of the uniform gains method).
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Random assignment with dichotomous preferences, studied by Bogomolnaia
and Moulin [5], is the special case of our model where all claims are for one unit
and there is one unit of each resource-type: each agent (e.g., worker) can be
matched to only some of the resources (jobs). Efficiency requires to implement
a convex combination of maximal matchings (a max-flow), and we must choose
one such combination on equity grounds. Bogomolnaia and Moulin [5] and
Roth et al. [22], take the same viewpoint as Bochet et al. [6]: they show that
the same Lorenz dominant division method induces the truthful revelation of
the compatibility constraints. In that model as here, the assumption of unit
claims and unit types does not significantly simplify the computations.

Inspired by the network exchange theory from sociology, Kleinberg & Tar-
dos [15] and Chakraborty et al. [8, 9] develop models of bargaining on networks
where each agent/node engages in bilateral negotiations with other agents/nodes
to which he is connected on a fixed graph. The division problem is quite differ-
ent in [15] than in ours because each agent can strike only one deal. But in [8],
[9], each pair of connected agents strike a bargain to share their pair-specific
surplus. This is like in the special case of our model where each resource-type
is connected to exactly two agents, and represents the amount of surplus over
which these two agents bargain. Then agent i’s disagreement point in his ne-
gotiation with j is determined by the sum of his shares in all other bilateral
negotiations. Given an exogenous bargaining rule for two-person problems, an
equilibrium profile of bilateral surplus divisions is defined by a consistency prop-
erty formally similar to ours. However the qualitative effect is exactly opposite:
in [8, 9], the bigger my disagreement outcome, the larger my share of the surplus,
whereas in our model a bigger share of resource-types other than a decreases
my claim on, and my share of a. The intersection of the two models is the
uninteresting case with linear utility and very large equal claims, so that each
pairwise surplus is divided equally, irrespective of the graph.

2 Model and Notation

We have a set N of potential agents and a set Q of potential resource-types (or
simply types). An instance of the rationing problem is obtained by first picking
a set N of n agents, a set Q of q types, and a bipartite graph G ⊆ N × Q;
an edge (i, a) ∈ G indicates that agent i can consume the type a. We do not
assume that G is connected. We define f(i) to be the set of types that i is
connected to, and g(a) to be the set of agents that connect to type a. That is,
f(i) = {a ∈ Q|ia ∈ G} and g(a) = {i ∈ N |ia ∈ G}.

Next, each agent i has a claim xi and each type a has a capacity (amount
it can supply) ra; these are arbitrary non negative numbers.

Notation: for a subset B and a vector y, we let yB :=
∑
i∈B yi; and y[B] is

the projection of y on RB .

Definition 1 A bipartite rationing problem is P = (N,Q,G, x, r) such that
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the resources are overdemanded, namely:

for all B ⊆ Q: rB ≤ xg(B). (3)

Let P denote the set of bipartite rationing problems7 P = (G, x, r).

Given a problem P ∈ P, a flow ϕ specifies a non-negative real number ϕia
for each edge (i, a) in G. It is well known that the system of inequalities (3)
characterizes the existence of a flow ϕ exhausting all resources and transferring
at most his claim to agent i:

ϕg(a)a = ra for all a ∈ Q; ϕif(i) ≤ xi for all i ∈ N,

where
∑
i∈g(a) ϕia

def
= ϕg(a),a, and

∑
a∈f(i) ϕia

def
= ϕi,f(i). We call such a flow

feasible and define F(P ), or F(G, x, r), to be the set of feasible flows for problem
P = (G, x, r). We also speak of ϕ ∈ F(P ) as a solution to the problem P .

Agent i’s total transfer yi = ϕi,f(i) is called his allocation, or share. Although
agents care only about their allocation, not its flow decomposition, we must
nevertheless work with flows, on which our key axioms bear.

Three subsets of P play an important role below. A problem P ∈ P is
strictly overdemanded if

for all B ⊆ Q: rB < xg(B).

Let Pstr be the set of strictly overdemanded problems. A problem P ∈ P is
irreducible if every subproblem is strictly overdemanded:

rQ ≤ xN ; for all B  Q: rB < xg(B).

Let Pir be the set of irreducible problems. Finally, a P ∈ P is balanced if
rQ = xg(Q). Note that a problem P ∈ P�Pir should contain a balanced
subproblem, and so can be further decomposed. This is the key to the canonical
decomposition of an arbitrary problem in P into a union of irreducible problems,
all but at most one of them balanced: see Lemma 4 in section 10.

Note further that an irreducible and balanced problem must have a con-
nected graph, however a strictly overdemanded problem need not be connected.

Definition 2 A bipartite rationing method (or simply method) H associates
to each overdemanded problem P ∈ P, where N ⊂ N , Q ⊂ Q, a feasible flow
ϕ = H(P ) ∈ F(P ).

Note that any agent with zero claim, and any type with zero resource gets
no flow in any method.

Definition 3 A rationing problem is standard if it involves a single resource
type to which all agents are connected. It is a triple P 0 = (N, x, t), where
x ∈ RN+ is the profile of claims, and t units of resource are overdemanded:
t ≤ xN . A standard rationing method h is a method applying only to standard

7It will cause no confusion to omit most of the time the sets N,Q in the notation of a
problem, even though these sets will vary in the key consistency axiom.
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problems. Thus h(N, x, t) ∈ RN+ is a division of t among the agents in N
such that hi(N, x, t) ≤ xi for all i ∈ N . We write P0 for the set of standard
problems.

We recall the definition of the three benchmark standard rationing methods,
proportional hpro, uniform gains hug, uniform losses hul:

hpro(x, t) =
xi
xN
· t;

hugi (x, t) = min{xi, λ} where λ solves
∑
i∈N

min{xi, λ} = t;

huli (x, t) = max{xi − µ, 0} where µ solves
∑
i∈N

max{xi − µ, 0} = t.

For each resource a, a method H ∈ H defines a standard rationing method
ah by the way it deals with the complete graph G = N ×{a} with this resource:

ah(N, x, ra) = H(N × {a}, x, ra)

Remark 1: Suppose there are no constraints linking the claims x of the
source nodes and the resources r of the sink nodes. We must choose a fair
max-flow between sources and sinks. As mentioned in the introdction, we can
then decompose the problem (G, x, r) into an overdemanded part and an over-
supplied part. Formally we can partition N as N+, N−, and Q as Q+, Q−, in
such a way that Q+ = f(N−), N+ = g(Q−), and G(N−, Q−) = ∅. More-
over in (N−, Q+, G(N−, Q+), x, r) the resources are overdemanded, while in
(N+, Q−, G(N+, Q−), x, r) they are underdemanded. See, e.g., Lemma 2 in [7].
Then we apply first one of our bipartite rationing methods to the overdemanded
problem in N− × Q+; next, exchanging the roles of agents and types, we use
another (or the same) method for the underdemanded problem in N+ ×Q−.

3 Basic axioms

As discussed in the introduction, our goal is to understand which standard
methods can be extended to bipartite methods, while respecting a consistency
property. As in most of the literature on standard methods (see e.g., [18], [23]),
we restrict attention to symmetric and continuous rationing methods.

Symmetry (SYM). A method H ∈ H is symmetric if the labels of the agents
and types do not matter. Formally, given a permutation π of the agents and a
permutation σ of the types, define Gπ,σ to be the graph such that (π(i), σ(a)) ∈
Gπ,σ if and only if (i, a) ∈ G. The claims xπ of the agents and resources rπ of the
types are similarly defined. Suppose H(G, x, r) = ϕ and H(Gπ,σ, xπ, rσ) = ϕ′.
Then the method H is symmetric if and only if ϕia = ϕ′π(i),σ(a) for all (i, a) ∈ G.

The standard method associated with a symmetric H is symmetric as well,
thus independent of the choice of type a. In keeping with the rest of our notation,
we write it simply as h(x, t) instead of h(|N |, x, t).

10



Continuity (CONT). A method H ∈ H is continuous if for all N,Q, and G,

the mapping (x, r)→ H(G, x, r) is continuous in the relevant subset of RN+×R
Q
+.

Definition 4 We write H (resp. H0) for the set of symmetric and con-
tinuous bipartite (resp. standard) rationing methods. We use the notation
H(A,B, · · · ),H0(A,B, · · · ) for the subset of methods in H or H0 satisfying
properties A,B, · · · .

We give two versions of the crucial consistency property, both generalizing
consistency for standard methods.

We use the following notation. For a given graph G ⊆ N × Q, and subsets
N ′ ⊆ N , Q′ ⊆ Q, the restricted graph of G is G(N ′, Q′) := G∩{N ′×Q′}, again
not necessarily connected, and the restricted problem obtains by also restricting
x to N ′ and r to Q′.

Node Consistency (Node-CSY). Fix an agent i ∈ N and a problem P ∈ P,
and define the reduced claims and resources under method H ∈ H after this
agent (and all the edges involving this agent) is removed:

xHj (−i) = xj , for all j 6= i

and

rHa (−i) = ra − ϕia for all a ∈ f(i); rHb (−i) = rb, for b 6∈ f(i).

Let N∗ = N \ {i}, and Q∗ = f(N∗) ∩ {b | rHb (−i) > 0}. The reduced problem
is (G(N∗, Q∗), xH(−i), rH(−i)). Similarly, fix a type a ∈ Q and define the
reduced claims and resources under method H after this type (and all the edges
involving this type) is removed:

xHj (−a) = xj − ϕja for all j ∈ g(a); xHj (−a) = xj , for j 6∈ g(a).

and
rHb (−a) = rb, for all b 6= a

Let Q∗∗ = Q \ {a}, N∗∗ = g(Q∗) ∩ {j | xHj (−a) > 0}. The reduced problem

is (G(N∗∗, Q∗∗), xH(−a), rH(−a)). Clearly, the properties of a problem being
overdemanded, strictly overdemanded, or balanced, are preserved under either
of these reductions. However the reduced problem may not be connected or
irreducible, even if the original problem is.

Suppose H(G(N,Q), x, r) = ϕ, H(G(N∗, Q∗), xH(−i), rH(−i)) = ϕ′, and
H(G(N∗∗, Q∗∗), xH(−a), rH(−a)) = ϕ

′′
. The method H ∈ H is node-consistent

if for all N ⊂ N , Q ⊂ Q, all (G, x, r) ∈ P, all i ∈ N , a ∈ Q: ϕjb = ϕ′jb for all

jb ∈ G(N∗, Q∗) and ϕjb = ϕ
′′

jb for all jb ∈ G(N∗∗, Q∗∗).
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Edge Consistency (Edge-CSY). Edge-consistency is stronger than node-
consistency. Fix an edge ia ∈ G and define the reduced claims and resources
under method H after this edge is removed:

xHi (−ia) = xi − ϕia; xHj (−ia) = xj for j 6= i

rHa (−ia) = ra − ϕia; rHb (−ia) = rb for b 6= a

The corresponding reduced problem is (G�{ia}, xH(−ia), rH(−ia)), where the
set of agents is N∗ = N unless f(i) = {a} in which case N∗ = N�{i}; similarly
the set of types is Q∗ = Q unless g(a) = {i} in which case Q∗ = Q�{a}. Clearly
the reduced problem is overdemanded if the initial problem is, but not neces-
sarily strictly overdemanded if the initial problem is. Note also that G�{ia}
may not be connected even if G is connected.

Suppose H(G, x, r) = ϕ and H(G \ {ia}, xH(−ia), rH(−ia)) = ϕ′. The
method H ∈ H is edge-consistent if for all N ⊂ N , Q ⊂ Q, all (G, x, r) ∈ P,
and ia ∈ G: ϕjb = ϕ′jb for all jb ∈ G�{ia}.

Our next invariance property states that two types compatible with precisely
the same set of agents need not be treated as separate types: merging them into
a single type is of no consequence, and neither is relabeling a subset of a certain
type of resource as a separate type. Note that the next two axioms are only
defined for symmetric methods.

Invariance to the Merging of Types (IMT). Fix a problem P ∈ P and
suppose that in the graph G ⊆ N × Q, two types a1, a2 are such that g(a1) =
g(a2). Let G∗ ⊆ N × (Q�{a1, a2} ∪ {a∗}) be the graph obtained by merging
those two types into a new node labeled a∗ with the same connections. The
corresponding merged problem (G∗, x, r∗) has r∗a∗ = ra1 + ra2 , r∗a = ra for all
a ∈ Q�{a1, a2}.

Suppose H(G, x, r) = ϕ and H(G∗, x, r∗) = ϕ∗. The method H ∈ H is
invariant to the merging of types if for all N ⊂ N , Q ⊂ Q, all (G, x, r) ∈ P, and
a1, a2 s.t. g(a1) = g(a2): ϕ∗ia∗ = ϕia1 + ϕia2 for all i ∈ g(a∗), ϕ∗ja = ϕja for all
a ∈ Q�{a1, a2}, ja ∈ G. In particular individual shares yi are unchanged.

Invariance to Full Merging of Types (IFM). Fix a problem P = (N ×
Q, x, r) ∈ P where the graph G is complete. If the method H ∈ H, with
associated standard method h, is invariant to the merging of types, repeated
applications of this property imply

ϕiQ = h(x, rQ) (4)

i.e., the shares y(P ) obtain by merging all resources into a single type. We say
that the method H ∈ H is invariant to full merging if equation (4) holds for all
N ⊂ N , Q ⊂ Q, and all (N ×Q, x, r) ∈ P. Thus IFM is weaker than IMT.
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We stress that the proportional method (Theorem 1), and all the loss-
calibrated methods (Theorem 2), are edge-consistent and invariant to the merg-
ing of types, but their characterization uses only the weaker properties of node-
consistency and invariance to full merging (the latter is not even needed in
Theorem 1).

Remark 2: When two agents have identical connections, we can similarly
merge them into a single agent, and define the corresponding invariance prop-
erty. This property forces the proportional method for standard problems ([3]),
therefore it reduces our general problem to that of extending this method to the
bipartite context, the object of Section 5: see Remark 4 at the end of that section.

Remark 3: When the compatibility constraints are nested, Node-CSY and
IFM are enough to determine the individual shares yi = ϕiQ, if not necessarily

the entire flow. Suppose there is a partition N = N1∪· · ·∪NT such that for any
i ∈ N t, j ∈ N t′ , {t = t′ ⇒ f(i) = f(j)}, and {t < t′ ⇒ f(i)  f(j)}. If we drop
all resource-types but those in QT = f(NT )�f(N1∪· · ·∪NT−1), we are left with

the complete graph NT ×QT , so by IFM the standard method hn
T

determines
ϕiQT for each i ∈ NT . Dropping now all types in QT , the reduced graph still

has nested constraints for the partition N1 ∪ · · · ∪NT−2 ∪ {NT−1 ∪NT }, and
reduced claims for agents in NT , so we can repeat the argument.

4 A necessary condition for extendability

Recall from Definition 4 that in H all methods are continuous and symmetric.

Lemma 1 Assume the set Q of potential resource types is infinite. If the
bipartite rationing method H is invariant to full merging and node consistent
(H ∈ H(Node−CSY, IFM)), then the corresponding standard method h ∈ H0

satisfies the following: for all (N, x, t) ∈ P0 and all λ ∈ [0, 1]

h(x− λ · h(x, t), (1− λ)t) = (1− λ) · h(x, t) (5)

Proof Fix (N, x, t) ∈ P0, two integers p, q, 1 ≤ p < q, and a set Q of types
with cardinality q. Consider the problem P = (N × Q, x, r) where ra = t

q for

all a ∈ Q, with associated profile of shares y at ϕ = H(P ). By IFM y = h(x, t)
and by SYM ϕia = yi

q for all i ∈ N . Drop now p of the nodes and let Q′ be the
remaining set of types. Applying Node-CSY p successive times gives

H(N ×Q′, x′, r′) = ϕ′

where x′ = x − p
q y, r

′
a = t

q for all a ∈ Q′, and ϕ′ is the restriction of ϕ to

N ×Q′. Therefore y′ = q−p
q y. Now IFM applied to the reduced problem gives

y′ = h(x′, q−pq t). We just showed q−p
q y = h(x − p

q y,
q−p
q t), precisely (5) for

λ = p
q . Finally CONT implies (5) for other real values of λ.�

We leave it to the reader to check that the three benchmark standard meth-
ods satisfy property (5). We show below that they are all extendable to bipartite
methods satisfying Edge-CSY and IMT.

13



Despite its similarity with Consistency and the Lower Composition (see
Lemma 3 below) axiom, property (5) is not normatively compelling: the re-
duced problem where agents receive a given fraction of their shares in the orig-
inal problem has no clear interpretation. Yet this technical property is key to
our characterization result (Theorem 2) below. That result shows that most
consistent standard rationing methods are not extendable in our terms to the
bipartite context.

For now, we simply mention a few prominent consistent standard methods
ruled out by property (5). To define an equal sacrifice method ([26], [18]), we fix
a function u : R+ → R+ ∪ {−∞}, differentiable and strictly increasing. Given
(N, x, t) ∈ P0, the shares y are defined by budget balance and

for all i: yi > 0⇒ u(xi)− u(yi) = max
N
{u(xj)− u(yj)}

The dual of an equal sacrifice method is similarly defined by the system

for all i: yi < xi ⇒ u(xi)− u(xi − yi) = max
N
{u(xj)− u(xj − yj)}

The proportional method is the only method in both families; uniform losses is
an equal sacrifice method; uniform gains is a dual equal sacrifice method.8

Corollary to Lemma 1 The following cannot be extended to a node con-
sistent bipartite method invariant to full merging: the Talmudic method ([2]),
any equal sacrifice methods and or any dual equal sacrifice method, except for
the three benchmark methods.

Proof Fix u. Then property (5) for the corresponding equal sacrifice method
implies, for any εi, i = 1, 2 positive and small enough, any yi, i = 1, 2, and any
λ ∈ [0, 1]:

{u(y1 + ε1)− u(y1) = u(y2 + ε2)− u(y2)} ⇒ (6)

u(λy1 + ε1)− u(λy1) = u(λy2 + ε2)− u(λy2)

Fixing yi λ, and letting εi go to zero, we get

u′(y2)

u′(y1)
=
u′(λy2)

u′(λy1)

Note that an affine transformation of u gives the same equal sacrifice method. In
the argument below, we use this repeatedly to deduce a simple form for u. Fixing

y2 the equality above gives u′(λy1) = u′(y1) · f(λ), as well as u′(y1λ ) = u′(y1)
f(λ) ,

therefore after rescaling u so that u′(1) = 1, we get u′(a · b) = u′(a) · u′(b)
for all positive a, b. Thus after one more rescaling of u, u′ is a positive power
function u′(z) = zp for some p ∈ R (recall u is increasing). Now u is (after
affine rescaling) a power function u(z) = zp for p > 0, or u(z) = −zp for p < 0,
or u(z) = log(z). The latter is the proportional method, for which (5) is true.

8Equal sacrifice methods are essentially characterized by Consistency and Lower Compo-
sition; their dual by CSY and Upper Composition. See [26], [18].
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Ditto for the uniform losses method, corresponding to u(z) = z. But for any
other method, (5) fails to be true. A simple way to check this is to choose
y1 = 2, y2 = 4, λ = 1

2 in (6), so that for all a, b > 0 we must have

{(a+ 2)p − 2p = (b+ 4)p − 4p} ⇒ (a+ 1)p − 1 = (b+ 2)p − 2p

Then one checks that the two curves defined respectively by the left equation
and the right equation are distinct if p 6= 0, 1.�

5 The bipartite proportional method

The bipartite proportional method Hpro plays a key role in the construction
of bipartite loss-calibrated methods and our characterization result, both in
Section 7. Theorem 1 gives two equivalent definitions of this method, one for
any overdemanded problem as the solution of a maximization problem, the other
for irreducible problems only. The latter definition is then extended to any
overdemanded problem by means of its canonical decomposition in irreducible
subproblems (Definition 6 in Subsection 10.1). The latter definition gives much
more insight into the structure of our method.

We use two new pieces of notation. The unit simplex of RN is written below

as S(N), and its interior as
◦
S(N) = {w|wN = 1 and wi > 0 for all i}. The

function En(z) = z ln(z) is strictly convex and En(0) = 0. The sum
∑
k En(zk)

is the familiar entropy of the vector z.

Theorem 1 For any problem P = (G, x, r) ∈ P, the proportional flow is defined
as the unique solution of

ϕ̂ = arg min
ϕ∈F(G,x,r)

∑
ia∈G

En(ϕia) +
∑
i∈N

En(xi − yi) (7)

(i) For any irreducible problem P = (G, x, r) ∈ Pir, the following system with
unknown w ∈ S(N)

xi = wi · (xN − rQ) +
∑
a∈f(i)

wi
wg(a)

ra for all i ∈ N (8)

has a unique solution ŵ in
◦
S(N), and the proportional flow is

ϕ̂ia =
ŵi
ŵg(a)

ra (9)

(ii) The proportional method Hpro is edge-consistent, and invariant to the
merging of types (Hpro ∈ H(Edge− CSY, IMT )).

(iii) It is the only continuous and node-consistent method that is proportional
for standard problems.
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Proof
Problem (7) has a unique solution ϕ̂ for any P ∈ P because the objective

function is strictly convex and finite, so our method is well defined. Symmetry
is clear, and continuity follows from Berge’s Maximum Theorem ([4]). The
objective function is continuous, and the correspondence (x, r) → F(G, x, r)
is compact-valued, and continuous as well (upper and lower hemicontinuous);
therefore the argmin correspondence is continuous as well.

Step 1: Statement ii) For Edge-CSY, we fix P = (G, x, r) and an edge ia ∈ G.
For any ϕ′ ∈ F(G\{ia}, xH(−ia), rH(−ia)), adding ia to G and ϕ̂ia to ϕ′ yields
a flow (ϕ′, ϕ̂ia) in F(G, x, r). The objective function at (ϕ′, ϕ̂ia) is the same as
at ϕ′ plus the single term En(ϕ̂ia), because xi − yi = xHi (−ia) − yHi (−ia).
Thus if the restriction of c to PH(−ia) is not optimal in that problem, we can
construct a flow (ϕ′, ϕ̂ia) beating ϕ̂ in P . We postpone the proof of IMT until
step 3.

Step 2: Statement i) We fix an irreducible problem P = (G, x, r). It will be
convenient to replace problem (7) by the equivalent problem

min
ϕ∈F(G,x,r)

∑
ia∈G

Ln(ϕia) +
∑
i∈N

Ln(xi − yi) (10)

where Ln(z) = z(ln(z)− 1) is still strictly convex and has derivative ln(z). The
equivalence follows from the fact that we are substracting two constant terms
to the objective function:

∑
ia∈G ϕia = rQ and

∑
i∈N (xi − yi) = xN − rQ.

Step 2.1 We assume in this substep xN = rQ: P is balanced. By irre-
ducibility, for every (i, a) ∈ G, there is a solution ϕ ∈ F(G, x, r) with ϕia > 0.
Also, because the problem is balanced, yi = xi for every ϕ ∈ F(G, x, r). Thus
Problem (10) becomes

min
ϕ∈F(G,x,r)

∑
ia∈G

Ln(ϕia),

whose Lagrangean is given by

L(ϕ, λ, µ) =
∑

(i,a)∈G

ϕia[ln(ϕia)−1]+
∑
i∈N

λi(xi−
∑
a∈Q

ϕia)+
∑
a∈Q

µa(ra−
∑
i∈N

ϕia),

where λ = (λi)i∈N ∈ RN+ and µ = (µa)a∈Q ∈ RQ. Define

q(λ, µ) = min
ϕ≥0

L(ϕ, λ, µ). (11)

It is easy to check that for any fixed λ and µ, the minimum is attained in (11)
uniquely by the solution ϕ∗ia = eλi+µa , using which we get

q(λ, µ) = L(ϕ∗, λ, µ) = −
∑

(i,a)∈G

ϕ∗ia +
∑
i∈N

λixi +
∑
a∈Q

µara.

The associated dual problem is thus given by

max
λ,µ

{
−

∑
(i,a)∈G

eλi+µa +
∑
i∈N

λixi +
∑
a∈Q

µara

}
. (12)
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It is clear that (12) has a unique optimal solution that is given by the solution
to the following system of equations:

−
∑
a∈f(i)

eλi+µa + xi = 0, ∀i ∈ N,

and
−
∑
i∈g(a)

eλi+µa + ra = 0, ∀a ∈ Q.

Letting λ∗ and µ∗ be the optimal solutions, we have

eλ
∗
i =

xi∑
a∈f(i) e

µ∗a
; eµ

∗
a =

ra∑
i∈g(a) e

λ∗i
.

Finally,
ϕ∗ia = eλ

∗
i eµ

∗
a .

In particular, taking wi = eλ
∗
i∑

N e
λ∗
j

verifies (8) and (9).

Step 2.2 We assume now that P = (G, x, r) is not only irreducible, but also
strictly overdemanded, i.e. xN > rQ. We proceed as before by writing the
Lagrangean of Problem (10), which is now

L(ϕ, λ, µ) =
∑

(i,a)∈G

Ln(ϕia) +
∑
i∈N

Ln

(
xi −

∑
a∈f(i)

ϕia

)
+
∑
i∈N

λi(xi −
∑
a∈Q

ϕia) +
∑
a∈Q

µa(ra −
∑
i∈N

ϕia).

As before, for any fixed λ and µ, the minimum in the problem

q(λ, µ) = min
ϕ≥0

L(ϕ, λ, µ)

is attained uniquely by the solution of

ϕ∗ia
xi −

∑
a∈f(i) ϕ

∗
ia

= eλi+µa .

An implication of this is that in the minimizer of q(λ, µ), each agent’s allocation
yi is such that yi < xi. This implies that the optimal choice of λ in the associated
dual problem maxλ≥0,µ q(λ, µ) is λ∗ = 0. Also, it is straightforward to check that
the dual is a maximization problem with a strictly concave objective function,
and so has a unique optimal solution µ∗. Using this, the optimal ϕ∗ia satisfy
(xi−

∑
b:b∈f(i) ϕ

∗
ib)e

µ∗a = ϕ∗ia. Letting y∗i =
∑
b:b∈f(i) ϕ

∗
ib, we see, in particular,

that
ϕ∗ia

xi − y∗i
=

ϕ∗ja
xj − y∗j

=
ra

xg(a) − y∗g(a)
, for all a and i, j ∈ g(a) (13)
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Setting ŵi =
xi−y∗i
xN−rQ , so that ŵ ∈

◦
S(N), we see that ŵ is a solution of system

(8). Moreover (13) implies (9) as well.

Step 3. Our solution Hpro is invariant to the merging of types.
Fix an irreducible problem (G, x, r) with weights wi = xi

xN
solving (8), and

assume g(a1) = g(a2). After merging a1 and a2 into a, the weights w̃a =
wa1 + wa2 , w̃b = wb for b 6= a1, a2, satisfy the corresponding system (8) in the
merged problem, so statement i) implies that IMT holds in Pir.

Next we fix (G, x, r) ∈ P and use its canonical decomposition in irreducible
problems (Lemma 4 in the appendix): clearly two nodes such that g(a1) = g(a2)
must be in the same component Qk of the decomposition, where IMT applies,
and the merging of thses two nodes reduce Qk by one type and preserves the
rest of the decomposition.

Step 4: Statement iii)
Let H be a continuous and node consistent method, proportional for stan-

dard problems. Pick first a strictly overdemanded P = (G, x, r) ∈ Pstr. Fix a
type a and reduce P by dropping successively all nodes but a. Then Node-CSY
and the fact that H is proportional for one-type problems imply:

for all i ∈ g(a) : ϕia = hpro(x− y + ϕ·a, ra) =
xi − yi + ϕia

xg(a) − yg(a) + ra
ra; or ϕia = 0

(14)
If yi = xi this implies either ϕia = 0 or {ϕia = ra and {yj = xj and ϕja = 0
for all j ∈ g(a)}}. Restricting attention to a connected component of G, this
implies that every resource goes to a single agent and they all have yj = xj ,
contradiction.

So y � x. Then (14) implies ϕia > 0 for all ia ∈ G. It also reduces to

ϕia =
xi − yi

xg(a) − yg(a)
ra ⇒

ϕia
xi − yi

=
ϕja

xj − yj
=

ra
xg(a) − yg(a)

for all i, j ∈ g(a)

These are precisely the KKT optimality conditions, so ϕ = ϕ∗.

Pick next P = (G, x, r) irreducible and balanced. Both H and the proportional
bipartite method Hpro are continuous, and P is the limit of strictly overde-
manded problems. Thus H = Hpro on Pir.

Finally, both methods H and Hpro are node-consistent on P, so as explained
after Definition 6 in Section 10, they are the canonical extension of their pro-
jection on Pir, where they coincide.�

Remark 4. The classic characterization of the standard proportional method
relies on its invariance when we merge two agents and endow this superagent
with the sum of their claims ([3], [19]): the shares of each non merged agent
are unaffected. These properties generalize easily to the bipartite proportional
method: if we merge two agents with identical connections ( f(i) = f(j)) and
add their claims, the flow in all edges not involving i or j is unchanged, the flow
in a merged edge is the sum of the two earlier flows. Our method hpro meets
this property, as one checks easily from the system (8). Thus the proportional
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method is characterized by continuity, node consistency, and invariance to the
merging of agents.

6 A new family of standard methods

We recall first some classic properties of standard rationing methods.

Definition 5 A standard rationing method h ∈ H0 is Claim Monotonic
(CM) if xi → hni (x, t) is weakly increasing for all i, x−i, t. It is Resource Mono-
tonic (RM) —resp. Strictly Resource Monotonic (SRM)— if t → hn(x, t)is
weakly —resp. strictly— increasing for all x.

Claim and Resource Monotonicity are satisfied by all familiar standard meth-
ods (see [18, 23]), including the three benchmarks, the Talmudic and the equal
sacrifice methods. Strict Resource Monotonicity excludes uniform gains, uni-
form losses, and the Talmudic methods, although these methods are the limit of
methods meeting SRM (for instance equal sacrifice methods approach uniform
gains and losses).

Lemma 2 Fix a function β : R+ → R+, weakly increasing, continuous,
and such that β(0) = 0, β(z) > 0 for z > 0. Define hβ, the standard method
loss-calibrated by β, as follows:

y = hβ(x, t)
def⇔
{

yi
β(xi − yi)

=
yj

β(xj − yj)
for all i, j s.t. xi, xj > 0

}
(15)

and, as required in H, yN = t and xi = 0⇒ yi = 0. Then hβ∈H0(CSY,CM,SRM).
We write H0

[lc] for the set of loss calibrated methods.

Note that if the problem (x, t) is strictly overdemanded, t < xN , system (15)
implies yi < xi whenever xi > 0. If (x, t) is balanced, this system gives y = x
as all ratios must be ∞.

Proof For any xi > 0, the function z → z
β(xi−z) is continuous and strictly

increasing from [0, xi] to R+ ∪ {∞}, therefore it is invertible as z = θ(xi, λ)
def⇔

λ = z
β(xi−z) , where θ is continous, strictly increasing in λ ∈ R+ ∪ {∞}, weakly

increasing in xi > 0, and θ(xi, 0) = 0, θ(xi,∞) = ∞. Thus an equivalent
definition of hβ is

yi = θ(xi, λ) where λ solves
∑
N

θ(xi, λ) = t

This is the classic format of a parametric method ([25]), implying CSY at once.
Next CM, and SRM follow easily from the monotonicity properties of θ.�

For our characterization result below, the key property is equation (5) in
Lemma 1. It is satisfied by all loss calibrated methods. This follows at once
from the representation of y = h(x, t) as the unique solution of system (15).
Three more properties common all methods in H0

[lc] are:

1. Ranking (RK): xi ≤ xj ⇒ yi ≤ yj ,
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2. Ranking∗ (RK ∗): xi ≤ xj ⇒ xi − yi ≤ xj − yj ,
3. Cross Monotonicity (CRM): xi → hnj (x, t) is weakly decreasing for j 6= i.
(we omit the easy proof; see [18, 23] for a normative discussion of RK and CRM)

Loss-calibrated standard methods are a new subfamily of parametric ra-
tioning methods, resembling formally the dual equal sacrifice methods, partic-
ularly when the latter solve the system

u(xi)− u(xi − yi) = u(xj)− u(xj − yj) for all i, j s.t. xi, xj > 0

Yet the Corollary to Lemma 1 implies that the proportional method, corre-
sponding to β(z) = z, is the only loss calibrated method in the equal sacrifice
family or its dual.

The familiar Scale Invariance (SI) property, h(µ · x, µt) = µ · h(x, r) for all
x, t, and µ > 0, expresses that small problems are resolved like large ones. It
cuts a one-dimensional subset of loss calibrated methods. Indeed SI and (15)
imply for all strictly positive numbers y1, y2, z1, z2, µ:

y1
β(z1)

=
y2

β(z2)
⇒ y1

β(µz1)
=

y2
β(µz2)

In turn this shows that a constant multiple of β, denoted β for simplicity because
it generates the same rationing method, satisfies β(ab) = β(a)β(b) for all a, b >
0, hence β(z) = zp for some p, 0 < p < ∞. We write hp for the corresponding
method, defined by the system yi

(xi−yi)p =
yj

(xj−yj)p for all i, j.

The method hp approaches uniform gains when p → 0, and uniform losses
when p→∞. For p = 2 and p = 1

2 , and for those values only, hp has an explicit
parametric representation:

yi = θ2(xi, λ) = xi(1−
2

1 +
√
λxi + 1

)

yi = θ
1
2 (xi, λ) = xi(1−

4

(λ+
√
λ2 + 4xi)2

)

We observe finally that the proportional method stands out within the loss
calibrated family for several axiomatic reasons. the following result is proven in
Subsection 10.2.

Lemma 3 The proportional method hpro is the only method in H0
[lc] satis-

fying any one of
Lower Composition: for all (N, x, t) ∈ P0 and t′ < t: h(x, t) = h(x, t′) +

h(x− h(x, t′), t− t′);
Upper Composition: for all (N, x, t) ∈ P0 and t′ < t: h(x, t′) = h(h(x, t), t′);
Self-duality: for all (N, x, t) ∈ P0: h(x, t) + h(x, xN − t) = x.

7 Characterization result

Ideally we would like to understand which methods in H0(CSY,CM,RM) are
extendable to H(Edge−CSY, IMT ). In fact we give a complete answer for the
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smaller family H0(CSY,CM,SRM), where individual shares increase strictly
with the resource, a property that is not especially compelling. We find that
the loss calibrated methods, and only those, are extendable as desired.

In statement i) of Theorem 2, we fix a function β as in Lemma 2, and define
B(z) =

∫ z
1

ln(β(t))dt, where B(z) ∈ R for z > 0, and B(0) ∈ R ∪ {−∞}.
Recall from Theorem 1 the notation En(z) =

∫ z
1

(ln(t) + 1)dt. We define a
bipartite method first for irreducible problems, by distinguishing in Pir strictly
overdemanded and balanced problems; then we extend as usual the method to
P by Definition 6 in Section 10.

Theorem 2 Assume the set Q of potential resource types is infinite.
i) Fix a function β as in Lemma 2, and set B(z) =

∫ z
1

ln(β(t))dt. Define the

method Hβ on Pir by Hβ(P ) = ϕβ such that

ϕβ = arg min
ϕ∈F(G,x,r)

∑
ia∈G

En(ϕia) +
∑
i∈N

B(xi − yi) if P ∈ Pstr (16)

ϕβ = ϕ̂ (the proportional flow) if P is balanced

Then the (canonical extension of) Hβ extends the loss calibrated method hβ to
a bipartite method in H(Edge−CSY, IMT ). We write H[lc] for the set of such
bipartite loss calibrated methods.
ii) For any function β as in Lemma 2, Hβ is the only extension of hβ that is
continuous and node-consistent.
iii) Fix a bipartite method H ∈ H(Node − CSY, IFM), such that the corre-
sponding standard method h is claim monotonic and strictly resource mono-
tonic, h ∈ H0(CM,SRM). Then h ∈ H0

[lc] and H ∈ H[lc] is constructed from

h as in statement i).

Note that if B(0) > −∞, we can define Hβ directly on P as the solution of
the problem (16), because that problem is well defined even when P is balanced
(and irreducible). The proportional method is an example.

Combining Lemma 3 and statement iii) in Theorem 2, yields three new char-
acterizations of the proportional bipartite method Hpro: it is the only method
in H(Node − CSY, IFM) of which the associated standard method is claim
monotonic, strictly resource monotonic, and meets one of Lower or Upper Com-
position, or Self-duality.

Proof of Theorem 2
Step 1: Statement i) We fix β and give first an alternatve definition of Hβ in
terms of the KT system for irreducible problems. If P ∈ Pstr the function
maximized in (16) is strictly concave and F(G, x, r) contains strictly positive
flows ϕ such that y � x, therefore ϕβ is well defined. We proceed as in the
proof of Theorem 1 by replacing for convenience En(z) by Ln(z) = z(ln z − 1),
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and writing the Lagrangean of the (modified) problem (16) as

L(ϕ, λ, µ) =
∑

(i,a)∈G

Ln(ϕia) +
∑
i∈N

B

(
xi −

∑
a∈f(i)

ϕia

)
+
∑
i∈N

λi(xi −
∑
a∈Q

ϕia) +
∑
a∈Q

µa(ra −
∑
i∈N

ϕia).

We mimic the argument in Step 2.2 of the proof of Theorem 1. For fixed λ and
µ, the minimum of L(ϕ, λ, µ) is attained uniquely by a flow ϕ∗ solving

ϕ∗ia
β(xi −

∑
a∈f(i) ϕ

∗
ia)

= eλi+µa .

This implies y∗i < xi, so for any P ∈ Pstr, the optimal choice of λ is zero, and
the solution ϕβ of problem (16) is characterized by the KT conditions

ϕβia

β(xi − yβi )
=

ϕβja

β(xj − yβj )
=

ra∑
k∈g(a) β(xk − yβk )

for all a and i, j ∈ g(a).

(17)
Next if P ∈ Pir is balanced, problem (16) is the same as problem (7), so ϕβ

must be the proportional flow.
If Q contains a single resource, we only need to consider problems in Pstr,

for which system (17) picks precisely the standard hβ .
We check now that Hβ meets SYM, CONT, IMT, and Edge-CSY. SYM

requires no proof. For IMT, suppose two types a, b can be merged in problem
P , g(a) = g(b). If P ∈ Pir is balanced, merging a and b yields a balanced
problem in Pir, and the proportional method is IMT; if P ∈ Pstr, merging
gives another problem in Pstr, and preserves system (17). Finally the canonical
extension preserves IMT.

For Edge-CSY in the case of a balanced problem P ∈ Pir, note that a reduc-
tion P → P (−ia) preserves balancedness, and that the proportional method is
Edge-CSY. If P is strictly overdemanded this is again preserved in a reduction,
except that the reduced problem may have more connected components. It is
then easy to adapt the argument in Step 1 of the proof of Theorem 1.

Continuity is clear at P ∈ Pstr by Berge’s Maximum Theorem. Fix now an
irreducible and balanced problem P , for which Hβ(P ) is the proportional flow,
and a sequence of problems P q with the same graph G and (xq, rq)→ (x, r). For
q large enough P q is irreducible as well. Setting ϕq = Hβ(P q), we check that

there exists wq ∈
◦
S(N) such that ϕqia =

wqi
wq
g(a)

ra for all ia ∈ G. If P q ∈ Pstr, by

(17) we can take wqi =
β(xi−yβi )∑
N β(xk−yβk )

; if P q is balanced we use ŵ in statement i)

of Theorem 1. For any subsequence of wq converging to w ∈ S(N), we claim
wg(a) > 0 for all a. Suppose not, then Q0 = {a ∈ Q|wg(a) = 0} is non empty;
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also N1 = N�g(Q0) is non empty (as w ∈ S(N)) and a strict subset of N . For
any a ∈ f(N1) we have wg(a) > 0, hence for any i ∈ N1 we can take limits:

ϕqβia =
wqi
wqg(a)

ra → ϕβia =
wi
wg(a)

ra ⇒ xi = yi =
∑
f(i)

wi
wg(a)

ra

Summing the last equation over i ∈ N1, and recalling that wi = 0 for any
i /∈ N1, we get finally xN1

= rf(N1) = rQ�Q0
; by balancedness this implies

rQ0
= xN�N1

= xg(Q0), a contradiction of our assumption that P is irreducible.
Using the canonical decomposition, it is now easy to check continuity for

any overdemanded problem P .

Step 2: Statement ii)
We fix H, equal to hβ for one-resource problems, continuous, and node-

consistent (in our notation, H ∈ H(Node− CSY ), except that we do not need
to assume Symmetry).

Fix P ∈ Pstr, a type a ∈ Q, and set ϕ = H(P ). Apply Node-CSY repeatedly
by dropping all other types. Agent i is left with the claim xi− yi +ϕia, so with

the notation ϕa = (ϕja)j∈g(a) ∈ R
g(a)
+ we have

for all a ∈ Q: ϕa = hβ(x− y + ϕa, ra) (18)

Fix a and set D(a) = {i ∈ g(a)|ϕia > 0}. Assume yi = xi for some i ∈ D(a) and
derive a contradiction. The systems (18) and (15) imply

ϕja
β(xj−yj) = ϕia

β(xi−yi) =

∞ for any j ∈ g(a) such that xj−yj+ϕja > 0, therefore xj−yj > 0 is impossible,
i.e., xj = yj for all j ∈ g(a). As ra < xg(a) = yg(a), there is a positive flow from
some i′ ∈ g(a) to another type b, for which the same argument gives xj = yj
for all j ∈ g(b). And so on until we reach x = y, contradiction.

We have shown y � x, so ϕ solves ϕia
β(xi−yi) =

ϕja
β(xj−yj) for all a, i, j s.t.

i, j ∈ g(a), precisely the KT conditions (17) for ϕβ . This proves H = Hβ

for strictly overdemanded problems. For irreducible and balanced problems,
this equality follows from the continuity of both methods. Finally we explain
in Section 11 that two node consistent methods that coincide over Pir must
coincide everywhere, completing the proof.

Step 3: Statement iii) Fix H ∈ H(Node − CSY, IFM), with corresponding
standard method h ∈ H0(CM,SRM). Young’s theorem in [?] says that h has
a parametric representation θ

y = h(x, t)⇔ {yi = θ(xi, λ) for all i and
∑
N

θ(xi, λ) = t}

where θ : R2
+ → R+ is continuous, and θ(xi, 0) = 0; θ(xi,∞) = xi. CM implies

that θ(xi, λ) is weakly increasing in xi, and SRM that it is strictly increasing in
λ for fixed xi > 0.

Thus for xi > 0 the function λ → θ(xi, λ) from [0,∞] to [0, xi] has the
inverse ρ defined by:

θ(xi, λ) = yi ⇔ λ = ρ(xi, yi)
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Clearly ρ(z, v) is continuous on its domain D = {(z, v)|0 ≤ v ≤ z, 0 < z <∞},
strictly increasing in v, weakly decreasing in z, and ρ(z, 0) = 0, ρ(z, z) = ∞.
Finally h is defined as

y = h(x, t)⇔ {ρ(xi, yi) = ρ(xj , yj) for all xi, xj > 0; and yN = t} (19)

Choose for i = 1, 2, (ai, yi) ∈ R2
+�{0} such that ρ(a1 + y1, y1) = ρ(a2 +

y2, y2). In the problem N = {1, 2}, xi = ai+yi, t = y1 +y2, we have h(x, t) = y.
By Lemma 1 equation (5) applies to this problem and to any λ ∈ [0, 1]. With
the notation µ = 1−λ this equation is h(a+µ·y, µt) = µ·y, so in view of (19) we
have ρ(a1 + µy1, µy1) = ρ(a2 + µy2, µy2). If we now define ρ̃(a, v) = ρ(a+ v, v)
for all (a, v) ∈ R2

+�{0}, we just showed that for any (ai, yi) ∈ R2
+�{0}, i = 1, 2,

and any µ ∈ [0, 1]:

ρ̃(a1, y1) = ρ̃(a2, y2)⇒ ρ̃(a1, µy1) = ρ̃(a2, µy2) (20)

where ρ̃ is continuous on R2
+�{0}, weakly decreasing in ai, and ρ̃(a, 0) =

0, ρ̃(0, v) =∞ for a, v > 0.
We fix now a > 0, v > 0 and consider v = inf{v′|ρ̃(a, v′) = ρ̃(a, v)}. By

continuity of ρ̃ we have ρ̃(a, v) = ρ̃(a, v). Note that ρ̃(a, v) = ρ(a + v, v) > 0
because ρ(z, v) is strictly increasing in v for z > 0. Now (20) implies ρ̃(a, vvv) =

ρ̃(a, vvv) = ρ̃(a, v), so v < v would contradict the definition of v. This proves
that for all a > 0 the function v → ρ̃(a, v) is one-to-one. It is also continuous
and ρ̃(a, 0) = 0, therefore it is strictly increasing. We claim that it is also onto
R+.

Suppose the claim fails at some a > 0, namely supv∈R+
ρ̃(a, v) = M < ∞.

As b → ρ̃(b, 1) is continuous from ρ̃(a, 1) < M to ρ̃(0, 1) = ∞, there is a
b, 0 < b < a, s.t. ρ̃(b, 1) = M . Because ρ̃(b, v) increases strictly in v, for every
ε > 0 small enough, there is v′ε, v

′
ε < 1, s.t. ρ̃(b, v′ε) = M − ε. There is also v′′ε

s.t. ρ̃(a, v′′ε ) = M − ε. By construction v′ε → 1 and v′′ε →∞ as ε→ 0. Applying
(20) again we get ρ̃(b, 1

v′′ε
v′ε) = ρ̃(a, 1

v′′ε
v′′ε ) = ρ̃(a, 1), a contradiction because the

left-hand term goes to 0.
We have shown that for all a > 0, v → ρ̃(a, v) is an increasing homeomor-

phism from R+ into itself. So the equation ρ̃(a, v) = 1 defines a strictly positive
function v = β(a) on R+�{0}. It is continuous because its graph is closed. It is
weakly increasing because ρ̃(a, v) is weakly decreasing in a (by CM) and strictly
increasing in v. Check finally lima→0 β(a) = 0 by assuming, to the contrary,
β(a) ≥ ε > 0 for all a > 0. When z goes from 0 to ε

2 , ρ̃( ε2 − z, z) goes continu-
ously from 0 to ∞, therefore there is a z s.t. ρ̃( ε2 − z, z) = 1 ⇔ z = β( ε2 − z),
contradicting our assumption that β is bounded below by ε. Thus we extend
the definition of β by β(0) = 0, and this function satisfies all the properties
listed in Lemma 2.

It remains to check that h = hβ : by statement ii) this implies H = Hβ .
Set ∆1 = {(a, v)|a > 0 and v = β(a)} ⊂ R2

+�0. We constructed ∆1 as a level
curve of ρ̃(a, v) in R2

+�0. Observe that for all λ ≥ 1, the set ∆λ = {(a, v)|λv =
β(a)} is another level curve of ρ̃: this follows from applying (20) to (a1, λv1),
(a2, λv2), and µ = 1

λ . The same is true if λ < 1: assuming ρ̃(a1, v1) < ρ̃(a2, v2),
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together (20) and the fact that ρ̃(a, v) strictly increases in v, imply ρ̃(a1, λv1) <
ρ̃(a2, λv2).

We now define ∆∞ = {(a, 0)|a > 0},∆0 = {(0, v)|v > 0}, so that the sets
∆µ, µ ∈ R+ ∪ {∞} partition R2

+�0, and are all the level curves of ρ̃. By
construction they are also the level curves in R2

+�0 of the function τ̃(a, v) =
v

β(a) . Equivalently τ(x, v) = v
β(x−v) has the same level curves as ρ(x, v) in D.

This means that τ and ρ define the same rationing methods through (19).�

8 Uniform gains, uniform losses

These two benchmark standard methods are not covered by Theorem 2 be-
cause they are resource monotonic, but not strictly so. We find that both are
extendable to the bipartite context in infinitely many ways.

8.1 Uniform gains

The standard uniform gains method hug (Section 2) equalizes shares as much
as possible under the constraint that no one gets more than her claim.

In the following result, it is convenient to consider problems in which all
resource-types and all claims are strictly positive. No flow passes through a
type with zero resource, or an agent with zero claim, so we can always delete
such a type or agent.

Proposition 1 Fix a strictly concave function W with domain [0,∞[ and
range within [−∞,+∞[. For any problem (N,Q,G, x, r) ∈ P such that x, r � 0
the flow

ϕ̃ = arg max
ϕ∈F(G,x,r)

∑
ia∈G

W (ϕia) (21)

defines a rationing method HW ∈ H(Edge − CSY, IMT ) extending hug for
standard problems.

Proof The function maximized in (21) is strictly concave on F(G, x, r),
and as x, r � 0, the set FG, x, r) contains some flows ϕ such that ϕia > 0 for
all ia ∈ G. Therefore the objective function is not everywhere −∞ and our
method is well defined. Symmetry is clear, and continuity follows from Berge’s
Maximum Theorem as in the proof of Theorem 1.

For Edge-CSY we fix (G, x, r), an edge ia ∈ G, and write H(G, x, r) = ϕ.
With the notation in the definition of the axiom, observe that if ϕ′ ∈ F(G \
{ia}, xH(−ia), rH(−ia)), then adding ia to G and ϕia to ϕ′ yields a flow (ϕ′, ϕia)
in F(G, x, r). If the restriction of ϕ to PH(−ia) is not optimal in that problem,
we can then construct a flow (ϕ′, ϕia) beating ϕ in P .

We fix again (G, x, r) and describe the Kuhn Tucker conditions characterizing
the optimal solution ϕ of (21) with associated profile of shares y. If yi = 0 for
some agent, r � 0 implies ϕia = 0 < ϕja for any a ∈ f(i) and some j ∈ g(a), so
a transfer from ϕja to ϕia would yield a better flow. Thus the KT conditions:
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for all i, j and a ∈ f(i) ∩ f(j)

{yi < xi and yj < xj} ⇒ ϕia = ϕja; (22)

{yi < xi and yj = xj} ⇒ ϕia ≥ ϕja
In particular our method is hug when there is a single type of resource.

For IMT, if in (G, x, r) the two types a, b have g(a) = g(b), and the flow ϕ
meets the above system, then merging the flows through a and b gives a new
flow still meeting the KT conditions. We omit the straightforward details.�

We stress that two different functionsW 1,W 2 in Proposition 1 yield typically
different rationing methods. In the examples below, we choose W 1(z) = −z2,
and W 2(z) = ln(z), so that W 2 guarantees ϕia > 0 for all ia ∈ G whereas W 1

does not.
If G is complete, the profiles of shares y1, y2 coincide, but the flows ϕ1, ϕ2

may not. Assume for instance N = {1, 2}, x = (1, 4), Q = {a, b}, r = (1, 3).
Then y1 = y2 = (1, 3), and the corresponding max- flow takes the form

ϕ1a = z;ϕ1b = 1− z;ϕ2a = 1− z;ϕ2b = 2 + z

for some z ∈ [0, 1]. Check that arg maxz{W 1(z)+2W 1(1−z)+W 1(2+z)} = {0},
that is the single unit of type a goes to agent 2, who also gets 2 units of type
b. On the other hand the optimal z for W 2 is 1

2 (
√

3 − 1), so agent 2 gets 0.63
units of type a and 2.37 units of type b.

If G is not complete, even the shares y1, y2 may differ. For instance we
modify our earlier numerical example (Subsection 1.2) by keeping the same
graph G, but with claims x = (1, 1, 4) and resources r = (1, 4) (see Figure 2).

2

3

b

11

1

4

a 1

4

Figure 2: Example illustrating Uniform Gains

For any max-flow we have ϕ2b < ϕ3b, therefore (22) implies ϕ2a + ϕ2b = 1
for any choice of W . The max-flows take the form

ϕ1a = z;ϕ2a = 1− z;ϕ2b = z;ϕ3b = 4− z

so for the same functions W 1,W 2 we get z1 = 0 and z2 > 0.
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8.2 Uniform losses

The standard uniform losses method hul equalizes losses as much as possible
under the constraint that no one gets more than her claim.

Each one of the bipartite extensions of UL we construct is defined in two
steps. The first step selects the profile of total shares y∗, the same for every
extension of UL.

Fix a problem (G, x, r) ∈ P and let Y(G, x, r) = {y ∈ RN++|for some ϕ ∈
F(G, x, r): yi = ϕif(i) for all i} be the set of feasible profiles of shares. We
claim that there is a unique vector y∗ ∈ Y(G, x, r) at which the profile of losses
x − y∗ is Lorenz optimal in {x} − Y(G, x, r). To recall the meaning of Lorenz
optimality, use the notation RN 3 z → z̃ for rearranging the coordinates of z in
increasing order. Then y∗ satisfies for all k = 1, · · · , n

k∑
j=1

˜(x− y∗)j ≤
k∑
j=1

˜(x− y)j for all y ∈ Y(G, x, r)

An equivalent definition of y∗ is that, for any strictly concave function U , it
maximizes the sum

∑
i∈N U(xi − yi) over Y(G, x, r). Note that for a standard

problem (x, t), x−hul(x, t) is Lorenz optimal within all feasible profiles of losses
x− y, so our first step guarantees a bipartite generalization of hul.

The claim follows from the representation of Y(G, x, r) as the core of a
submodular cooperative game9 in N , combined with the familiar fact that such
a set has a Lorenz dominant element ([13]).

For the second step of our construction, we choose a strictly concave function
V from R+ into itself, and select the flow ϕ∗ =V H(G, x, r) as follows in the
balanced problem (G, y∗, r):

ϕ∗ = arg max
ϕ∈F(G,y∗,r)

∑
ia∈G

V (ϕia) (23)

(ϕ∗ is well defined because the objective function is strictly concave and finite).

Proposition 2 The rationing method VH defined by (23) is in H(Edge −
CSY, IMT ) and extends hug for standard problems.

Observe that we can use a similar two-step construction to define bipartite
methods that coincide with the standard uniform gains hug or the proportional
hpro. For the former we pick a Lorenz optimal element ỹ inside Y(G, x, r) (it
equalizes shares as much as possible given the constraints), and implement them
by a flow maximizing

∑
ia∈GW (ϕia) within F(G, ỹ, r) (where W is chosen as in

Proposition 1). For the latter we choose y such that ( yixi )i∈N is Lorenz optimal
among all ( yixi )i∈N , y ∈ Y(G, x, r) and use the same second step.

9The value of coalition S ⊆ N is v(S) = min∅⊆T⊆S{xT + rf(S�T )}, and y ∈ Y(G, x, r)⇔
yS ≤ v(S) for all S, with equality for S = N (see [7]). Then {x} − Y(G, x, r) is the core of
the supermodular game w(S) = xS − v(S).
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But recall from the examples in subsection 1.2 that the corresponding bi-
partite rules cannot be even node consistent. In this sense the Uniform Losses
method has a special status in our model.

Proof of Proposition 2 Our method is clearly symmetric. Continuity
follows from applying Berge’s Maximum Theorem twice, once to (x, r) → y∗,
then to (y∗, r)→ ϕ∗.

For Edge-CSY, we fix (G, x, r) ∈ P, ia ∈ G and ϕ∗ =V H(G, x, r). With the
notation in the previous proof, for any y′ ∈ Y(G\{ia}, xH(−ia), rH(−ia)) check
that the profile y : yi = y′i +ϕ∗ia, yj = y′j for j 6= i, is in Y(G, x, r). Moreover for

any function V we have
∑
j∈N V (xHj (−ia)− y′j) =

∑
j∈N V (xj − yj). Therefore

the Lorenz optimum in the reduced problem must be y′ : y′i = y∗i − ϕ∗ia, y′j = yj
for j 6= i. Finally the separability of the objective function (23) implies ϕ′e = ϕ∗e
for all e ∈ G�{ia}.

For IMT observe that if we merge two types a, b such that g(a) = g(b), the
set Y(G, x, r) of feasible total shares is unchanged, therefore the vector of shares
y∗ remains the same. The argument in the previous proof showing that HW

meets IMT applies to the solution VH of problem (23) as well.�

In the example of subsection 1.2, the uniform losses method selects the flow
(1), and when we drop resource b, in the reduced problem it gives all of resource
a to agent 1, as required by node-consistency.

In the example of Figure 2, the uniform losses method achieves the same
loss xi − yi = 1

3 for every agent by the flow

ϕ1a =
2

3
;ϕ2a =

1

3
;ϕ2b =

2

3
;ϕ3b = 3

2

3

9 Some open questions

As discussed after Lemma 2, all reasonable symmetric standard rationing meth-
ods, including uniform gains, losses, and all loss calibrated methods, are mono-
tonic with respect to claims (CM) and to resource (RM) (Definition 5). They
are also cross monotonic (CRM) and meet Ranking (RK).

It is natural to ask if the multi-claim methods that we have indentified meet
the corresponding properties, properly extended to the bipartite framework.

For CM: is xi → ϕia weakly increasing for all a ∈ f(i) ?
For CRM: is xi → ϕja weakly decreasing for all j 6= i and a ∈ f(i) ∩ f(j) ?

What about a ∈ f(j)�f(i) ?
For RM: is ra → yi weakly increasing for all i ∈ g(a) ? Same question for

ra → ϕia? What about ra → yj , ϕja for j /∈ g(a) ?
We can also extend RK and RK∗ by applying it to two agents with identical

connections, which generate more questions of the same kind.
None of these questions has an easy answer. For the extensions of uniform

gains and uniform losses, it is possible that the answer depends upon the choice
of the concave functions W,V in Propositions 1 and 2.
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10 Appendix

10.1 Canonical Decomposition

We show that any overdemanded problem P ∈ P can be uniquely decomposed
into irreducible problems over a partition of agents and resources. Then we
explain how a method defined only for irreducible problems is canonically ex-
tended into a full-fledged bipartite method. This construction is used in the
proof of both Theorems 1 and 2, where several properties are proven first for
irreducible problems, then extended to all overdemanded problems by means of
the decomposition.

Lemma 4 For any problem P = (N,Q,G, x, r) ∈ P, there is an integer
K ≥ 1 and two partitions, N = ∪K1 Nk, Q = ∪K1 Qk, such that:

• g(Q1) = N1; · · · ; g(Qk)�{N1 ∪ . . . ∪Nk−1} = Nk for all k, 2 ≤ k ≤ K;

• for all k, 1 ≤ k ≤ K, the problem P k = (Nk, Qk, G(Nk×Qk), x[Nk], r[Qk])

is irreducible; and if K > 1, the problems P k for 1 ≤ k ≤ K − 1 are
balanced.

• a flow ϕ in problem P is a max-flow if and only if it is the “union” of K
max-flows ϕk, one in each subproblem P k.

Proof sketch If P is irreducible only the coarsest partition can fit the bill.
This is the only case where K = 1. If P is not irreducible, there is at least
one “balanced” subset B of Q, i.e., rB = xg(B). Any two balanced subsets
either are disjoint or their intersection satisfies the same property. Thus the
inclusion minimal balanced subsets are disjoint, and they are the first elements
Q1, · · · , Qk, of the partition of Q. The inductive contruction continues on the
problem reduced to N�g(Q1 ∪ . . . ∪Qk) and Q�{Q1 ∪ . . . ∪Qk}.�

The canonical partition is unique up to possibly relabeling the P k: if the
first step delivers several inclusion minimal balanced subsets, we can exchange
them freely; similarly if g(Qk) ∩Nk−1 = ∅, we can exchange P k and P k−1.

Extending a bipartite rationing method from the set Pir of irreducible prob-
lems to P is done in the following way.

Definition 6 Given a method Hir on Pir, its canonical extension H to
P selects for every P ∈ P the max-flow H(P ) = ϕ that is the union of the
max-flows Hir(P k) for the decomposition above.

Clearly the canonical extension of a method from Pir to P does not depend
on the labeling of the irreducible subproblems P k of a given problem P .

Definition 7 The method Hir on Pir is node consistent (resp. edge con-
sistent) iff its canonical extension is.

We cannot define consistency directly for methods on Pir, because the re-
duced problem of an irreducible one may not be irreducible. However for any
method Hir on Pir, its canonical extension is the only possible method on P
that extends Hir and is node/edge consistent, so this is the right definition. In
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particular if the method H on P is node-consistent, it is the canonical extension
of its projection on Pir.

Note further that the canonical extension preserves symmetry, and if the
method on Pir meets IMT or IFM, so does its canonical extension. But conti-
nuity is not guaranteed, as it requires some conditions linking the solutions for
irreducible problems of different sizes.

10.2 Proof of Lemma 3

i) Lower Composition: Fix a method h ∈ H0
[lc] satisfying LC and N = {1, 2}.

For any x, y, z ∈ R2
+ such that 0� y + z � x, the equations

y1
β(x1 − y1)

=
y2

β(x2 − y2)
;

z1
β(x1 − y1 − z1)

=
z2

β(x2 − y2 − z2)

imply y = h(x, t′) for t′ = y12, and z = h(x − y, t′′) for t′′ = z12. Applying
LC to x, t′ and t = t′ + t′′ gives h(x, t) = y + z ⇔ y1+z1

β(x1−y1−z1) = y2+z2
β(x2−y2−z2) .

Changing variables to y, z, b such that b = x− y− z, we have: for all y, z, b� 0

{ y1
β(z1 + b1)

=
y2

β(z2 + b2)
and

z1
β(b1)

=
z2

β(b2)
} ⇒ y1 + z1

β(b1)
=
y2 + z2
β(b2)

Eliminating the variable y, this property becomes: for all z, b� 0

β(b2)

β(b1)
=
z2
z1
⇒ β(b2)

β(b1)
=
β(z2 + b2)

β(z1 + b1)

Fix b and set λ = β(b2)
β(b1)

. Then we have β(λs+b2)
β(s+b1)

= λ for all s > 0. Therefore

β(λs+ b2)− β(b2)

λs
=
β(s+ b1)− β(b1)

s
for all s > 0

As b1, b2 are arbitrary positive numbers, this implies that β is differentiable
everywhere on ]0,∞[ (it is differentiable almost everywhere by monotonicity),
and its derivative is constant.

ii) Upper Composition: Fix a method h ∈ H0
[lc] satisfying UC, and N = {1, 2}.

For any x, y, z, 0� z � y � x, the equations

y1
β(x1 − y1)

=
y2

β(x2 − y2)
;

z1
β(y1 − z1)

=
z2

β(y2 − z2)

imply y = h(x, t) for t = y12, and z = h(y, t′) for t′ = z12. Applying UC to x, t′

and t gives h(x, t′) = z ⇔ z1
β(x1−z1) = z2

β(x2−z2) . Changing variables to z, a, b

such that a = y − z, b = x− y, we have: for all z, a, b� 0

{z1 + a1
β(b1)

=
z2 + a2
β(b2)

and
z1

β(a1)
=

z2
β(a2)

} ⇒ z1
β(a1 + b1)

=
z2

β(a2 + b2)
(24)

If h is not the proportional method, there is some a� 0 s.t. β(a2)
β(a1)

6= a2
a1

. Label

these numbers so that a2
a1
< β(a2)

β(a1)
, and set β(a2)

β(a1)
= λ. For any b� 0 there exists
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z satisfying the two equations on the left hand side of (24) if and only if there

exists z1 > 0 s.t. β(b2)
β(b1)

= λz1+a2
z1+a1

, i.e., iff β(b2)
β(b1)

∈]a2a1 ,
β(a2)
β(a1)

[. Let Ω(a) be the set

of those b: Ω(a) is an open set intersecting for every K > 0 the line b1 + b2 = K
in an non empty interval (because limz→0 β(z) = 0). In particular 0 ∈ ∂Ω(a).
Property (24) reads: for all b� 0

b ∈ Ω(a) ⇒ β(a2 + b2)

β(a1 + b1)
=
β(a2)

β(a1)

For any b in the open set Ω(a), this implies that β is constant on a small open
interval containing a1 + b1, as well as on one open interval around a2 + b2.
As 0 ∈ ∂Ω(a) and Ω(a) contains arbitrary large vectors, this implies that β is
constant on [ai,∞[, i = 1, 2.

Set m = inf{a1| β(a2)β(a1)
6= a2

a1
for some a2 > a1}. We just showed that β is

constant on [m,∞[. The definition of β precludes m = 0, and we now have

{
β(m2 )

β(m)
=

m
2

m
and β(m) = β(2m)} ⇒

β(m2 )

β(2m)
6=

m
2

2m

the desired contradiction.

iii) Self-duality: Fix a self-dual method h ∈ H0
[lc] and N = {1, 2}. For any

x, y, t, if y = h(x, t) then we also have x− y = h(x, x12 − t). By (15) this gives,
for all x, y, 0� y � x,

y1
β(x1 − y1)

=
y2

β(x2 − y2)
⇒ x1 − y1

β(y1)
=
x2 − y2
β(y2)

Changing variables to a = y, b = x− y, we have

a2β(b1) = a1β(b2)⇒ b2β(a1) = b1β(a2) for all a, b� 0

Fix a2 = b2 = 1 and a1 = β(b1)
β(1) . The above equation gives β(a1) = b1β(1).

If a1 < b1 the two equations above give β(b1) = a1β(1) < b1β(1) = β(a1),
contradicting the fact that β is weakly increasing. Assuming a1 > b1 yields a

similar contradiction, and we conclude β(b1)
β(1) = b1 for all b1 > 0, as desired.�
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