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Abstract

We consider a problem of designing auction among buyers with positive externalities. Our
mechanism design model is a generalization of the classical auctions for selling a good of un-
limited supply with multi-parameter bidders, each reporting its valuations over possible sets
of winners. Our main goal is to maximize auctioneer’s revenue. Recently similar agenda was
proposed in [17], where authors consider single parameter domain and submodular valuations of
bidders. In contrast to this work we deal with the multi-parameter case and subadditive valua-
tions, though using another classical approach [15], namely we aim at designing a competitive
mechanism with respect to the best uniform price benchmark. The main contribution of this
paper is the first competitive universally truthful mechanism with respcet to this benchmark.
Our mechanism works in polynomial of the number of agents time, that is it may ask only a
polynomial number of queries to each agent about its valuations for certain sets.
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1 Introduction

In economics, the term externality is used to describe those situations where the private costs or
benefits to the producers or purchasers of a good or service differs from the total social costs or
benefits entailed in its production and consumption. In this context a benefit is called positive
externality, while a cost is called negative. One need not go too far to find examples of positive
external influence in the digital and communications markets, when a customer’s decision to buy
a good or purchase a service strongly relies on its popularity among his friends or generally among
other customers, e.g. instant messenger and cell phone users will want a product that allows them to
talk easily and cheaply with their friends. Another good example may be given by social networks,
where a user appreciates higher a membership in the network if many of his friends are already
using it. There exist a number of applications like quite popular Farm Ville in online social network
Facebook, where a user would have more fun when playing it with his friends. In fact, quite a few
of such applications explicitly reward players with a big number of friends.

On the other hand, the negative external effects take place when a potential buyer, e.g. a big
company, incures a great loss, if a subject it fights for, like small firm or company, comes to its
direct competitor. Another well studied example related to computer science may be given by
allocation of advertisment slots [1, 12, 13, 14, 16, 22], where every customer would like to see a
smaller number of competitors’ advertisements on a web page that contains his own advert. One
may also face mixed externalities as in the case of salling nuclear weapons [20], where countries
would like to see their allies win the auction rather than their foes.

In contrast, we investigate the problem of mechanism design for the auctions with positive
externalities. We study the scenario where an auctioneer sells the goods, of no more than one
item each, into the hands of customers. We define a model for externalities among buyers in the
sealed-bid auction with unlimited supply of the good. Those kind of auctions arise naturally in the
digital markets, where making a copy of a good (e.g. cd with songs and games or extra copy of
online application) has a negligible cost compared to the final price and can be done at any time
the seller chooses.

Recently similar agenda has been introduced in the paper [17], where athours consider bayesian
framework and study positive externalities in social networks with single-parameter bidders and
submodular valuations. The model in the most general form can be described by a number of
bidders n, each with a non-negative private valuation function vi(S) depending on the possible
winning set S. This is natural mechanism design multi-parameter model that may be considered
as a generalization of classical auctions with unlimited supply, i.e. auctions where the amount of
items being sold is greater than the number of buyers.

Traditionally the main question arizing in these kind of situations is to maximize seller’s rev-
enue. In the literature on classical aucitons without any externalities there were developed diverse
approaches to this question. In the current work we pick a different from byesian framework clas-
sical benchmark (cf. [15]), namely the best-uniform-price benchmark called F . There one seeks to
maximize the ratio of the mechanism’s revenue to the revenue of F taken in the worst case over
all possible bids. In particular a mechnaism is called competitive if such ratio is bounded by some
uniform constant for each possible bid. However, it was shown that there is no competitive truthful
mechanism w.r.t. F , and therefore to get round this problem, there was proposed a slightly modi-
fied benchmark F (2). The only difference of F (2) to F is in one additional requirement that at least
two buyers should be in a winning set. Thus F (2) becomes a standard benchmark in analyzing
digital auctions. Similarly to F (2) one may define benchmark F (k) for any fixed constant k. It
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turns out that the same benchmarks can be naturally adopted to the case of positive externalities.
Surprisingly F (2) fails to serve as a benchmark in social networks with positive externalities, i.e. no
competitive mechanism exists w.r.t. F (2). Therefore, we go further and consider the next natural
candidate for the benchmark, that is F (3).

The main contribution of the current paper is a universally truthful competitive mechanism for
the general multi-parameter model with subadditive valuations (substantially broader class than
submodular) w.r.t. F (3) benchmark. As a complement we furnish this result with the proof that
no truthful mechanism can archieve constant ratio w.r.t. F (2). In order to do so we introduce a
restricted model with single private parameter which in some respects resamble that considered in
[17]; further for this restricted model we adduce a simple geometric characterization of all truthful
mechanisms and based on this characterization then show that there exists no competitive truthful
mechanism.

To be completely consistent we admit that besides claimed monotonicity (positive externalities)
and subadditivity restrictions on the valuation functions we additionally require that each agent
derives zero value when not obtaining the good. First, this is reallistic assumption, e.g. without a
messanger or online application any customer derives zero utility regardless of how many his friends
got it. Second, in discussion Section we argue that the later is indeed necessary condition in order
to get a competitive mechanism. We also consider some other natural extentions and show that all
of them fails to archieve a constant ratio w.r.t. any benchmark F (k) for a fixed k.

1.1 Related Works

Many studies on externalities in the direction of pricing and marketing strategies over social net-
works have been conducted over the past years. They have been caused in many ways by the
development of social-networks on the Internet, which has allowed companies to collect informa-
tion about users and their relationships.

The earlier works were generally devoted to the influence maximization problems (see Chapter
24 of [23]). For instance, Kempe et.al. [21] study the algorithmic question of searching a set of
nodes in a social network of highest influence. From the economics literature one could name such
papers as [25], which studies the effect of network topology on a monopolist’s profits and [9], which
studies a multi-round pricing game, where a seller may lower his price in an attempt to attract
low value buyers. As usual for economics literature all of these works take no heed of algorithmic
motivation.

More recently there emerged several papers [2, 7, 18] studying the question of revenue maxi-
mization and work studing the post price mechanisms [3, 5, 8, 18].

We could not go by without a mention of a beautiful line of research on revenue maximization for
classical auctions, where the objective is to maximize the seller’s revenue compared to a benchmark
in the worst case. We cite here only some papers that are most relevant to our setting [4, 10, 11,
15, 19]. With respect to the refined best-uniform-price benchmark F (2) a number of mechanisms
with constant competitive ratio were obtained; each subsequent paper improving the competitive
ratio of the previous one [10, 11, 15, 19]. The best known current mechanism by Hartline and
McGrew [19] has a ratio of 3.25. On the other hand a lower bound of 2.42 has been proved in [15]
by Goldberg et.al.. The question of closing the gap still remains open.
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Organization of the Paper

We begin with all necessary definitions in Section 2. Section 3 presents a competitive mechanism
w.r.t. to benchmark F (3) for the general model with multi parameter bidding. In Section 4 we
give a geometric characterization of truthful mechanism for some restricted single-parameter cases,
which we need further is Subsection 4.1 in order to show the impossibility of designing a competitive
mechanism w.r.t. F (2). Section 4 is also furnished with a simpler and better competitive mechanism
in Subsection 4.2 for one of these special cases w.r.t. a stronger F (2) benchmark. We conclude with
the Section 5 where we discuss possible extensions of the model and give a list of open questions.

2 Preliminaries

We suppose that in a marketplace there are present n agents, the set of which we denote by [n].
Each agent i has a private valuation function vi, which is a nonnegative real number for each
possible winner set S ⊂ [n]. The seller organizes a single round sealed bid auction, where agents
submit their valuations bi(S) for all possible winner sets S to an auctioneer and he then chooses
agents who will obtain the good and vector of prices to charge each of them. The auctioneer is
interested in maximizing his revenue.

For every i ∈ [n] we impose the following quite mild requirements on vi and later in the Section
5 we will discuss in detail why most of them are indeed necessary.

1. vi(S) ≥ 0.

2. vi(S) = 0 if i /∈ S.

3. vi(S) is a monotone sub-additive function of S, i.e.

(a) vi(S) ≤ vi(R) if S ⊆ R ⊆ [n].

(b) vi(S ∪R) ≤ vi(S) + vi(R), for each i ∈ S,R ⊆ [n]

2.1 Mechanism Design

Each agent in turn would like to get a positive utility as high as possible and may lie strategically
about his valuations. The utility ui(S) of an agent i for a winning set S is simply the difference of
his valuation vi(S) and the price pi the auctioneer charges i. Thus one of the desired properties for
the auction is the well known concept of truthfulness or incentive compatibility, i.e. the condition
that every agent maximizes his utility by truth telling.

It worth to mention here that our model is that of multi-parameter mechanism design and,
moreover, that collecting the whole bunch of values vi(S) for every i ∈ [n] and S ⊂ [n] would
require exponential in n number of bits and thus is inefficient. However, in the field of mechanism
design there is a way to get around such a problem of exponential input size by the broadly
recognized concept of black box value queries. The later simply means that the auctioneer instead
of getting the whole collection of bids instantly may ask instead during the mechanism execution
every agent i only for a small part of his input, i.e. a number of questions about valuation of i for
certain sets. We note that as usual the agent may lie in a response on each such query. We denote
the bid of i by bi(S) to distinguish it from actual valuation vi(S). Thus if we are interested in
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designing computationally efficient mechanism, we can only ask in total a polynomial in n number
of queries.

Throughout the paper by M we denote a mechanism with allocation rule A and payment rule
P. Allocation algorithm A may ask quarries about valuations of any agent for any possible set of
winners. Thus A has an oracle black box access to the collection of bid functions bi(S). For each
agent i in the winning set S the payment algorithm decides a price pi to charge. The utility of
agent i is then ui = vi(S) − pi if i ∈ S and 0 otherwise. To emphasize the fact that agents may
report untruthfully we will use ui(bi) notation for the utility function in the general case and ui(vi)
in the case of truth telling. We assume voluntary participation for the agents, that is ui ≥ 0 for
each i who reports the truth.

2.2 Revenue Maximization and Possible Benchmarks

We discuss here the problem of revenue maximization from the seller’s point of view. The revenue
of the auctioneer is simply the total payment

∑
i∈S pi of all buyers in the winning set. We assume

that the seller incurs no additional cost for making a copy of the good. As a matter of fact, this
assumption is essential for our model, since unlike the classical digital auction case there is no
simple reduction of the settings with a positive price per issuing the item to the settings with zero
price.

The best revenue the seller can hope for is
∑

i∈[n] vi([n]). However, it is not realistic when the
seller does not know agents’ valuation functions. We follow the tradition of the literature [11, 15,
10, 19] of algorithmic mechanism design on competitive auctions with limited or unlimited supply
and consider the best revenue uniform price benchmark, which is defined as maximal revenue that
auctioneer can get for a fixed uniform price for the good. In the literature on classical competitive
auctions this benchmark was called F and formally is defined as follows.

Definition 2.1. For the vector of agent’s bids b

F(b) = max
c≥0,S⊂[n]

(
c · |S|

∣∣∣∀i ∈ S bi ≥ c
)
.

This definition generalizes naturally to our model with externalities and is defined rigorously
as follows.

Definition 2.2. For the collection of agents’ bid functions b.

F(b) = max
c≥0,S⊂[n]

(
c · |S|

∣∣∣∀i ∈ S bi(S) ≥ c
)
.

The important point of considering F in the setting of classical auctions is that the auctioneer,
when is given in advance the best uniform price, can run a truthful mechanism with corresponding
revenue. It turns out that the same mechanism works truthfully and neatly for our model. Specif-
ically, a seller who is given in advance the price c can begin with the set of all agents and drop one
by one those agents with negative utility (bi(S)− c < 0); once there are left no agents to delete the
auctioneer sells the item to all surviving buyers at the given price c.

Traditionally, the major question arising before auctioneer in such circumstances is to devise
a truthful mechanism which has a good approximation ratio of the mechanism’s revenue on any
possible bid b to the revenue of the benchmark, assuming that agents bid truthfully in the latter
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case. Such ratio is usually called competitive ratio of a mechanism. However, it was shown (cf. [15])
that no truthful mechanism can guarantee any constant competitive ratio w.r.t. F . Specifically, the
unbounded ratio appears on the instances where the benchmark buys only one item at the highest
price. To overcome this obstacle, a slightly modified benchmark F (2) has been proposed and a
number of competitive mechanisms w.r.t. F (2) were obtained [10, 11, 15, 19]. The only difference
of F (2) from F is in one additional requirement that at least two buyers should be in the winning
set. Similarly, for any k ≥ 2 we may define F (k).

Definition 2.3.
F (k)(b) = max

c≥0,S⊂[n]

(
c · |S|

∣∣∣|S| ≥ k, ∀i ∈ S bi(S) ≥ c
)
.

However, in case of our model the benchmark F (2) does not imply the existence of constant
approximation truthful mechanism. In order to illustrate that later in Section 4 we will introduce
a couple of new models which differ from original one by certain additional restrictions on the
domain of agent’s bids. We further give a complete characterization of truthful mechanisms for
these new restricted settings substantially exploiting the fact that every agent’s bidding language
is single-parameter. Later we use that characterization to argue that no truthful mechanism can
achieve constant approximation with respect to F (2) benchmark even for these cases. On the
positive side, and quite surprisingly, we can furnish our work in the next section with the truthful
mechanism which has constant approximation ratio w.r.t. F (3) benchmark for the general case of
multi-parameter bidding.

3 Competitive Mechanism

Here we give a competitive truthful mechanism, that is a mechanism which guaranties the auctioneer
to get a constant fraction of the revenue, he could get for the best fixed price benchmark assuming
that all agents bid truthfully. We call it Promoting-Testing-Selling Mechanism. In the
mechanism we give the good to certain agents for free, that is without any payment. The general
scheme of the mechanism is as follows.

Promoting-Testing-Selling Mechanism

1. Put every agent at random into one of the sets A,B,C.

2. Denote r
A

(C) and r
B

(C) the largest fixed price revenues one can extract from

C given that, respectfully, either A, or B got the good for free.

3. Let r(C) = max{r
A

(C), r
B

(C)}.

4. Sell items to agents in A for free.

5. Apply Cost Sharing Mechanism(r(C), B, A) to extract revenue r(C) from set B
given that A got the good for free.

Bidders in A receive items for free and increase the demand of agents from B. One may say
that they “advertise” the goods and resemble the promotion selling participants. The agents in C
play the role of the “testing” group, the only service of which is to determine the right price. Note
that we take no agents of the testing group into the winning set, therefore, they have nothing to
gain for bidding untruthfully. The agents of B appear to be the source of the mechanism’s revenue,
which is being extracted from B by a cost sharing mechanism as follows.
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Cost Sharing Mechanism(r,X,Y)

1. S ← X.

2. Repeat until T = ∅:

• T ← {i|i ∈ S and bi(S ∪ Y ) < r
|S|}.

• S ← S \ T.

3. If S 6= ∅ sell items to everyone in S at r
|S| price.

Lemma 3.1. Promoting-Testing-Selling Mechanism is universally truthful.

Proof. The partitioning of agent set [n] into A, B, C does not depend on an agent’s bids. When
a partition is fixed, our mechanism becomes deterministic. Therefore, we are only left to prove
truthfulness for that deterministic part. Let us do so by passing through the proof separately for
each set A, B and C.

• Bids of agents in A do not affect the outcome of the mechanism. Therefore, they have no
incentive to lie.

• No agents from C could gain any profit from bidding untruthfully, since their utilities will be
zero regardless of their bids.

• Let us note that the Cost Sharing Mechanism is applied to the agents in B and the value
of r does not depend on their bids, since both rA and rB are retracted from C irrespectively
of bids from A and B. Also let us note that at each step of the cost sharing mechanism the
possible payment r

|S| is rising, and meanwhile the valuation function, because of monotonicity
condition, is going down. Hence, manipulating a bid does not help any agent to survive in
the winning set and to receive a positive utility, if by bidding truthfully he had been dropped
from it. Neither mis-reporting a bid could help an agent to alter the surviving set and in the
same time remain a winner. The former two observations conclude the proof of truthfulness
for B.

Therefore, from now on we may assume that bi(S) = vi(S).

Theorem 3.1. Promoting-Testing-Selling Mechanism is universally truthful and has an

expected revenue of at least F
(3)

324 .

Proof. We are left to prove the lower bound on the competitive ratio of our mechanism, as we have
shown the truthfulness in Lemma 3.1.

For the purpose of analysis, we separate the random part of our mechanism into two phases.
In the first phase, we sieve agents randomly into three groups S1, S2, S3 and in the second one,
we label the groups at random by A, B and C. Note that the combination of these two phases
produces exactly the same distribution over partitions as in the mechanism.

Let S be the set of winners in the optimal F (3) solution and the best fixed price be p∗. For
1 ≤ i 6= j ≤ 3 we may compute rij the largest revenue for a fixed price that one can extract from
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set Si given Sj “advertising” the good, that is agents in Sj anyway get the good for free and thus
increase the valuations of agents from Si though contribute nothing directly to the revenue.

First, let us note that the cost-sharing part of our mechanism will extract one of these rij from
at least one of the six possible labels for every sample of the sieving phase. Indeed, let i0 and j0 be
the indexes for which ri0j0 achieves maximum over all rij and let k0 = {1, 2, 3} \ {i0, j0}. Then the
cost-sharing mechanism will retract the revenue r(C) = max(rA(C), rB (C)) on the labeling with
Sj0 = A, Si0 = B and Sk0 = C. It turns out, as we will prove in the following lemma, that one can
get a lower bound on this revenue within a constant factor of rF (C); the revenue we got from the
agents of C in the benchmark F (3).

Lemma 3.2. r(C) ≥ rF (C)

4 .

Proof. Let Sc = S ∩C. Thus, by the definition of F (3), we have rF (C) = |Sc| · p∗ and for all i ∈ Sc,
vi(S) ≥ p∗.

We define a subset T of Sc as a final result of the following procedure.

1. T ← ∅ and X ← {i|i ∈ Sc and vi(A ∪ {i}) ≥ p∗

2 }.

2. While X 6= ∅

• T ← T ∪X,

• X ← {i|i ∈ Sc and vi(A ∪ T ∪ {i}) ≥ p∗

2 }

For any agent of T we have vi(A ∪ T ) ≥ p∗

2 because the valuation function is monotone. Now

if |T | ≥ |Sc|
2 , we get the desired lower bound. Indeed,

r(C) ≥ rA(C) ≥ |Sc|
2
· p
∗

2
=
|Sc| · p∗

4
=
rF (C)

4
.

Otherwise, let W = Sc \ T . Then we have |W | ≥ |Sc|
2 . For an agent i ∈ W it holds true that

vi(A∪T ∪{i}) < p∗

2 , since otherwise we should include i into T . However, since i wins in the optimal

F (3) solution, we have vi(S) ≥ p∗. The former two inequalities together with the subadditivity of
vi(·) allow us to conclude that vi(S \ (A∪ T )) ≥ p∗

2 for each i ∈W . Hence, we get vi(B ∪W ) ≥ p∗

2
for each i ∈W , since S \ (A ∪ T ) ⊆ B ∪W . Therefore, we are done with the proof, since

r(C) ≥ rB (C) ≥ |W | · p
∗

2
≥ |Sc| · p

∗

4
=
rF (C)

4
.

Let k1, k2, k3 be the number of winners of the optimal F (3) solution, respectively, in S1, S2, S3.
For any fixed partition S1, S2, S3 of the sieve phase by applying Lemma 3.2, we get that the

expected revenue of our mechanism over a distribution of six permutations in the second phase
should be at least

1

6
· 1

4
min{k1, k2, k3} · p∗.

In order to conclude the proof of the theorem we are only left to estimate the expected value
of min{k1, k2, k3} from below by some constant factor of |S|. The next lemma will do this for us.
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Lemma 3.3. Let m ≥ 3 items independently at random be put in one of the three boxes and let a, b
and c be the random variables denoting the number of items in these boxes. Then E[min{a, b, c}] ≥
2
27m.

By definition of the benchmark F (3) we have m = k1 + k2 + k3 ≥ 3 and thus we can apply
Lemma 3.3. Combining every bound we have so far on the expected revenue of our mechanism we
conclude the proof with the following lower bound.

1

6
· 1

4
E [min{k1, k2, k3}] · p∗ ≥

1

24
· 2

27
· p∗ ·m =

F (3)

324
.

4 From F (2) to F (3)

We introduce here a couple of special restricted cases of the general setting with single parameter
bidding language. For these models we only specify restrictions on the valuation functions. In each
case we assume that ti is a single private parameter for agent i that he submits as a bid and wi(S)
and w′i(S) are fixed publicly known functions for each possible winning set S. The models then are
described as follows.

• Additive valuation vi(ti, S) = ti + wi(S).

• Scalar valuation vi(ti, S) = ti · wi(S).

• Linear valuation vi(ti, S) = tiwi(S) + w′i(S), i.e. combination of previous two.

We note that these settings are now single parameter domains, which is the most well studied
and understood case in mechanism design.

The basic question of mechanism design is to describe truthful mechanisms in terms of simple
geometric conditions. Given a vector of n bids, b = (b1, . . . , bn), let b−i denote the vector, where
bi is replaced with a ‘?’, that is,

b−i = (b1, . . . , bi−1, ?, bi+1, . . . , bn).

It is well known that truthfulness implies a monotonicity condition stating that if an agent i wins
for the bid vector b = (b−i, bi) then she should win for any bid vector (b−i, b

′
i) with b′i ≥ bi. In

single-dimensional domains monotonicity turns out to be a sufficient condition for truthfulness [6],
where prices are determined by the threshold functions.

In our model valuation of an agent may vary for different winning sets and, thus, may depend
on her bid. Nevertheless, any truthful mechanism still has to have a bid-independent allocation
rule, although now it does not suffice for truthfulness. However, in the case of linear valuation
functions we are capable of giving a complete characterization (all proofs are deferred to appendix
B).

Theorem 4.1. In the model with linear valuation functions vi(ti, S) = ti·wi(S)+w′i(S) an allocation
rule A may be truthfully implemented if and only if it satisfies the following conditions:
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1. A is bid-independent, that is for each agent i, bid vector b = (b−i, bi) with i ∈ A(b) and any
b′i ≥ bi, it holds that i ∈ A(b−i, b

′
i).

2. A encourages asymptotically higher bids, i.e. for any fixed b−i and b′i ≥ bi, it holds that
wi(A(b−i, b

′
i)) ≥ wi(A(b−i, bi)).

4.1 Impossibility for Competitive Mechanism w.r.t. F (2)

Here we show that the usage of F (2) as a benchmark may lead to an unbounded approximation
ratio. Surprisingly as we have shown in Section 3 one can fix this problem by considering a slightly
modified benchmark, namely F (3).

Theorem 4.2. There is no universally truthful mechanism that can archive a constant approxima-
tion ratio w.r.t. F (2).

Proof. Consider the example of two people, such that everyone valuates the outcome, where both
have got the item, much higher than the outcome, where only one of them getting the item, i.e.
v1(x, {1}) = v2(x, {2}) = x and v1(x, {12}) = v2(x, {12}) = Mx for a large constant M .

We will show that any universally truthful mechanismMD with a distribution D over truthful
mechanisms cannot achieve an approximation ratio better than M . Each truthful mechanism M
in D either sells items to both bidders for some pair of bids (b1, b2), or for all pairs of bids sells
not more than one item. In the first case, by our characterization of truthful mechanisms (see
theorem 4.1),M should also sell two items for the bids (x, b2) and (b1, y), where x ≥ b1 and y ≥ b2.
Therefore, M has to sell two items for any bid (x, y) with x ≥ b1 and y ≥ b2. Let us denote
respectively the first and second group of mechanisms in D by D1 and D2.

We may pick sufficiently small ε and consider sufficiently large x, such that at least 1−ε fraction
of mechanisms in D1 sells two items for bids ( x

2M ,
x

2M ). Note that

• revenue of F (2) for the bids (x, x) is 2Mx,

• revenue of M in D2 for the bids (x, x) is not greater than x,

• revenue of more than 1− ε fraction of mechanisms in D1 is not greater than 2M x
2M = x.

• revenue of the remaining ε fractions of mechanisms in D1 is not greater than 2Mx.

Thus we can upper bound the revenue of MD by x(1 − ε) + 2Mxε while the revenue of F (2) is
2Mx. By choosing sufficiently large M and small ε we will get an arbitrary large approximation
ratio.

4.2 Better Mechanism for Additive valuations

Assuming that each valuation function is additive, that is of the form vi(ti, S) = ti+wi(S) with only
one private parameter ti and publicly known additive factor w(Si), we are able to run significantly
simpler mechanism with the smaller competitive ratio comparing to F (2) instead of F (3).

Theorem 4.3. Given any α-completive truthful mechanism M0 for unlimited supply auctions
without externalities, one may give a 2(1 + α)-competitive truthful mechanism for markets with an
additive valuation w.r.t. benchmark F (2).

The proof of this theorem is deferred to appendix C.

10



5 Discussion and Open Problems

To the best of our knowledge the model introduced in the current paper is the first that takes into
account positive externalities in respect of studying truthful mechanism design for auctions in a
worst case revenue maximization and the first one in algorithmic community that treats efficiently
general multi-parameter case. Because of that there are many promising ways for expansion of the
model and we would like to discuss here some possible directions. However, most of our results
obtained for such attempts are negative; thus, to get some positive results one may try some further
requirements and modifications of the model.

1. Valuations are not necessarily sub-additive. Then for any fixed k there is no competitive
mechanism with respect to F (k). A bad instance is similar to the one in section 4.1 (we
let vi(ti, [n]) >> vi(ti, S) for each i and S  [n]). However, one may consider relaxed sub-
additivity condition, i.e. L(vi(A)+vi(B)) ≥ vi(A∪B) for a constant L and each i ∈ A,B ⊂ [n].
Our mechanism will be still working and remain competitive, though with additional factor
depending on L.

2. Making a copy of the good has a fixed cost for seller. For the original digital goods
auctions one may easily make a reduction to the setting with zero cost per copy: subtract
the cost from the agent’s valuation and ignore those agents whose value is less than zero. For
our model with externalities this extension may lead to an unbounded competitive ratio (see
appendix D).

3. Limited supply. This direction also looks very hard to explore, since it is not clear even how
to define a benchmark. A simple algorithm where we merely start with [n] and successively
remove agents with low valuations may fail, since we could finish with a larger number of
agents than provided supply. In the latter case it is unclear which agents we should remove
next. Another difficulty with this direction is that one may think of limited supply as of
hidden negative externality. Indeed, if an agent buys something, then besides the increment
of other’s valuations she also decreases the supply, thus probably depriving other agents of
the chance to get into the winning set.

4. Positive valuation for an agent not getting the good. If we drop the condition that
vi(S) = 0 when i /∈ S, then we can’t hope for any constant competitive mechanism. For
example one may consider simple restricted valuation function vi(ti, S) = ti · |S|, ∀i ∈ [n]
with single private parameter ti for each agent i. Clearly, in any mechanism it will be hard to
motivate any agent to pay for the good, since agents prefer to loose and pay nothing rather
than win and pay at least something given that the size of winning set does not decrease (for
more detailed explanation see appendix D).

We would like to conclude the discussion with a list of open problems

1. We got a constant competitive ratio w.r.t. to the fixed price benchmark. Therefore, we think
it will be an interesting research direction to obtain a competitive mechanism with a better
ratio. Also one may find it interesting to explore the lower bounds for the new model with
externalities.
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2. Another important theoretical question is to give a characterization of truthful mechanisms
for general valuation functions. In fact, the marginal monotonicity condition (see appendix
B) we were using for that may be not met when valuations functions are bounded from
above, e.g. budget constraint on the linear valuation. Moreover, in such a case there exists a
mechanism that cannot be put in our characterization

3. Truthful mechanism design for a market with externality is an interesting and challenging re-
search topic. In this paper, we were studying only one particular setting. More generalization
looks interesting both for practical and theoretical points of view, for example, negative ex-
ternalities. It seems a challenging question to find a good benchmark and design competitive
mechanisms.
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A Competitive Mechanism

Lemma A.1. Let m ≥ 3 items independently at random be put in one of the three boxes and let a, b
and c be the random variables denoting the number of items in these boxes. Then E[min{a, b, c}] ≥
2
27m.

Proof. Intuitively, it is clear that for the large m the value of E[min{a, b, c}] should be close to
m
3 (the expectation of each random variable a, b and c). More formally, we have three random
variables with dependency on them given by the relation a + b + c = m. Now consider separately
one of them, say a. Then the distribution of a is nothing else but the distribution one may get
taking the sum of independent and identically distributed random variables X1, X2, . . . Xm drawn
from the Bernoulli distribution with parameters p(1) = 1

3 and p(0) = 2
3 .

We may use Chernoff’s bounds on the probability of a
m = 1

m

∑m
i=1Xi diverging from p = 1

3 as
follows.

Pr

(
1

m

m∑
i=1

Xi ≤ p− δ

)
≤

((
p

p− δ

)p−δ ( 1− p
1− p+ δ

)1−p+δ
)m

Simple calculations for p = 1
3 and δ = 2

9 show that for each m ≥ 17 we will get

Pr

(
a

m
≤ 1

9

)
<

1

9
.

Now, since the probability of the union of events is smaller than the sum of probabilities of
every event, we get

Pr

(
min{a, b, c}

m
≤ 1

9

)
<

1

3
.

Therefore, Pr
(
min{a,b,c}

m ≥ 1
9

)
> 2

3 and

E

(
min{a, b, c}

m

)
>

1

9
· 2

3
=

2

27
.

The latter proves the lemma for m ≥ 17. For smaller m we may compute E[min{a,b,c}]
m directly,

or use more accurate estimations on a probability and verify that E[min{a,b,c}]
m achieves its minimum

when m = 3.

B Towards Characterization

Theorem B.1. In the model with linear valuation functions vi(ti, S) = ti · wi(S) + w′i(S) an
allocation rule A may be truthfully implemented if and only if it satisfies the following conditions:

1. A is bid-independent, that is for each agent i, bid vector b = (b−i, bi) with i ∈ A(b) and any
b′i ≥ bi, it holds that i ∈ A(b−i, b

′
i).

2. A encourages asymptotically higher bids, i.e. for any fixed b−i and b′i ≥ bi, it holds that
wi(A(b−i, b

′
i)) ≥ wi(A(b−i, bi)).

Proof. We need in essence the following property, which we call marginal monotonicity and which
holds for linear valuation functions.
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Definition B.1. For any fixed sets S1 and S2, let
gi(ti, S1, S2) = vi(ti, S1)−vi(ti, S2). Then gi as a function of ti should be either strictly monotone

(increasing or decreasing), or constant.

Thus, in fact, one can substitute in theorem 4.1 the requirement of valuation function being
linear for the condition of marginal monotonicity. In the latter case the second condition of theorem
4.1 changes into: for any fixed b−i and b′i ≥ bi, it holds that gi(ti,A(b−i, b

′
i),A(b−i, bi)) is monotone

increasing or constant. At first we prove that this condition is indeed necessary.

Proof. If not, there has to exist b−i and b′i ≥ bi such that gi(ti,A(b−i, b
′
i),A(b−i, bi)) is neither

monotone increasing or constant. Then by marginal monotonicity, it is strictly monotone decreas-
ing.

For a truthful mechanism an agent’s payment should not depend on her bid, if by changing
it mechanism does not shift the allocated set. We denote the payment of agent i for winner set
A(b−i, bi) as p and for winner set A(b−i, b

′
i) as p′. If the agent’s true value is bi, by truthfulness, we

have
vi(bi,A(b−i, bi))− p ≥ vi(bi,A(b−i, b

′
i))− p′.

And if the agent’s true value is b′i, we have

vi(b
′
i,A(b−i, b

′
i))− p′ ≥ vi(b′i,A(b−i, bi))− p.

Adding these two inequalities, we have

vi(bi,A(b−i, bi))− vi(bi,A(b−i, b
′
i))

≥ vi(b′i,A(b−i, bi))− vi(b′i,A(b−i, b
′
i)).

This contradicts the fact that gi(ti,A(b−i, b
′
i),A(b−i, bi)) is strictly monotone decreasing function.

In the following, we prove that these two conditions are indeed sufficient by providing an algo-
rithm that computes payments. The payment algorithm is determined by the allocation algorithm
by the so called ”Myerson integral” [24, 6]. In our concrete case we can make it more explicit. For a
given bidder i let us consider S1, S2, . . . , SN as all the possible winning sets containing i (N = 2n−1).
We may define the order >i on them by setting Sk >i Sj if gi(ti, S1, S2) is an increasing function
in vi and Sk <i Sj if gi is decreasing; naturally we get an equivalence relation =i if gi is constant.
Therefore, one may split these N sets into mi different equivalence classes, where among these
different classes there is a linear order. For convenience, we put all the sets that does not contain
i into an equivalence class.

Then for each i and fixed b−i one gets a finite partition I0, I1, . . . , Is of [0,+∞] into intervals
(open, closed, half open, half closed) and isolated points such that [0,+∞] = ∪sj=0Ij ; for all bi
running over Ij , A(b−i, bi) could only change within the same equivalence class πj . More specifically,
there are s + 1 equivalence classes π0, π1, . . . , πs w.r.t. <i, such that for any 0 ≤ j < k ≤ s and
S ∈ πj , S′ ∈ πk , we have S <i S

′.
Let Sj be a set in πj . We define

dj = inf
x∈Ij+1

vi(x, Sj)− inf
x∈Ij

vi(x, Sj).
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By the definition of equivalence classes, dj does not depend on the choice of Sj in πj . Indeed, the
definition of πj implies that vi(x, S)− vi(x, S′) = vi(y, S)− vi(y, S′) for any S′, S ∈ πj , which gives
us what we need. Then the payment for a bid bi ∈ I` may be determined as follows:

pi(bi) = inf
x∈I`

vi

(
x,A(b−i, bi)

)
−

`−1∑
j=0

dj .

Claim 1. The above payment rule makes the mechanism truthful and as a result the conditions in
Theorem 4.1 are also sufficient.

Proof. We use ui(ti, bi) to denote agent i’s utility when his true value is ti and he bids bi, given
that b−i is fixed. To prove the truthfulness it suffices to show that ui(ti, ti) ≥ ui(ti, bi) for any ti,
bi and fixed b−i. Without loss of generality we may assume that ti ∈ Ik and bi ∈ I`. For each j, let
us pick a set Sj from πj . Then we can write an explicit formula for ui(ti, bi).

ui(ti, bi) = vi(ti,A(bi))− pi(bi)

= vi(ti,A(bi))− inf
x∈I`

vi(x,A(bi)) +

`−1∑
j=1

dj

= inf
x∈I`

(
vi(ti,A(bi))− vi(x,A(bi))

)
+

`−1∑
j=1

dj

= inf
x∈I`

(
vi(ti, S`)− vi(x, S`)

)
+

`−1∑
j=1

dj

= vi(ti, S`)− inf
x∈I`

vi(x, S`) +

`−1∑
j=1

dj .

Similarly one can get the formula

ui(ti, ti) = vi(ti, Sk)− inf
x∈Ik

vi(x, Sk) +
k−1∑
j=1

dj .

Before we prove ui(ti, ti) ≥ ui(ti, bi), we need the following inequality: If S >i S
′ and x > y

then we have
vi(x, S)− vi(x, S′)− vi(y, S) + vi(y, S

′) ≥ 0 (1)

This follows from the definition of >i.
Let us rewrite ui(ti, ti)− ui(ti, bi) and consider two cases.

Case 1: ti > bi. Then k ≥ ` and we get that ui(ti, ti)− ui(ti, bi) is equal to

vi(ti, Sk)− vi(ti, S`)− inf
x∈Ik

vi(x, Sk) + inf
x∈I`

vi(x, S`) +
k−1∑
j=`

dj .
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After plugging in all formulas for dj = inf
x∈Ij+1

vi(x, Sj) − inf
x∈Ij

vi(x, Sj) and rearranging some terms

we can write (
vi(ti, Sk)− vi(ti, S`)

− inf
x∈Ik

vi(x, Sk) + inf
x∈Ik

vi(x, S`)

)
+

(
inf
x∈Ik

vi(x, Sk−1)− inf
x∈Ik

vi(x, S`)

− inf
x∈Ik−1

vi(x, Sk−1) + inf
x∈Ik−1

vi(x, S`)

)
+ . . .

+

(
inf

x∈I`+2

vi(x, S`+1)− inf
x∈I`+2

vi(x, S`)

− inf
x∈I`+1

vi(x, S`+1) + inf
x∈I`+1

vi(x, S`)

)
By applying 1 to each term in parentheses we get the desired inequality.

Case 2: ti < bi. Similarly, we get that ui(ti, ti)− ui(ti, bi) is equal to

vi(ti, Sk)− inf
x∈Ik

(vi(x, Sk))− vi(ti, S`) + inf
x∈I`

vi(x, S`)−
`−1∑
j=k

dj .

Rearranging terms in a different way we can write the following.(
vi(ti, Sk)− vi(ti, S`)

− inf
x∈Ik+1

vi(x, Sk) + inf
x∈Ik+1

vi(x, S`)

)
+

(
inf

x∈Ik+1

vi(x, Sk+1)− inf
x∈Ik+1

vi(x, S`)

− inf
x∈Ik+2

vi(x, Sk+1) + inf
x∈Ik+2

vi(x, S`)

)
+ . . .

+

(
inf

x∈I`−1

vi(x, S`−1)− inf
x∈I`−1

vi(x, S`)

− inf
x∈I`

vi(x, S`−1) + inf
x∈I`

vi(x, S`)

)
Again inequality (1) applied to each term in brackets concludes the proof.

Remark B.1. If all valuation functions are continuous, this is the unique payment rule to make
the mechanism truthful up to the additive constant (as a function of b−i) to all possible payments of
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i. Since we assume pi = 0 if i is not in the winner set, then the payment is fixed as above in most
cases. However, if i wins even when bidding 0 for some fixed b−i then one can reduce the payment
by a fixed number in [0, vi(0, S1)] for all payments of i.

Corollary B.1. If valuation functions are additive, i.e. for each i there is exactly one equivalence
class for =i, the monotonicity condition only by itself suffices for an allocation rule to be truthfully
implementable.

Remark B.2. Marginal monotonicity is a crucial property for our fairly simple characterization.
For example if the valuation functions are of the form vi(ti, S) = min(C, tiwi(S)) one can find a
truthful mechanism with A(b−i, x) = S1, A(b−i, y) = S2 and A(b−i, z) = S1 for x < y < z. The
latter example seems to be quite natural if an agent has a budget constraint and scalar valuation
function. That leads us to an interesting question to characterize all truthful mechanisms in our
model for broader class of valuation functions.

C A Better Mechanism for Additive Valuations

Theorem C.1. Given any α-completive truthful mechanism M0 for unlimited supply auctions
without externalities, one may give a 2(1 + α)-competitive truthful mechanism for markets with an
additive valuation w.r.t. benchmark F (2).

Proof. We use the following mechanism

Mechanism-2

1. At probability 1
1+α give goods to everyone, charge each agent i price wi([n]).

2. At probability α
1+α, run allocation algorithm A0 of M0 on bid vector t;

charge threshold payments according to Theorem 4.1.

Let F̃ (2) denote the benchmark’s revenue for the same vector of bids if we forget the external additive
part of each valuation. From figure 1, we can bound the F (2) as F (2) ≤ 2F̃ (2) + 2

∑
i vi([n]).

Our mechanism can get the expected revenue as at least

1

1 + α

∑
i

vi([n]) +
α

1 + α
· 1

α
· F̃ (2) ≥ 1

2(1 + α)
F (2).

Remark: For this competitive ratio, we do not need the property that the functions vi(S) are
sub-additive. We only need the property that it is monotone.

D Possible Extensions

Claim 2. If making a copy of the good has a fixed cost for seller, then the competitive ratio may
be unbounded.
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k
2

t1
t2

tk

c

≤ F̃(2)

≤
∑

i vi([n])
F(2) = kc

Figure 1: Sort k winning agents of F (2) according to their interests. Two shaded rectangles cover
at least half of F (2) aria. Note, that we include in the rectangle corresponding to F̃ (2) at least
bk2c+ 1 ≥ 2 agents.

Proof. Let us consider the instance with n bidders: vi(ti, S) = |S| ∗ ti for each i ∈ S ⊂ [n], (n > 3).
We let the price for making a copy be n and the vector of true interests t(ε) be ti = 1 + ε, where
0 < ε < 1

n−1 . Let us notice that any truthful mechanism may extract a positive revenue on that

vector only when all bidders get into the winning set. The revenue of F (3) at the best uniform price
n(1 + ε) will be n2ε = n2(1 + ε) − n2 also with all agents being in the winning set. This revenue
is the maximum that any truthful mechanism could get on t(ε). Now let us assume that there is a
distribution D over truthful mechanisms and that distribution is L-competitive for some constant
L. Any truthful mechanisms allocating the good to [n] for a t(ε0) according to our characterization
should also allocate goods to [n] on any t(ε) with ε0 < ε. Thus, for each truthful mechanism M
we may consider the infinum of ε such that M allocates goods to [n] on t(ε). We denote as Dε
the mechanisms in D with such infinum laying in [ ε2L , ε]. Note that each truthful mechanism in
D \Dε either allocates goods not to [n] on t(ε) and, therefore, achieves negative or zero revenue, or
allocates goods to [n] even on t( ε

2L) and, thus, on t(ε) gets the revenue to be not more than n2 ε
2L .

Hence, rewriting the condition of L-competitiveness on t(ε) we obtain

n2ε · prob(Dε|D) +
n2ε

2L
· (1− prob(Dε|D)) ≥ 1

L
· n2ε.

Then prob(Dε|D) ≥ 1
2L−1 for any ε ∈ (0, 1

n−1). Taking ε from { 1n ,
1

3Ln ,
1

(3L)2n
, . . .} we get

infinitely many disjoint sets Dε with prob(Dε|D) ≥ 1
2L−1 and arrive at a contradiction.

Claim 3. Let vi(ti, S) = ti ·|S|, ∀i ∈ [n], S ⊂ [n]. Then there is no universally truthful competitive
mechanism w.r.t. F (k) for any fixed k.

Proof. Let’s assume the contrary that there is a distribution D of deterministic truthful mechanisms
with constant competitive ratio w.r.t. F (k). Let M = (A,P) be a mechanism in this distribution.
Clearly, to describe A it suffices to specify only the size of winning set for every bid. We may
consider a bid vector b0 = (t01, . . . , t

0
n) such that A outputs a set S0 of maximal possible size. Note

that by individual rationality the payment of each agent i should not be larger than t0i · |S|. Now
if agent i has true type ti greater than n · t0i , while others bid b0

−i, then A should output a set S
of the same size as S0. Indeed, by truthfulness we have

ti|S| ≥ ui(ti, ti) ≥ ui(ti, t0i ) = ti|S0| − Pi(b0) ≥ ti|S0| − t0i · n.
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Therefore, ti > n · t0i ≥ ti(|S0| − |S|) and hence |S0| = |S|. By similar argument we get that for
any b = (t1, . . . , tn), with ti ≥ n · t0i , allocation rule A should output the set of the maximal size.
As all outcomes are the same for b > nb0 = (nt01, . . . , nt

0
n), we may also write an upper bound n2t0i

on the payment of each agent i on every such bid b.
The revenue of F (k) on each bid (t, . . . , t) is tn2. Let’s take sufficiently large t, such that at

least (1 − ε) fraction of mechanisms in D output the largest possible set on every bid vector
b ≥ ( t

n2 , . . . ,
t
n2 ). Then for the bid (t, . . . , t) the total payment of this (1− ε) fraction should be not

more than n2 t
n2 = t. Thus the total expected revenue of D is smaller than or equal to εn2t+(1−ε)t,

while revenue of F (k) is n2t. Therefore, the competitive ratio is not more than

n2tε+ (1− ε)t
n2t

= ε+
(1− ε)
n2

.

Taking ε sufficiently small and n sufficiently large we come to a contradiction.
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