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Abstract

In this paper we introduce and study the daycare assignment problem. We take
the mechanism design approach to the problem of assigning children of di¤erent ages
to daycares, motivated by the mechanism currently in place in Denmark. The daycare
assignment problem is characterized by an overlapping generations structure, which
distinguishes it from the school choice problem. For example, children of di¤erent
ages may be allocated to the same daycare, and the same child may be allocated to
di¤erent daycares across time. Moreover, the daycares�priorities are history-dependent:
a daycare gives priority to children currently enrolled in it, as is the case with the Danish
system.
First, we study the concept of stability, and, to account for the dynamic nature of

the problem, we propose a novel solution concept, which we call strong stability. With
a suitable restriction on the priority orderings of schools, we show that strong stability
and the weaker concept of static stability will coincide. We then extend the well
known Gale-Shapley deferred acceptance algorithm for dynamic problems and show
that it yields a matching that satis�es strong stability. It is not Pareto dominated
by any other matching, and, if there is an e¢ cient stable matching, it must be the
Gale-Shapley one. However, contrary to static problems, it does not necessarily Pareto
dominate all other strongly stable mechanisms. Most importantly, we show that the
Gale-Shapley algorithm is not strategy-proof. In fact, one of our main results is a
much stronger impossibility result: For the class of dynamic matching problems that
we study, there are no algorithms that satisfy strategy-proofness and strong stability.
Second, we show that the also well known Top Trading Cycles algorithm is neither

Pareto e¢ cient nor strategy-proof.
We conclude by proposing a variation of the serial dictatorship, which is strategy-

proof and e¢ cient.
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1 Introduction

In this paper, we study the problem of assigning children to daycares using the mechanism

design approach. This problem is motivated by the current Danish system of allocating

children to daycares.

The daycare assignment problem has two de�ning features which are present in the Danish

system. First, it has an overlapping generations (OLG) structure: each child may attend

daycare for several periods, but not necessarily the same one. Moreover, in any given period,

children of di¤erent ages may be allocated to the same daycare. In Denmark, the children

of varying ages from 6 months to 3 years attend a same daycare. Every month a group of

young children start daycare while the children who turn 3 years leave for the next level of

pre-schooling. The current Danish system allows children to move between daycares as long

as the desired school has an opening. The second de�ning feature of the daycare assignment

problem is that the schools�priorities are history dependent: in Denmark, a school gives

priority to children previously allocated to that same school and to children not allocated to

any school in the previous period.

This problem of assigning children to daycares is of a great practical importance for two

reasons. First, in Denmark, overwhelming majority of parents rely on pre-schools � operated

and heavily subsidized by local municipalities � to take care of their child/children. This is,

perhaps, a consequence of the fact that the Danish welfare state is based on a very high tax

rate combined with subsidy schemes for high-quality welfare services (including child care).

Because of the high tax rate, families usually need two incomes. As a result, even relatively

a uent parents have to return to work within a rather short period of time after a child�s

birth.

Second, there is an emerging literature that reveals the high return to investments in early

childhood development. This research contends that high-quality programs focused on birth

to age 5 produces a higher per-dollar return than K-12 schooling and later job training in

the United States (Cunha, Heckman and Schennach (2010) and Cunha, Heckman, Lochner,

and Masterov (2006)). The many bene�ts of quality early childhood education are to reduce

the need for special education and remediation, and to cut juvenile delinquency, teenage
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pregnancy and dropout rates. Therefore, the pre-school a child attends arguably a¤ects an

important role in the child�s future.

The mechanism design approach has been extensively studied in the context of the school

choice problem, in which children of a speci�c age are assigned to schools.1 One of the main

objectives in this literature has been to identify mechanisms that satisfy one or more well

de�ned positive properties, such as Pareto e¢ ciency, strategy-proofness, or stability (which

has been referred to as �justi�ed envy� in the context of the school choice problem). In

this paper, we extend the above mentioned concepts to our daycare assignment problem and

study whether these concepts are compatible with one another.

In our setting, the concept of stability, or justi�ed envy, must be strengthened when used

in a dynamic environment to be meaningful. The main intuition here is that justi�ed envy is

harder to de�ne because the priorities of each school depend on the allocation in the previous

year. For example, a child who stays home in period t might have a higher priority in her

preferred daycare in period t + 1 (in particular, this is true under the current assignment

mechanism in place in Denmark). Thus, in the discussion of the concept of justi�ed envy

for period t + 1 , it is not clear whether the allocation to which it should be analyzed is the

one in t or the one in t + 1 .

In the paper, we develop the concept of stability in the dynamic context, which we call

strong stability. We show that there does not exist an algorithm that satis�es strong stability

for all priority orderings and all preference pro�les. However, if we impose a restriction on

the priority orderings of schools, namely that priority is independent of the other schools�

assignment of previous periods, then a strongly stable matching exists. To �nd such a

matching, one can treat the daycare assignment problem as separate school choice problems

in di¤erent periods and �nd stable matchings in each period, sequentially starting from

period 0. Consequently, the well known Gale-Shapley deferred acceptance algorithm satis�es

strong stability. We show that is not Pareto dominated by any other mechanism that satisfy

strong stability, and, if there exists an e¢ cient and strongly stable matching, it must be the

Gale-Shapley one.

However, contrary to the results in static two-sided matching problems, we show that the

Gale-Shapley deferred acceptance algorithm is not strategy-proof for the class of problems

that we look at.
1See [5] for an important paper in the area, and also [13] for a recent survey.
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We then prove our �rst impossibility result for this class of problems: there does not

exists a mechanism that is both strategy-proof and strongly stable.

Strategy-proofness, in fact, is more di¢ cult to achieve in the dynamic environment that

we consider. Here, there are two reasons for why a player may misreport her own true

preferences: �rst, she may be afraid of losing a spot at a higher ranked school � this motive

is also present in static problems; second, and most importantly, each child may misreport

its own preferences so as to a¤ect the priority rankings of schools in the following period.

We will show in this paper that this second motive is indeed very strong and is the driving

force of some of our results: specially that neither the Gale-Shapley deferred acceptance

algorithm nor the Top Trading Cycles, both commonly used in the school choice problem,

will be strategy-proof. In addition, note that if an assignment algorithm in place is not

strategy-proof, then computing the optimal strategy for the parents is substantially more

complicated in a dynamic problem than it is in a static one.

In this paper, we will most often consider the case in which the priorities of schools are

only history dependent in a rather weak sense: the priority ranking of each school will only

change for children that were previously allocated to it. For all other children, the priorities

will remain the same. We denote this condition by independence of previous assignment.

Moreover, we will often consider a restriction on preferences, which we call independence.

This restriction implies that preferences over schools are somehow stable � there are no

complementarities, for example. Even with only this weak link between periods, the problem

becomes substantially di¤erent to the static case, leading to the negative results mentioned

in the two previous paragraphs.

Given the �rst impossibility result, we then look for mechanisms that are strategy-proof

and e¢ cient. We �nd that the top trading cycles mechanism is not necessarily e¢ cient, and

is not strategy-proof. Even a variation of this algorithm, which we call top trading cycles

by cohort is also not strategy-proof. We then conclude by showing a version of the serial

dictator mechanism, which is e¢ cient and strategy-proof.

Since the work of Abdulkadiroglu and Sonmez [5], mechanism design has been used by

many researchers to design new algorithms for the assignment of children to schools. This

literature has shown that some of the systems currently in place have many shortcomings,

and new systems that overcome some of these problems have been proposed. These new

mechanisms have been adopted recently in Boston and New York school systems and the
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early evidence suggests that these mechanisms are an improvement over the previous systems.

This form of market design and intervention, by proposing algorithms that improve on the

current system by overcoming shortcomings of the algorithms currently in place, has been

quite successful in terms of outcomes of reassigned children. See Abdulkadiroglu, Pathak, and

Roth [1] and Abdulkadiroglu, Pathak, Roth, and Sönmez [2] for a discussion of the practical

considerations in the student assignment mechanisms in New York City and Boston.

The structure of this paper is as follows. In section 2, we present a short description of

the daycare system currently in place in Denmark. In section 3, we describe the model in

detail. In section 4, we study stable matchings and their properties. In section 5, we prove

that strong stability and strategy-proofness are not always compatible. In section 6, we show

that e¢ ciency and strategy-proofness are always compatible. In section 7, we provide a brief

conclusion. Longer proofs are collected in the appendix.

2 The Danish Daycare System

Denmark is divided into 5 regions and 98 municipalities. The municipalities are responsible

for the cost and operation of daycare institutions: they select their assignment mechanism

and then oversee the implementation of the mechanism. Daycare institutions are directed

at preschool children from the ages of 6 months to 6 years. The day-care institutions con-

sists of �Vuggestuer�day nursery (child-minding with children ages 6 months to 3 years),

�Børnehaver�(pre-schools with children 3 years to 6 years) and �Integrerede institutioner�

age-integrated institutions (daycare for children ages 6 months to 6 years combined in one

institution). The daycares are generally of high quality and most parents use these services.

In 2004, 94% of all 3 to 6-year-old children were enrolled in a centre-based early childhood

care or education centre. Vuggestues are also used by the majority of parents.

The local municipalities use slightly di¤erent mechanisms. In the appendix we include an

English translation extract from the assignment algorithm currently in place in the Aarhus

Municipality.

Below we highlight the main features of the Aarhus mechanism, which are common across

most municipalities, including Copenhagen.

1. Children of varying ages from 6 months to 3 years can go to same daycare;

2. The assignment algorithm runs once a month;
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3. Even if a child has a spot in some daycare she can participate in the assignment

algorithm;

4. Children currently allocated to a daycare, will not be displaced from the daycare in-

voluntarily;

5. Each daycare gives higher priority to children who do not have a spot at any daycare

over the children who have one in any daycare except the original one � this is called

a �guaranteed spot�.

In the next section, we construct a simple model that captures the above mentioned

features of the Danish system.

3 Model

Time is discrete and t = �1; 0; � � � ;1. There are a �nite number of in�nitely lived

schools/daycares. Let S = fs1; � � � ; smg be the set of schools. Each school s 2 S has a
maximal capacity rs which we assume is constant. There is an age limit for children to

attend school. We assume that children can start schooling at age 1 and move to the next

level of schooling at age 3. Consequently, children can attend school when they are 1 and

2 years old. School attendance is not mandatory. Let h stand for the option of staying

home. Let �S = S [ fhg. For technical convenience, we treat h as a school with unbounded
capacity. In each period t, there is a new set of children It = f1; � � � ; ntg who are 1 year old.
Consequently, at any period t the set of school-age children is It�1 [ It. As time passes the
set of school-age children evolves in the �overlapping generations�(OLG) fashion. The set

of all children is I = [tIt.
First, we extend the de�nition of matching to a dynamic context. For the static problem,

matching maps the set of children to the set of schools. Here, matching is a collection of

functions that map the school-age children to the set of schools.

De�nition 1 (Matching). A matching � is a collection of functions � = (��1; �0; � � � ; �t; � � � )
where �t : It [ It�1 � �S ! f0; 1g such that

1. For all i 2 It�1 [ It,
P

s2 �S �
t(i; s) = 1;

2. For all s 2 S,
P

i2It�1[It �
t(i; s) � rs:
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We refer to �t as the period t matching.

If child i is placed at school s in period t, then �t(i; s) = 1. Requirement (1) above says

that each child is placed at one school, while requirement (2) says that each school cannot

house more children than its capacity. We assume that at time t = �1 the matching is
exogenously given (for example, it may be that these initial children stay at home in their

�rst year). In other words, each matching we consider has a common period -1 matching.

With slight abuse of notation, �t(i) denotes the school at which child i is placed under

�t, i.e., �t(i) = s whenever �t(i; s) = 1, for each i 2 It�1 [ It: Similarly, �t(s) denotes the set
of children who are placed at school s under �t, i.e., �t(s) = fi 2 It�1 [ It : �t(i; s) = 1g.
Each child is characterized by a strict preference ordering �i over �S2. The notation (s; s0)

corresponds to the allocation in which a child is placed at school s at age 1 and at school s0

at age 2. Throughout the paper, we maintain the following assumptions on preferences:

Assumption 1 (Preferences).

1. (No complementarities) If (s; s) �i (s0; s0) for some s; s0 2 �S and i 2 I, then (s; s) �i
(s; s0) and (s; s) �i (s0; s).

2. (Weak Independence) If (s; s) �i (s0; s0) for some s; s0 2 �S and i 2 I, then (s; s00) �i
(s0; s00) and (s00; s) �i (s00; s0) for any s00 6= s0. On the other hand, (s; s00) �i (s0; s00) or
(s00; s) �i (s00; s0) for some s 6= s00 2 �S and s0 2 �S implies that (s; s) �i (s0; s0).

Assumption 1 has two direct implications. The �rst condition and the strictness of

preferences yield that for any s; s0 2 �S and i, at least one of the following conditions is

satis�ed

(i) (s; s) �i (s; s0) and (s; s) �i (s0; s); or

(ii) (s0; s0) �i (s; s0) and (s0; s0) �i (s0; s):

Moreover, the two conditions above may be satis�ed at the same time. This would be the

case, for example, if a child incurs a large enough cost (not necessarily monetary) from

changing schools.

A second implication is the following. Suppose that for some s and s1 6= s0 6= s2,

(s; s) �i (s1; s1) and (s0; s0) �i (s2; s2). Then we must have that (s; s0) �i (s1; s2). To see
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this, note that from assumption 1, we have that (s; s0) �i (s1; s0) and (s1; s0) �i (s1; s2) as
s1 6= s0 6= s2. Consequently, (s; s0) �i (s1; s0) �i (s1; s2).
In this paper, we often consider a stronger version of the weak independence assumption

which we call independence. Recall that if child�s preferences satisfy weak independence,

then whenever attending school s in both periods is preferred to attending school s0 in both

periods, attending s and a third school s00 must be better than attending s0 and s00. However,

weak independence does not rule out the possibility that the child prefers attending school

s0 in both periods to attending s in one period and s0 in the other. Independence, however,

rules out this possibility.

De�nition 2 (Independence). Child i�s preferences satisfy Independence if, for any s; s0 2 �S

(s; s) �i (s0; s0)() (s; s00) �i (s0; s00) and (s00; s) �i (s00; s0) for all s00 2 �S:

When de�ning the preferences, we are following a more general axiomatic approach.

Before proceeding further, let us give an example that illustrates a more parametric approach.

Example 1. Suppose that by attending school s for one period, child i bene�ts bi(s) > 0

which does not depend on the child�s age. Each child has a time discount of �. Moreover,

child i incurs a cost of ci > 0 only from the school to school change at age 2, i.e., the cost of

any home to school change is 0. Finally, the utility of child i attending schools s and s0 at

her respective ages of 1 and 2 is

Ui(s; s
0) =

(
bi(s) + �bi(s

0)� ci if s 6= s0 and s 6= h
bi(s) + �bi(s

0) otherwise

Clearly, the underlying preferences for the children satisfy assumption 1 and furthermore,

they satisfy independence if the cost ci of school to school change is su¢ ciently small. �

At any time t � 0, each school ranks all the school-age children by priority. Priorities

do not represent school preferences but rather, they are imposed by local municipality. For

example, in the existing assignment mechanism in Denmark, all schools give priority to

their currently enrolled children. Similarly, the children with special needs are given higher

priority by the schools tailored to meet those needs. In practice, the children�s age a¤ect the

schools�priorities. Usually, older children are given priority.

Henceforth, we assume that each institution gives the highest priority to its currently
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enrolled children, which is a feature of the assignment mechanism currently in place in

Denmark. A rationale behind this priority is that no school forces its current enrollee out in

order to free a spot for some other child. Because of this assumption, the priority ranking

of each school is history dependent, i.e., a school�s priority ranking depends on its attendees

of the previous period.

The schools�priorities over the children must be carefully de�ned. As we noted previously,

the children currently enrolled at a school have priority over outsiders at that same school.

We will denote the strict, binary relation which generates the priority ranking of school s

at period t by Bts(�t�1): That is, if at period t child i has a higher priority than child j at
school s given the period t� 1 matching �t�1, then we denote iBts (�t�1) j.
We impose the following assumptions on the priority rankings of the schools, which

implies that they are Markovian with previous period�s matching as the state variable.

Assumption 2 (Priority Orderings of Schools). Each school�s priority ranking satis�es the

following conditions:

1. (Priority for currently enrolled children) If i 2 It�1 and i 2 �t�1(s) for some s 2 S,
then iBts (�t�1)j for all j =2 �t�1(s):

2. (Weak consistency of di¤erent period rankings) If i Bt�1s (�t�2)j for some i; j 2 It�1,
s 2 S and �, then iBts (�t�1) j in any of the following cases:

� �t�1(i) = �t�1(j) = s

� �t�1(i) = s; h and �t�1(j) = h

� �t�1(j) 6= s; h

3. (Weak irrelevance of previous assignment) If i Bts (�t�1)j for some i; j 2 It�1, s 2 S,
and � with �t�1(i) 6= s; h and �t�1(j) 6= s; h, then iBts (��t�1) j for any �� satisfying one
of the following conditions.

� ��t�1(i) = ��t�1(j) = s

� ��t�1(i) = s; h and ��t�1(j) = h

� ��t�1(j) 6= s; h
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4. (Weak irrelevance of di¤erence in age) If iBts (�t�1)j for some i 2 It�1, j 2 It, s 2 S,
and � with �t�1(i) 6= s; h, then i Bts (��t�1) j for all ��. In addition, if j Bts (�t�1)i for
some i 2 It�1, j 2 It, s 2 S, and � with �t�1(i) 6= s; h, then j Bts (��t�1) i for all �� with
��t�1(i) 6= s; h.

Loosely speaking, the last three assumptions mean that the priority ranking of any school

does not depend on the attendees of other schools (excluding staying home). Speci�cally,

the second one says that if child i has higher priority than child j at school s in period t� 1,
then child i keeps her advantage over child j in the following period unless child j attends

school s (h) while child i does not attend s (s or h). The third one says that at any period,

school s�s relative ranking of any two children is not a¤ected by the fact that one child has

attended school s0 6= s and the other s00 6= s. The fourth assumption says that at any period
school s�s relative ranking of any two children is not a¤ected by the fact that one child has

attended school s0 6= s at period t � 1 while the other is one year old at period t. Here we
remark that assumption 2 does not rule out the possibility that a school s gives priorities to

the children who have not attended any school over the ones who have attended some school

other than s in the previous period. This possibility is ruled out if the priority rankings of

the schools satisfy the Independence of Past Attendance (IPA) property. We sometimes will

concentrate exclusively on the cases in which IPA is satis�ed. Now let us present the formal

de�nition below.

De�nition 3 (Independence of Past Attendance). The priority ranking of a school satis�es

the Independence of Past Attendance (IPA) property if

1. (Consistency of di¤erent period rankings) If i Bt�1s (�t�2)j for some i; j 2 It�1, s 2 S
and �, then iBts (�t�1) j in any of the following cases:

� �t�1(i) = �t�1(j) = s

� �t�1(j) 6= s

2. (Irrelevance of previous assignment) If i Bts (�t�1)j for some i; j 2 It�1, s 2 S, and
� with �t�1(i) 6= s and �t�1(j) 6= s, then i Bts (��t�1) j for any �� satisfying one of the
following conditions.

� ��t�1(i) = ��t�1(j) = s
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� ��t�1(j) 6= s

3. (Irrelevance of di¤erence in age) If i Bts (�t�1)j for some i 2 It�1, j 2 It, s 2 S, and
� with �t�1(i) 6= s, then i Bts (��t�1) j for all ��. In addition, if j Bts (�t�1)i for some
i 2 It�1, j 2 It, s 2 S, and � with �t�1(i) 6= s; h, then j Bts (��t�1) i for all �� with
��t�1(i) 6= s.

In practice, IPA is often not satis�ed: many schools give priority to two year old children

who have not attended any school in the previous period over one year old children and

the two year old children who have attended school in the previous period. In particular,

given a concept called �guaranteed spots,�IPA is not satis�ed in the current Danish daycare

assignment mechanism, but assumption 2 is satis�ed.

Remark 1. The school choice problem is a special case of the daycare assignment problem.

To see this, suppose that the set of children consists of only children who are one year old at

period �1 and let every child stay home when they are one. The schools�priorities are well
de�ned at period 0. In addition, the children rank the schools at period 0 �xing that their

period �1 matches are h. Now one can see that this special case of our daycare assignment
problem is a school choice problem.

Remark 2. The OLG structure of the daycare assignment problem is one of its distinguishing

features from the school choice problem. To be speci�c, thanks to the OLG structure, schools

could have di¤erent number of open slots in di¤erent periods. Hence, a child may face a

situation in which her preferred school does not have open slot when she is one but does have

one when she is two. This type of possibility must a¤ect the child�s decision. To illustrate why

the OLG structure is crucial, let us consider the following dynamic model. Let the children

be born at the same time and attend school for two periods. Given assumption 1, the children

can rank schools by their preferences under the assumption that they will attend the same

school in both periods. We can treat the problem as a static problem in which each child is

assigned to a same school in both periods. Consequently, all the results from the school choice

problem will be valid.

We also remark that the history dependence of the schools�priorities plays a crucial role

in our analysis. However, let us postpone this discussion until we study strategy-proofness.
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3.1 Properties of a Matching

The matching literature has identi�ed Pareto e¢ ciency and stability as the two main desir-

able properties. The main goal of this subsection is to adapt these concepts to our daycare

assignment problem.

Extending the concept of Pareto e¢ ciency to our setting is straightforward. The main

reason is the following: for Pareto e¢ ciency, one considers only the well-beings of one side of

the market, namely the children. In addition, children�s preferences are exogenously de�ned

and they are not history dependent. Hence, the de�nition of Pareto e¢ ciency in our setting

coincides with the one in the school assignment problem: a matching � is Pareto e¢ cient if

no other matching strictly improves at least one child without hurting the others. We state

the formal de�nition below.

De�nition 4 (Pareto E¢ ciency). A matching �� Pareto dominates � if for some t � 0 and
some i 2 I, (��t (i) ; ��t+1 (i)) �i (�t (i) ; �t+1 (i)) and for 8j 2 I, either (��t (j) ; ��t+1 (j)) =
(�t (j) ; �t+1 (j)) or (��t (j) ; ��t+1 (j)) �j (�t (j) ; �t+1 (j)). A matching � is Pareto e¢ cient if
there exists no matching �� that Pareto dominates �.

Adapting the de�nition of stable matching in our setting is not straightforward. As [5]

points out, already in static settings, one has to be careful in interpreting stable matchings

for the school choice problem. To be speci�c, in the context of college admissions, under

a stable matching no college-student pair should be able to improve themselves. However,

in the context of school choice, the schools have priorities but not preferences, thus, it is

unclear how a school can improve itself. Thus, [5] suggests to interpret stable matchings

as the ones free of justi�ed envy. That is, under a stable matching, if a child likes another

school better than her current match, then this school should not assign a seat to any child

who has a lower priority than the child. In this case, no child can justify her desire to change

her current match with some other school.

We construct two stability concepts based on the idea of justi�ed envy freeness. The

dynamic nature of our setting presents some challenges that are absent in the school choice

problem. However, before spelling them out, let us �rst de�ne the weak stability concept

that we perceive as an analog of the stability concept in the school choice problem.

Whether a matching is weakly stable depends on whether some child can justify her envy

of another child at some period. In other words, at some period t, child i justi�es her envy of
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child j if child i would improve by moving to school s only at t while keeping her past/future

match the same and in addition, s assigns a seat to child j even though the school ranks

child j lower than i. If a matching is free of this type of justi�ed envy, then the matching

is weakly stable. In a way, for weak stability, we are analyzing the problem at �xed period

t, assuming that the matching of every other period t0 6= t is �xed. In this sense, the weak
stability concept is analogous to the stability concept in the school choice problem.

De�nition 5 (Weak Stability). A matching � is weakly stable if at any period t, there does

not exist a school-child pair (s; i) such that (1) and (2) below hold at the same time

1. (a) (s; �t+1(i)) �i (�t(i); �t+1(i)); or

(b) (�t�1(i); s) �i (�t�1(i); �t(i));

2. j�t(s)j < rs or/and iBts (�t�1)j for some j 2 �t(s):

Condition (1) above refers to the fact that child i would be strictly better o¤by switching

to some school s rather than the school speci�ed by the matching �. On top of that, condition

(2) implies that either there are un�lled spots at the preferred school s of child i, or the school

is in full capacity but some child j placed at this school under the matching � has lower

priority than child i.

In the de�nition of weak stability, one considers only the one period deviations which

has two shortcomings: (1) because the children can attend school for two periods, a child

can imagine situations in which she changes her match in both periods and (2) the schools�

priorities, which have to be considered for stability, evolve depending on the past matchings.

These shortcomings are magni�ed if independence or IPA is not satis�ed. To illustrate this

point, we consider the following two examples.

Example 2 (Justi�ed Envy under Failure of Independence). Consider a matching that places

child i at school s0 when she is both 1 and 2 years old. However, there is another school s

such that child i improves only if she switches to school s in both periods. Observe that child

i�s preferences do not satisfy independence. Moreover, suppose that when child i is 1 year

old, she is placed in school s�s priority ranking higher than another child i0 who is placed

at school s at that time. With this information, we cannot rule out the possibility that the

matching is weakly stable. The reason behind this is that child i prefers attending s0 for 2

periods to attending school s when she is 1 and s0 when she is 2.
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However, one can reasonably argue that child i�s envy of child i0 is justi�ed because she

has a right to attend school s ahead of child i0 at age 1. Then, in the following period, she

will be in the highest priority group at school s. This gives her a right to attend school s

when she is 2. �

Example 3 (Justi�ed Envy under Failure of IPA). Suppose there are 2 schools: s and s0.

School s has a capacity of 1 child while school s0 has a capacity of 2 children. Child i and

child i0 are born at the same period. Both children�s preferences satisfy the following property:

(s; s) � (s0; s) � (h; s) � (s0; s0). Suppose that school s gives higher priority to child i than i0

at period t when the children are 1 year old. However, i0 is given higher priority over child

i by school s at period t + 1 if at period t, i0 does not attend any school while i attends s0.

Observe that school s�s priority ranking does not satisfy IPA.

Consider a matching which places both children at school s0 in period t but places child i

at school s and child i0 at school s0 in period t + 1. Implicitly, the period t spot of school s

is assigned to some other child who has higher priority at school s over both children. With

this information only, we cannot prove that the matching is not weakly stable.

However, one can argue that child i0 envies child i in a justi�ed manner: if she is stays

home at period t and attends school s at period t+ 1, then she would de�nitely improve. In

addition, she would have been ranked ahead of child i in the priority ranking of school s at

period t+ 1. �

To account for the issues raised by the examples above, we will de�ne a stronger concept

of stability. First, we need the following notation: for any i; j 2 It, s 2 �S and � such that

�(i) 6= �(j) and �(j) 2 S, let

�M t(i; j; �) =
�
��t : ��t(i) = �t(j)& ��t(j) 6= �t(j); & ��t(i0) = �t(i0)8 i0 6= i; j 2 It�1 [ It

	
:

That is, the set �M t(i; j; �) is a set of matchings at period t such that j is i replaced in

the allocation speci�ed by the matching �t, j is placed at a di¤erent school and all other

children�s placements remain unchanged. One may think of this as the set of all hypothetical

matchings at time t such that i replaces j who then �nds a school somewhere else � perhaps

home, or some other school � and all other children remain in the same school. Implicit

in the solution concept of strong stability and the construction of the set �M t(i; j; �) is the

assumption that children are not �farsighted.�Under this view, an allocation of a particular
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period is considered �unfair� (or subject to justi�ed envy) if the child takes the matching

of all other children at all other periods as given. In particular, when the child �feels�that

she has justi�ed envy over some child in a particular school, for the following period, she

imagines that this child over whom she had priority will either stay at home, or be placed

in some other school that will not a¤ect the next period�s matching and all other children

remain matched as originally. When evaluating that the matching � is subject to justi�ed

envy, the child does not evaluate the entire general equilibrium e¤ect of a new allocation

that would take into consideration her justi�ed envy and possibly everyone else�s.

De�nition 6 (Strong Stability). Matching � is strongly stable if it is weakly stable and at

any period t, there does not exist a triplet (s; s0; i) such that (s; s0) �i (�t(i); �t+1(i)) and one
of the following conditions hold:

1. j�t(s)j < rs and j�t+1(s0)j < rs0 ;

2. j�t(s)j < rs, j�t+1(s0)j = rs0, and, for some j0 2 �t+1(s0), i Bt+1s0 (��t)j0 where ��t is the

period t matching with ��t(i) = s and ��t(i0) = �t(i0) for all i0 6= i 2 It�1 [ It;

3. j�t(s)j = rs, j�t+1(s0)j < rs0, and, for some j 2 �t(s), iBts (�t�1)j;

4. j�t(s)j = rs, j�t+1(s0)j � rs0, for some j 2 �t(s), j0 2 �t+1(s0) and for any ��t 2
�M(i; j; �), iBts (�t�1)j and iBt+1s0 (��t)j0:2

We interpret justi�ed envy in the dynamic context as the existence of a pro�le of schools

for which a child prefers to its current match and such that in some �reasonable�way it

would be �fair� for her to go to the preferred schools. Speci�cally, a reasonable way may

mean one the four cases: (1) both of these schools have unassigned spots; (2) in the �rst

period a preferred school has an unassigned spot and in the second, the child has a higher

priority over another child allocated at a preferred school; (3) a preferred school in the second

period is operating with less than full capacity and in the �rst period the child is placed on

a higher priority than some other child already allocated there, and �nally (4) in the �rst

year the child has a higher priority than some other child in a particular school and in the

second year, the child has a higher priority than some other child even if there had been a

reallocation in the �rst period, in which she replaced some child in year 1, as long as in this

new allocation, all other children remained in the same school.

2Observe that �(j) 6= h as h has an unlimited capacity. Hence, M t(i; j; �) is well de�ned.
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Remark 3. Strong stability is a re�nement of weak stability and we believe that it is a natural

concept that captures the meaning of justi�ed envy in our setting. Yet we must remark that

the de�nition of strong stability is stronger than what examples 2 and 3 call for. In other

words, one can slightly weaken de�nition 6 so that a matching is strongly stable if it is weakly

stable and free of justi�ed envy discussed in examples 2 and 3. However, doing so does not

change any of the results in the next section. Given this, weakening the de�nition of strong

stability is not bene�cial from the technical perspective.

3.2 Mechanism and Its Properties

Let Pi denote the reported preference ordering of child i 2 I and P be the product of

the reported preferences of every child i. A mechanism ' is an algorithm that constructs,

sequentially, a matching for the daycare assignment problem, given the reported preferences

and the priority orderings. That is, mechanism ' maps the reported preferences P and

the function Bt (�) to a matching �. Recall that ��1 is �xed and exogenously given. Let
'i (P;Bt (�)) denote the pair of schools in which child i is placed. Strategy-proofness is de�ned
as an incentive for reporting the true preferences. Formally, reporting the true preferences

is a weakly dominant strategy for the children.

De�nition 7 (Strategy-Proofness). A mechanism ' is strategy-proof if for all i 2 I, all
Bt (�), all Pi, all t � 0; all P̂i, and all P̂�i;

'i

�
Pi; P̂�i;Bt (�)

�
�i 'i

�
P̂i; P̂�i;Bt (�)

�
OR'i

�
Pi; P̂�i;Bt (�)

�
= 'i

�
P̂i; P̂�i;Bt (�)

�
;

where Pi is i�s true preferences while P̂i and P̂�i are the reported preferences of i and the

others.

De�nition 8 (Stability and E¢ ciency). A mechanism ' is e¢ cient (strongly/weakly stable),

if for all P and Bt (�), it yields an e¢ cient (strongly/weakly stable) matching.

4 Stable Matchings and Their Properties

In this section, we assume that the planner knows the children�s preferences as well as the

schools�priorities. Although this is a strong assumption, given that our problem di¤ers from
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the school choice problem considerably, we should answer fundamental questions such as the

relation between the di¤erent stability concepts as well as the existence of stable matchings.

4.1 The Relation between Strong and Weak Stability

Now we will explore under what conditions, the concepts of weakly and strongly stable

matchings will coincide. From examples 2 and 3, one could conjecture that weakly and

strongly stable matchings may be equivalent if the children�s preferences satisfy Independence

and the schools�priority rankings satisfy IPA. Indeed this is the case, as we will show in the

next two lemmas.

Lemma 1. Suppose that all schools�preference rankings satisfy IPA. If � is weakly but not

strongly stable, then for some period t and some school-child pair (s; i),

1. �t(i) = �t+1(i);

2. (s; s) �i (�t(i); �t+1(i));

3. j�t(s)j < rs or/and iBts (�t�1)j for some j 2 �t(s):

The proof is in the appendix.

Next we show that the solution concept for the daycare assignment problem, the strong

stability, is in fact equivalent to the static concept of weak stability for a large class of prob-

lems. Precisely, if the children�s preferences satisfy Independence and the school�s priority

rankings satisfy IPA, the two concepts are equivalent.

Theorem 1 (Equivalence of Weak and Strong Stability). Suppose every child�s preferences

satisfy Independence and every school�s priority ranking satis�es IPA. Then matching � is

strongly stable if and only if it is weakly stable.

Proof. By de�nition, any strongly stable matching is weakly stable. Hence, we need to show

that any weakly stable matching is strongly stable. Suppose otherwise, i.e., there exists a

weakly stable matching � which is not strongly stable. By lemma 1, if � is weakly but not

strongly stable, then for some period t and some school-child pair (s; i),

1. �t(i) = �t+1(i);

2. (s; s) �i (�t(i); �t+1(i));
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3. j�t(s)j < rs or/and iBts (�t�1)j for some j 2 �t(s):

Clearly, (s; s) �i (�t(i); �t(i)). In addition, each child�s preferences satisfy Independence,
hence, (s; �t(i)) �i (�t(i); �t(i)). By combining this with the 3rd condition above, one

obtains that � is not weakly stable.

4.2 The Existence of Stable Matchings

Now we turn our attention to the question of whether strongly stable matchings exist. The

answer to this question is negative if the schools�priority rankings do not satisfy IPA.

Theorem 2. If the schools�priorities do not satisfy IPA, then the existence of strongly stable

matchings is not guaranteed.

Proof. We construct an example with no strongly stable matching in which IPA is violated.

Suppose there are 2 schools, fs; s0g. Schools s and s0 have capacities of 1 and 3, respectively.
In each period, there are two one-year old children who are identical in all aspects. Their

preferences satisfy the following property: (s; s) � (h; s) � (s0; s0) � (h; h). Moreover, the

children�s preferences satisfy independence.

At any period, the schools use the following priority ranking: (1) the previous period�s

attendees (2) two year old children who have not attended any school in the previous period.

(Note that condition (2) violates IPA).

1. Consider any matching with �t(i) = h for some i and t. There must be a unassigned

spot at one of the schools at period t. By assigning this spot to child i at t, one can

improve her. Thus, no such matching would satisfy strong stability.

2. Consider any matching with (�t(i); �t+1(i)) = (s; s0) for some i and t. Clearly, child i

has the highest priority at schools s in period t+ 1 and in addition, (s; s) � (s; s0) by
independence. Hence, child i can be improved in a justi�ed manner.

3. Consider any matching such that for i 2 It, �t+1(i) = s. Then one of the following

happens: (1) one of the one-year old children at t + 1 attends school s at t + 2 or (2)

none of the one-year old children at t+ 1 attends school s at time t+ 2. In the former

case, either we are back to case 1 or one of the one-year old children in t+ 1 matches

with (s0; s0). This child prefers (h; s) to (s0; s0). In addition, at t + 2 she has priority

over any one-year old or any two year old who attended s0 at t + 1 (recall that the
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other one year old at t+ 1 matches with (s0; s)). Hence, this child can be improved in

a justi�ed manner. In case (2), either we are back to case 1 or both children attend s0

at periods t+1 and t+2. Then each child prefers (h; s) to (s0; s0). In addition, at t+2,

each child has priority over any one year old at school s or school s has an unassigned

seat. Hence, either children can be improved in a justi�ed manner.

In the counter example used for the proof of theorem 2, the children�s preferences satisfy

independence. However, independence does not play any role for theorem 2, i.e., one can

construct an example needed for theorem 2 in which the children�s preferences do not satisfy

independence. Hence, we conclude that the existence of strongly stable matchings is not

guaranteed without IPA regardless of independence is satis�ed or not. But with IPA, is the

existence guaranteed? The answer to this question is positive but before we present the

formal result, let us introduce the algorithm used for the existence result.

4.2.1 The Gale-Shapley Deferred Acceptance Algorithm and Its Properties

The Gale and Shapley deferred acceptance algorithm (GS algorithm) was originally designed

to deal with static two-sided matching problems. To run this algorithm at certain period

t, one needs to know the schools�priority rankings over all school-age children as well as

the children�s preferences over schools. In the class of problems studied in this paper, the

schools�priority rankings are well de�ned given the previous period�s matching. However,

the children�s preferences are de�ned over the pairs of schools since each child can attend

di¤erent schools for two consecutive periods. Hence, to run the original GS mechanism, one

needs to derive one period preferences for each child at a given period, based on the past

matchings and the original preferences of the children over the pairs of schools; we do not

want to derive one period preferences based on the future matchings as the current matchings

a¤ect next period�s priority rankings of the schools.

For now, let us assume that at period t, we have derived the one period preference

relation Pi(�t�1) for each i 2 It�1 [ It depending on �t�1 matchings. Let P(�t�1) =
fPi(�t�1)gi2It�1[It. Thus, sPi(�

t�1)s0 means that at time t, player i prefers school s to

s0 given the period t� 1 matching �t�1. Note that this de�nition relies critically on the pre-
vious period�s matching (for example, there could be high switching costs for the children).
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With this concept of one-period preferences, we will de�ne stability in a static context that

will be used in some of our proofs.

De�nition 9 (Static Stability). Period t matching �t is statically stable under P(�t�1) and
�t�1, if there exists no school-child pair (s; i) such that

1. sPi(�t�1)�t(i);

2. j�t(s)j < rs or/and iBts (�t�1)j for some j 2 �t(s).

Now we will de�ne the one-period preferences that we will use for the GS algorithm.

De�nition 10 (Isolated Preference Relation). For given �t�1,

1. the isolated preference relation for i 2 It is the preference relation �1i such that s0 �1i s00

if and only if (s0; s0) �i (s00; s00) for any s0 6= s00 2 �S;

2. the isolated preference relation for i 2 It�1 is the preference relation �2i (�t�1) de-
pending on previous period�s matching and such that s0 �2i (�t�1)s00 if and only if
(�t�1(i); s0) �i (�t�1(i); s00) for any s0 6= s00 2 �S:

Here, we remark that for any child whose preferences satisfy independence, the isolated

preferences are independent of the previous period�s matching. Furthermore, the isolated

preferences for one year old child is identical to the ones for the two year old self of the same

child.

The Gale and Shapley deferred acceptance algorithm:

The algorithm is the same in each period, and it only uses the matching of the preceding

period. In period t � 1, assume that the previous period�s matching is obtained by using

the GS algorithm.3 At period t, the schools assign their spots to the all school-age children

in �nite rounds as follows:

Round 1: Each child proposes to her �rst choice according to her isolated preferences.

Each school tentatively assigns its spots to the proposers according to its priority ranking.

If the number of proposers to school s is greater than the number of available spots rs, then

the remaining proposers are rejected.

3Recall that period �1 matching is �xed.

20



In general, at:

Round k: Each child who was rejected in the previous round proposes to her next choice

according to her isolated preferences. Each school considers the pool of children who it had

been holding plus the current proposers. Then it tentatively assigns its spots to this pool of

children according to its priority ranking. The remaining proposers are rejected.

The algorithm terminates when no child proposal is rejected and each child is assigned

her �nal tentative assignment.

Given that the children�s preferences as well as schools�priority rankings are strict, it is

easy to see that the GS algorithm yields a unique matching. We refer to this matching as

the GS matching and use the notation �GS for it.

With the next result we show that when assuming IPA, strong stability is equivalent to

static stability under isolated preferences.

Lemma 2. Matching � is weakly stable if and only if for all t, �t is statically stable under

isolated preferences and �t�1. Furthermore, if each school�s preference rankings satisfy IPA,

then � is strongly stable if for all t, �t is statically stable under isolated preferences and �t�1.

Proof. See appendix.

Lemma 2 means that to �nd a strongly stable matching, it su¢ ces to �nd a stable

matching under isolated preferences in each period, sequentially starting from period 0.

In other words, for the purpose of �nding a stable matching, one can treat the daycare

assignment problem as separate school choice problems in di¤erent periods. Consequently,

the GS matching is strongly stable as [12] shows that the GS algorithm yields a stable

matching in a static setting. We state the result below.

Theorem 3. The GS matching is weakly stable. Furthermore, if the priority ranking of each

school satis�es IPA, then the GS matching is strongly stable.

As we already mentioned, examples 2 and 3 illustrate the need of strengthening the weak

stability concept into the strong stability one if independence or IPA is not satis�ed. However,

theorem 3 demonstrates that IPA is a su¢ cient condition for the existence of strongly stable

matchings even if independence is not satis�ed. In addition, theorem 2 shows that with or

without independence, the existence of strongly stable matchings is not guaranteed without
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IPA. In this sense, IPA is a more critical condition than independence for the existence of

strongly stable matchings. Perhaps, this is a good news from the policy maker�s perspective

in the sense that the policy maker can change the schools�priorities but not the children�s

preferences.

In static settings, one of the most signi�cant results is that the GS matching Pareto

dominates all other stable matchings.4 This result is no longer valid in our daycare assign-

ment problem. In fact, there could be multiple weakly/strongly stable matchings that do

not Pareto dominate one another. The following example illustrates this point.

Example 4. There are 3 schools fs; s1; s2g. All schools have a capacity of one child. There
is no school-age child until period t � 1. At period t � 1, only one child i is 1 year old. At
period t, there are 2 one-year old children fi1; i2g. At period t + 1, child i0 is 1 year old. If
children �{ 6= �{0 2 fi; i1; i2; i0g have not attended school �s = s; s1; s2 in the previous period,

then school �s ranks child �{ and child �{0 according to the following rankings.

i Bs i1 Bs i2 Bs i0

i Bs1 i0 Bs1 i2 Bs1 i1

i Bs2 i1 Bs2 i2 Bs2 i0

Each child�s preferences satisfy independence. Child i�s top choice is (s; s). The prefer-

ences of children i1, i2 and i0 satisfy the following conditions:

(s1; s1) �i1 (s2; s2) �i1 (s; s);

(s; s) �i2 (s2; s2) �i2 (s1; s1);

(s1; s1) �i0 (s2; s2) �i0 (s; s):

The GS matching � is as follows: �t�1(i) = �t(i) = s, �t(i1) = �t+1(i1) = s1, �t(i2) = s2,

�t+1(i2) = s, �t+1(i0) = s2 and �t+2(i0) = s1. Because the schools�priority rankings satisfy

IPA, thanks to theorem 3, we obtain that � is strongly stable.

Now let us consider the following matching ��: ��t�1(i) = ��t(i) = s, ��t(i1) = ��t+1(i1) = s2,

��t(i2) = s1, ��t+1(i2) = s, ��t+1(i0) = s1 and ��t+2(i0) = s1. It easy to check �� is strongly stable.

Now observe that matching � does not Pareto dominate matching �� because child i0 prefers

�� to �. In fact, �� is not Pareto dominated by any strongly stable matching. To see this,

observe that the only matching that Pareto dominates �� is the one in which children 1 and 2

4See [12].
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switch their matches in period t. But this is not strongly stable because child i1 has a justi�ed

envy of child i0 at t+ 1. �

First observe that in example 4 both IPA and independence are satis�ed. Hence, the

weakly and strongly stable matchings coincide. Hence, the example above shows that there

may exist mechanisms that produce strongly/weakly stable matchings not Pareto dominated

by the GS matching. This is the �rst main distinction between the matching produced by

the GS algorithm in the school choice problem versus the daycare assignment problem.

Given the importance of this result when compared to the static case, we state the result

below.

Theorem 4 (The GS matching does not necessarily Pareto dominate all stable matchings).

The GS matching does not necessarily Pareto dominate all weakly/strongly stable matchings.

In the light of example 4, one must explore whether any strongly stable matching Pareto

dominates the GS matching. This, indeed, is impossible which we show in the following

proposition.

Proposition 1 (The GSmatching is not Pareto dominated by any strongly stable matching).

If each school�s priority rankings satisfy IPA, then the GS matching is not Pareto dominated

by any other strongly stable matchings.

Sketch of the Proof. Here, we will only sketch the proof. The formal proof is in the appendix.

The proof is by contradiction: suppose that there exists a strongly stable matching �

that Pareto dominates the GS matching, �GS. We proceed in 3 steps.

First, we show that in the initial period it must be true that for all 2-year old children

the allocation in the two matchings must coincide. The main intuition is that the matching

produced by the GS algorithm must be statically stable and must Pareto dominate any

matching �0 that is statically stable, following a well known property of the GS mechanism.

Therefore, there does not exist a statically stable mechanism that Pareto dominates �GS and

improves the allocation of a 2-year old child in the �rst period.

For step 2, which is less straightforward, we show that the 1-year old children also cannot

be improved in their allocation. First, note that if the new Pareto dominant matching is

di¤erent than the GS matching in period 0 for children i 2 I0, then these children must
be �worse o¤�in period zero, only to be improved next period. Formally, �0GS(i) �1i �0(i),
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but (�1(i); �1(i)) �i (�1GS(i); �1GS(i)). The intuition is that child i must always be at least
as good in period 1 than she is at period 0, due to strong stability and the assumption

that currently allocated children have priorities on the second period. By lemma 2, we

know that �1 is statically stable under isolated preferences and �0. Now suppose we ran

the GS algorithm at period 1 under isolated preferences and �0. Let us denote the resulting

matching ��1. If ��1 is statically stable under isolated preferences and �0GS; then from lemma

2, we know that �1GS is a stable matching under isolated preferences and �
0
GS. In addition,

it must Pareto dominate ��1 in terms of the isolated preferences, since ��1 is statically stable

and �1GS must Pareto dominate all stable matchings (see [12]). From [12], we know that

if ��1(i) 6= �1(i), then ��1(i) �2i (�0)�1(i). Iterating assumption 1, we show in the formal
proof that: (��1(i); ��1(i)) �i (�1(i); �1(i)) and (�0GS(i); �1GS(i)) �i (�0(i); �1(i)). However,
recall that � Pareto dominates �GS. This is a contradiction. Thus, after showing that ��

1

is statically stable under isolated preferences and �0GS, which we show in the appendix, this

step of the proof is complete.

The �nal step of the proof is by induction: in period 1, use the same argument for children

i 2 I1, that we have used for children i 2 I0 in period 0, and similarly for any time period
t.

Theorem 3 shows that if the planner wants to eliminate the justi�ed envy, then she should

use the GS algorithm. In addition, as shown in proposition 1, the GS matching is not Pareto

dominated by any other strongly stable matchings. Hence, the GS algorithm is indeed one

of the most important algorithms in the daycare assignment problem.

Now we study if any strongly stable matching is e¢ cient. The next proposition yields

that unless one follows the GS algorithm, then any strongly stable matching is not e¢ cient.

Proposition 2. Suppose that the priority rankings of all schools satisfy IPA. Then any

strongly stable matching di¤erent from the GS matching is not e¢ cient.

Proof. Consider any strongly stable matching � with some period t matching that is di¤erent

from the one that the GS algorithm under isolated preferences and �t�1 yields. Consider

any i 2 It. Then �t(i) = �t+1(i) or (�t+1(i); �t+1(i)) �i (�t(i); �t(i)); otherwise, � is not
strongly stable because, in this case, child i would have the higher priority at school �t(i)

and (�t(i); �t(i)) �i (�t(i); �t+1(i)) by assumption 1.
For each child i 2 It�1 [ It, de�ne her preference relation to be P ti such that sP ti s0 if and

24



only if

(�t�1(i); s) �i (�t�1(i); s0) whenever i 2 It�1

(s; �t+1(i)) �i (s0; �t+1(i)) whenever i 2 It

Because � is strongly stable, there cannot exist any school-child pair (s; i) such that

1. (�t�1(i); s) �i (�t�1(i); �t(i)) or (s; �t+1(i)) �i (�t(i); �t+1(i));

2. j�t(s)j < rs or/and iBts (�t�1)j for some j 2 �t(s).

In terms of P, these conditions mean that there is no school-child pair (s; i) such that

1. sP ti�t(i);

2. j�t(s)j < rs or/and iBts (�t�1)j for some j 2 �t(s).

In other words, �t is a statically stable matching under P and �t�1.
Consider matching �� such that ��� = �� for all � 6= t but ��t is the resulting matching

from the GS algorithm under P and �t�1.
From [12], we know that ��t must Pareto dominate every other stable matching under

P and �t�1. This and that �t is a statically stable matching under P and �t�1 imply that

��t(i)Pi�t(i) for all i 2 It�1 [ It if ��t(i) 6= �t(i). Consequently, if ��t(i) 6= �t(i) for some

i 2 It�1, then (�t�1(i); ��t(i)) �i (�t�1(i); �t(i)). Similarly, if ��t(i) 6= �t(i) for some i 2 It
then (��t(i); �t+1(i)) �i (�t(i); �t+1(i)). Now consider �� and �. Clearly, �� Pareto dominates �
if ��t(i) 6= �t(i) for some i 2 It�1[ It. Hence, it must be that ��t(i) = �t(i) for all i 2 It�1[ It.
Consider �̂ such that �̂� = �� for all � 6= t but �̂t is the resulting matching from the

GS algorithm under isolated preferences and �̂t�1. Clearly, ��t�1 = �̂t�1, hence, the priority

rankings of the schools are the same under both �� and �̂. In addition, for each i 2 It�1, the
induced preference relation �2i (�t�1) is equivalent to P. Now consider any child i 2 It. Then
under P, the relative ranking of �t+1(i) weakly improves from the one under �1i . In all other
aspects, Pi and �2i (�t�1) are the same. Now recall that ��t(i) = �t(i) for all i 2 It�1 [ It. In
addition, recall that �t(i) = �t+1(i) or (�t+1(i); �t+1(i)) �i (�t(i); �t(i)). Therefore, under
both Pi and �2i (�t�1), the set of schools that are strictly preferred to �t(i) is the same.
Consequently, we obtain that under P and isolated preferences, for each i 2 I t�1 [ I t, the
set of schools that are strictly preferred to �t(i) is the same. In addition, because the GS

algorithm is used for both cases and ��t(i) = �t(i) for all i 2 It�1 [ It, it must be ��t = �̂t
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thanks to theorem 9 in [11]. Consequently, �t = �̂t, which contradicts that �t di¤ers from

the matching that the GS algorithm yields.

Proposition 2 means that if any strongly stable matching is e¢ cient, then it must be the

GS matching. However, from [15], it is well known that the GS matching (in static settings)

is not necessarily Pareto e¢ cient. This is still the case in our setting because the school

choice problem is a special case of our problem as we pointed out in Remark 1.

Henceforth, we will always assume that the children�s preferences satisfy Independence

and the schools�priorities satisfy IPA because these assumptions do not play any role in

the results we will present next. In other words, we are concentrating on the cases with a

minimal history dependence.

5 Strategy Proofness and Stability: Impossibility Re-

sult

It is well known that in static settings, when the GS mechanism is applied, reporting one�s

true preferences is a weakly dominant strategy. Hence, the mechanism is strategy-proof. In

this section, we explore if any mechanism is strategy-proof and strongly stable.

Even when independence and IPA are satis�ed, strategy-proofness is more di¢ cult to

achieve in the daycare assignment problem. In static problems, a child has a motive to

misreport her preferences only if she can obtain a better placement. This motive is also

present in the daycare assignment problem. To be speci�c, a child will misreport her pref-

erences if she can obtain a better placement in a period without hurting her placement in

the other period. But we know from the school choice literature that there are important

strategy-proof mechanisms such as the GS or Top Trading Cycles (TTC) algorithm. How-

ever, in the daycare assignment problem, there is another motive which is not present in the

school choice problem: a child misrepresents her preferences to a¤ect the priority rankings

of schools when she is two. This way she obtains a better placement when she is two, but

she sacri�ces her placement when she is one. The second motive is indeed very strong that

derives the following impossibility result.

Theorem 5 (Impossibility Result). The existence of a strategy-proof and weakly stable mech-

anism is not guaranteed.
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Proof. Consider the following example: there are 4 schools fs; �s; s1; s2g. All schools have a
capacity of one child. There is no school-age child until period t� 1. Suppose It�1 = fi;�{g,
It = fi1; i2g, It+1 = fi0g and I� = ; for all � � t + 2. In addition, school s0 = s; �s; s1; s2

prioritizes the children as follows under the assumption that no child attended s0 in the

previous period:
i Bs i0 Bs i1 Bs i2

i Bs1 i1 Bs1 i2 Bs1 i0

i Bs2 i1 Bs2 i0 Bs2 i2

�{ B�s i1 B�s i0 B�s i2

We consider two preference pro�les which di¤er from each other in child i1�s preferences.

Child i�s top choice is (s; s) while child �{�s is (�s; �s). The preferences of children i2 and i0

satisfy the following conditions:

(s2; s2) �i2 (s1; s1) �i2 (s; s) �i2 (�s; �s)

(s2; s2) �i0 (s; s) �i0 (s1; s1) �i2 (�s; �s)

Child i1�s preference ordering is �1i1 under preference pro�le 1 and is �2i1 under pro�le 2.
These preferences are given as follows:

(s; s) �1i1 (s1; s1) �1i1 (s2; s2) �1i1 (�s; �s)

(s; s) �2i1 (�s; �s) �1i1 (s2; s2) �2i1 (s1; s1)

In addition, suppose (s2; s) �1i1 (s1; s1).
Now we prove that there is no strategy-proof and weakly stable mechanism in the above

example. We proceed in 3 steps.

Step 1. Under pro�le 1, the only weakly stable matching � is as follows: �t�1(i) = �t(i) = s,

�t�1(�{) = �t(�{) = �s, �t(i1) = �t+1(i1) = s1, �t(i2) = �t+1(i2) = s2, �t+1(i0) = s and

�t+2(i0) = s2.

Proof of Step 1. It is easy to see that � is the GS matching, hence, is weakly stable. Now

the only thing we need to show is that no other matching is weakly stable under pro�le 1.

Let �̂ be weakly stable. It is clear that �̂t�1(i) = �̂t(i) = s, �̂t�1(�{) = �̂t(�{) = �s and

�̂t+2(i0) = s2. Consequently, we obtain that �̂
t(i1) = s1 because child i1 has higher priority

in school s1 at period t than anyone but i. However, i must match with s at period t. Hence,

�̂t(i1) = s1. This implies that �̂
t(i2) = s2. Then i2 has the highest priority at school s2 at

period t+ 1. Since s2 is the top choice for i2, �̂
t+1(i2) = s2. Consequently, �̂2(i

0) = s which
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means �̂t+1(i1) = s1. Now we have shown that �̂ = �.

Step 2. Under pro�le 2, the only weakly stable matching �� is as follows: ��t�1(i) = ��t(i) = s,

��t�1(�{) = ��t(�{) = �s, ��t(i1) = s2, ��t(i2) = s1, ��t+1(i1) = s, ��t+1(i2) = s1, ��t+1(i0) = s2 and

��t+2(i0) = s2.

Proof of Step 2. It is easy to see that �� is the GS matching under pro�le 2, hence is weakly

stable. Now we only need to show that no other matching is weakly stable under pro�le 2.

Let �̂ be a weakly stable matching. It is clear that �̂t�1(i) = �̂t(i) = s, �̂t�1(�{) = �̂t(�{) = �s

and �̂t+2(i0) = s2. Consequently, we obtain that �̂
t(i1) = s2 because child i1 has higher

priority in school s2 at period t than i2. This means that �̂
t(i2) = s1.

Now let us argue that �̂t+1(i0) = s2. If not, �̂
t+1(i1) = s2; otherwise, child i0 has higher

priority than child i2 at school s2 and s2 is the top choice of child i0. Hence, this contradicts

with �̂ being weakly stable. Thus, �̂t+1(i1) = s2. But because (s2; �s) �2i1 (s2; s2) and child i1
has higher priority at school �s than anyone but �{, �̂ is weakly stable. This is a contradiction.

Hence, �̂t+1(i0) = s2.

Because �̂t+1(i0) = s2, �̂
t+1(i1) = s as i1 has higher priority at school s than i2. Conse-

quently, �̂t+1(i2) = s1. This means �̂ = ��

Step 3. For this example, no strategy-proof and weakly stable mechanism exists.

Proof of Step 3. Consider any weakly stable mechanism. This mechanism must yield match-

ing � under pro�le 1 and matching �� under pro�le 2. Under pro�le 1, by truthfully reporting

her preferences, child i1 is placed at school s1 at periods t and t+1. However, by misreport-

ing her preference as if under pro�le 2, she is placed at school s2 in period t and at school

s in period t + 1. By assumption, (s2; s) �1i1 (s1; s1). Consequently, child i1 misreports her
preferences under pro�le 1, hence, any weakly stable mechanism is not strategy-proof.

In the example used for the proof of theorem 5, type 1 child i1 likes school s better than

any other school. Clearly, there is no chance that she can attend s in period t. In addition,

she cannot attend s at t + 1 because child i0 attends s. But observe that child i0 wants to

attend school s2 but cannot do so because child i2 attends s2. The most important aspect

is that child i2 has higher priority over child i0 at school s2 in period t+ 1 only because she

attends school s2 in period t. Child i1 can eliminate child i2�s advantage over i0 if she attends

school s2 in period t. By doing this, i1 enables i0 to attend s2 at t+ 1. Ultimately, she frees

a spot at school s for herself at t+1. This is the reason why type 1 child i1 has an incentive

to misreport her preferences.
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Remark 4. For theorem 5, both the OLG structure of the daycare assignment problem

and the history dependence of the schools� priorities play indispensable roles. In remark

2, we already mentioned that without OLG structure, all the existing results in the school

choice problem will be valid. Now let us discuss why the history dependence of the schools�

priorities is critical for theorem 5 even with the OLG structure. To see this, suppose that the

children�s preferences satisfy independence and somehow the schools�priorities at any period

are independent of the previous period�s matching�in particular, a child could be misplaced

from the daycare she is currently allocated to. In this case, the GS algorithm using the

isolated preferences of the children must be strategy-proof. Let us discuss why this is the

case. For the GS algorithm, one has to report her preferences over the pairs of schools. But

this, in fact, is equivalent to the case in which the school-age children report their isolated

preferences in each period and the algorithm is run sequentially because the GS algorithm uses

the isolated preference. As the preferences satisfy independence and the schools�preferences

are independent of history, any child�s reported isolated preferences in one period do not

a¤ect her placement in the other period. Now recall that the GS algorithm is strategy-proof

in the static settings. Hence, by misreporting one�s isolated preferences in some period, she

is worse o¤ in that period without a¤ecting her placement in the other period. Accordingly,

no one misreports her isolated preferences. Thus, the GS mechanism is strategy-proof.

Remark 5. In the previous remark, we argued that the history dependence of the schools�

priorities is crucial for theorem 5. However, if no 2-year old child can be forced out of the

school she attended in the previous period, then theorem 5 is valid even when the schools�

priorities are independent of the previous period�s matching. This case, in fact, is captured

by assumption 2.

Theorem 5 has two important, direct consequences which we present next.

Corollary 1. 1. The existence of a strongly stable and strategy-proof mechanism is not

guaranteed.

2. The GS mechanism using the children�s isolated preferences is not necessarily strategy-

proof.

Proof. Recall that each strongly stable matching is weakly stable. This and theorem 5 prove

item 1 of the corollary.
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6 E¢ ciency and Strategy Proofness

We have shown that the well known GS algorithm, which is widely used in the school choice

problem, is not a particularly appealing algorithm for the daycare assignment problem, since

it is not strategy-proof.

Most importantly, we showed that stability and strategy-proofness maybe incompatible

for the daycare assignment problem. This suggests that eliminating justi�ed envy may not

be the most appropriate objective when designing an assignment mechanism, at least not if

strategy-proofness is desired. In the remaining sections of this paper, we investigate whether

strategy-proofness is compatible with e¢ ciency. However, before doing so, let us consider

some properties of e¢ cient matchings.

From the school choice literature, we know that the Top Trading Cycles (TTC) or the

Serial Dictatorship mechanisms yield stable matchings. Hence, one might expect that these

algorithms using the isolated preferences of the children yield e¢ cient matchings. In other

words, one may expect that a result analogous to the result of lemma 2 will hold for e¢ ciency

as well. We will demonstrate that this is not necessarily the case. But �rst, let us de�ne the

Autarkic e¢ ciency concept.

De�nition 11 (Autarkic E¢ ciency). Matching � satis�es Autarkic E¢ ciency if for any

t � 0, there does not exist period t matching ��t such that (��1; � � � ; �t�1; ��t; �t+1; � � � ) Pareto
dominates �.

For Autarkic e¢ ciency, one considers only one period deviations. Hence, it is clear that

all e¢ cient matchings satisfy Autarkic e¢ ciency. Now the following examples show that

Autarkic e¢ ciency is not equivalent to e¢ ciency.

Example 5. Suppose in period 0, two children i1 and i2 are two years old and two children

j1 and j2 are one year old. There are 4 schools s1; s2; s3 and s4 and each school has a capacity

of 1 child. The schools�priorities are given as follows under the assumption that the children

have not attended any school in the previous period:

i1 Bs1 i2 Bs1 j1 Bs1 j2

i2 Bs2 i1 Bs2 j2 Bs2 j1

i1 Bs3 i2 Bs3 j1 Bs3 j2

i1 Bs4 i2 Bs4 j2 Bs4 j1
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Child i1�s top choice is s1 while child i2�s is s2. The other two children�s preferences satisfy

the following conditions:

(s2; s2) �j1 (s1; s1) �j1 (s4; s2) �j1 (s3; s1) �j1 (s3; s3) �j1 (s4; s4)

(s2; s2) �j2 (s1; s1) �j2 (s3; s1) �j2 (s4; s2) �j2 (s3; s3) �j2 (s4; s4)

Now consider the following matching �: �0(i1) = s1, �0(i2) = s2, �0(j1) = s3, �0(j2) = s4,

�1(j1) = s1, �1(j2) = s2. Matching � satis�es Autarkic e¢ ciency. However, � is not

Pareto e¢ cient as it is dominated by the matching ��: ��0(i1) = s1, ��0(i2) = s2, ��0(j1) = s4,

��0(j2) = s3, ��1(j1) = s2, ��1(j2) = s1.

Loosely speaking, in example 5, children j1 and j2 are assigned �extreme� allocations

under matching �. Hence, these children j1 and j2 can hedge against the extreme allocations

by �trading�their allocations. This is one reason why Autarkic e¢ ciency is not equivalent

to e¢ ciency. One should observe that in this case trade happens between the children from

the same generation. Hence, the in�niteness of time does not play any signi�cant role in

example 5. However, one can construct an example in which a matching satisfying Autarkic

e¢ ciency fails to be e¢ cient because of the intergenerational trades. We demonstrate this

point in the following example.

Example 6. In each period, there are two 1-year old children in each period fit; jtg and
there are four schools fs1; s2; s3; s4g. For this example, we will only specify the schools�top
ranked school-age child under the assumption that all children stayed home in the previous

period. School s1 and s2 give their respective highest priorities to children i and j who are 1

in odd periods. On the other hand, school s3 and s4 give their respective highest priorities to

children i and j who are 1 in even periods. The children�s preferences are as follows.

� Child i�1�s top choice is s1 while for child j�1, s3 �1j�1 s2 �1j�1 s4.

� For child i0, s1 �1i0 s3 �1i0 s2 while child j0�s top choice is s4.

� For child i1, s4 �1i1 s1 �1i1 s3 while child j1�s top choice is s2.

� Child i2�s top choice is s3 while for child j2, s2 �1j2 s4 �1j2 s1.

� For t � 3, child it (jt) has the same preferences as child it�4 (jt�4).
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In addition, each child prefers being placed at the school of her third choice when she is 1

and at her most preferred school when she is two to being placed at the school of her second

choice for 2 periods.

Consider the following matching �: in any period, school s1 matches with the school-age

child i who is 1 in an odd period, s2 with j who is 1 in an odd period, s3 with i who is 1 in

an even period, and school s4 with j who is 1 in an even period. Observe that in each period

exactly 1 younger and 1 older children match with their second choice school. The others

match with their top choice. It is easy to see that � satis�es Autarkic e¢ ciency. Now let us

alter � in the following way: in each period, the two children who are placed at her second

choice school trades their schools. This way the older of the two children is placed at her �rst

choice school while the younger one is placed at her third choice school. One can easily see

that the new altered matching Pareto dominates �.

Observe that in the above example, the in�niteness of time plays an important role. To

see this, let us check why � is not e¢ cient. Matching � places one younger and one older

children at their second choice schools in each period. Each of these child prefers being

placed in her third choice school when she is one and at her most preferred school in the

following period to being placed at her second choice school in both periods. Hence, the

younger child would agree to give her spot away and obtain a spot at a worse school as long

as she obtains a spot at her most preferred school in the following period. Accordingly, � is

not e¢ cient because one younger child can trade her spot with an older child in each period.

If time stops at some point, then the younger child at that time would not agree to this

trade. This is why the in�niteness of time is crucial in example 6. This phenomenon is also

observed in the standard overlapping generations models.

Examples 5 and 6 have an important implication: not all mechanisms that deliver match-

ings satisfying Autarkic e¢ ciency are necessarily e¢ cient even if the children�s preferences

satisfy independence. For example, the TTC mechanism using isolated preferences does not

necessarily yield an e¢ cient matching. As we will discuss whether the TTC mechanism is

strategy-proof, let us consider the TTC mechanism in the next subsection.
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6.1 The Top Trading Cycles Mechanism

The TTC mechanism was introduced in [5].5 Next we will state the formal de�nition of the

TTC mechanism.

In each period, we assume that the preceding period�s matching is produced by the TTC

mechanism according to the isolated preferences of children. In period t:

Step 1 : Each child points to her preferred school. Each school points to its highest ranked

child. The process goes on, until it reaches a cycle, which it eventually will. A cycle can be

written as fi1; s1; i2; s2; � � � ; ik; skg, where here, sj is child i0js preferred school, whereas child
il is the highest ranked child in school sl�1, for l = 2; :::; k; and child i1 is the highest ranked

child at school sk. All children in the cycle are allocated to their preferred school.

In general, at:

Step k : All children allocated in steps 1,...,k � 1 do not participate in step k. Each
remaining child points to its preferred school, among the set of schools with remaining spots.

Each pointed school points to the highest priority child among the remaining children. The

process goes on until it reaches a cycle, which it eventually will. All children in the cycle are

allocated to the schools that they have pointed to.

The process continues until all children are allocated.

As we already hinted, the top trading cycle mechanism is not necessarily e¢ cient. Given

the importance of the TTC mechanism in the school choice problem, let us state this result

in the following proposition.

Proposition 3 (TTC is not necessarily Pareto E¢ cient). If the TTC mechanism is applied

at every period using the isolated preferences of the children, then the resulting matching is

not necessarily Pareto e¢ cient.

Proof. Consider example 5 and observe that � is the matching from the TTC mechanism.

As we mentioned � is not e¢ cient.

5The TTC mechanism is inspired by [14] and [18].
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Note that in example 5, not only the TTC mechanism is not necessarily e¢ cient, but

also a variation of it, done by cohorts. Precisely, consider the following mechanism. At any

period t, The children born in period t � 1 are allocated according to the TTC mechanism
(see [5]). Once every children i 2 It�1 is allocated, most schools will have less, if any, spots
available. Consider only the schools with open spots and use the TTC mechanism for the

generation born in period t, where from the initial number of spots for each school, we have

subtracted the number of 2-year-old children already allocated. For this round, consider only

the priority of schools over the children of generation t: i.e., a young child cannot replace

an already allocated 2-year-old child. This variation of the TTC mechanism is also is not

Pareto e¢ cient.

In the example below, we show that the TTC mechanism (using isolated preferences)

may not be strategy-proof.

Example 7 (TTCmay not be Strategy-Proof). Assume that there are 4 schools fs; s1; s2; s3g;
and 4 children: fi; i1; i2; i3g, with i 2 I�1 and fi1; i2; i3g 2 I0. Assume also that It = ? for all
t � 1. School �s = s; s1; s2; s3 prioritizes the children as follows assuming that these children
has not attended �s in the previous period:

s : i Bs i2 Bs i1

s1 : i1 Bs1 j; 8j 6= i1
s2 : i2 Bs2 j; 8j 6= i2
s3 : i1 Bs3 i3 Bs3 j; 8j 6= i1; i3

The children�s preferences are:

i : s �i s1 �i s2 �i s3

i1 : s �i1 s1 �i1 s2 �i1 s3

i2 : s3 �i2 s �i2 s2 �i2 s1

i3 : s3 �i3 s1 �i3 s2 �i3 s

In addition, child i1 prefers (s0; s) to (s1; s1). The matching resulting from the TTC is:

(i; s) ; (i1; s1) ; (i2; s2); (i3; s3) ;
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in period t = 0 and

(i1; s1) ; (i2; s) ; (i3; s3) ;

in period t = 1.

Suppose that i1 misreports its preferences to be: i1 : s �i1 s2 �i1 s1 �i1 s3 ,

while all others report truthfully. The resulting matching for t = 0 is:

(i; s) ; (i1; s2) ; (i2; s3) ; (i3; s1) ;

while for t = 1 it is:

(i1; s) ; (i2; s3) ; (i3; s1) :

Note that under truth-telling, i1�s allocation was: (s1; s1), while after misreporting it is

(s2; s). Thus, i1 has improved herself overall by taking s2 in the �rst period and altering the

priority of s3 for the following period. �

Observe that the example above shows that a variation of the TTC which is done by

cohorts is not strategy-proof.

6.2 Strategy-Proofness and E¢ ciency

The previous subsection leads to the question of whether strategy-proofness and e¢ ciency

are compatible. The answer is positive and to show this, we use a version of the serial dictator

algorithm adapted to our setting. We will argue that this algorithm is strategy-proof and

e¢ cient. Before formalizing the algorithm, recall that at period t, nt number of children are

one and they are indexed 1 through nt. The algorithm runs as follows:

At period k:

All 2-year old children choose the school that they want to attend in an increasing order

according to their indices. All children obtain their top spot as long as the chosen school

has available seats. When a school has �lled its slots, the child moves on to her next best

choice.

When all 2-year old children have been allocated, then all 1-year old children choose their

preferred school with open slots following an increasing order according to their indices.

Given that at any given period there is a �nite number of school-age children, this is a

35



well-de�ned mechanism. Moreover, it is easy to verify that the proposed algorithm is both

strategy-proof and e¢ cient.6

7 Conclusion

In this paper we have introduced the daycare assignment problem. This problem di¤ers from

the school choice problem due to its OLG structure. We have proved some negative results

concerning well-known mechanisms, even when preferences satisfy consistency across periods,

and schools�priorities are linked only in a very weak sense (priorities are history dependent

only through currently allocated children, and are otherwise the same). In particular, we

have shown that the GS and the TTC mechanisms, both commonly used in the school

choice problem, are not necessarily strategy-proof in the daycare assignment problem. We

have extended these insights to show that there are no strongly stable mechanisms that are

strategy-proof.

We conclude by presenting a version of the serial dictator, adapted our setting, and

arguing that it is strategy-proof and e¢ cient.

Appendix

Proof of Lemma 1. Since � is not strongly but weakly stable, by de�nition 6, there must

exist s; s0 such that (s; s0) �i (�t(i); �t+1(i)) and one of the following conditions are satis�ed:

1. j�t(s)j < rs and j�t+1(s0)j < rs0,

2. j�t(s)j < rs, j�t+1(s0)j = rs0, and, for some j0 2 �t+1(s0), i Bt+1s0 (��t)j0 where ��t is the

period t matching with ��t(i) = s and ��t(i0) = �t(i0) for all i0 6= i 2 I t�1 [ I t,

3. j�t(s)j = rs, j�t+1(s0)j < rs0, and, for some j 2 �t(s), iBts (�t�1)j,

4. j�t(s)j = rs, j�t+1(s0)j = rs0, for some j 2 �t(s), j0 2 �t+1(s0) and for any ��t 2
M(i; j; �), iBts (�t�1)j and iBt+1s0 (��t)j0:

6One can use the random serial dictatorship algorithm which is a slight variation of the serial dictatorship
algorithm. The random serial dictatorship algorithm is strategy-proof and ex-post e¢ cient but not necessarily
ex-ante e¢ cient.
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First, note that s 6= �t(i) and s0 6= �t+1(i); otherwise, � is not weakly stable, which can
be veri�ed using the fact that IPA is satis�ed.

Case 1. s = s0. Consequently, (s; s) �i (�t(i); �t+1(i)). In addition, j�t(s)j < rs or/and

i Bts (�t�1)j for some j 2 �t(s). Combining this with � being weakly stable, one obtains
that (�t(i); �t+1(i)) �i (s; �t+1(i)). Given independence, this, in turn, implies that if �t(i) 6=
�t+1(i) then (�t(i); �t(i)) �i (s; s). Then, by transitivity of preferences, (�t(i); �t(i)) �i
(�t(i); �t+1(i)). This implies that � is not weakly stable because child i has the highest

priority at school s at period t+ 1, hence, at t+ 1, she has a right to attend school s ahead

of any other child. Therefore, �t(i) = �t+1(i). This is the condition we seek.

Case 2. s 6= s0 and �t(i) = �t+1(i). Consequently, (s; s0) �i (�t(i); �t(i)). In addition,
j�t(s)j < rs or/and i Bts (�t�1)j for some j 2 �t(s). Combining this with � being weakly
stable, one obtains (�t(i); �t(i)) �i (s; �t(i)). Recall that (s; s0) �i (�t(i); �t(i)). Hence,
by transitivity, (s; s0) �i (s; �t(i)). Then, by assumption 1 (2), (s0; s0) �i (�t(i); �t(i)).
Suppose (s; s) �i (s0; s0). Then (s; s) �i (�t(i); �t(i)) and, by assumption, j�t(s)j < rs

or/and i Bts (�t�1)j for some j 2 �t(s). Hence, we have identi�ed a pair (s; i) asked in the
lemma.

Now suppose (s0; s0) �i (s; s). Since � is weakly stable, either the allocation given by � is
preferred to this alternative allocation, or s0 does not lead to justi�ed envy. Formally, at least

one of the two conditions must hold: (a) (�t(i); �t(i)) �i (�t(i); s0) or/and (b) j�t+1(s0)j = rs0
and there exists no j0 2 �t+1(s0) such that iBt+1s0 (�t)j0.

Suppose (a) occurs. Recall (s; s0) �i (�t(i); �t(i)), hence, (s; s0) �i (�t(i); s0). Then
assumption 1 (2) implies that (s; s) �i (�t(i); �t(i)) because s 6= s0. Observe that the pair
(s; i) is the pair asked in the lemma as we already pointed out that (s; s) �i (�t(i); �t(i)),
j�t(s)j < rs or/and iBts (�t�1)j for some j 2 �t(s).
Suppose now (b) occurs but not (a). Recall that one of the 4 conditions listed in the

beginning of the proof must be satis�ed. Since j�t+1(s0)j = rs0, 1 and 3 are ruled out. If

condition 2 is satis�ed, then iBt+1s0 (��
t)j0 for some j0 2 �t+1(s0). Furthermore, ��t di¤ers from

�t only in that ��t(i) = s. Then, by IPA, iBt+1s0 (�t)j0. This a contradiction with b occurring.

If condition 4 is satis�ed, then there must exist j; j0 such that, for any ��t 2 M(i; j; �),

i Bts (�t�1)j and i Bt+1s0 (��t)j0. In particular, it must be true for ��t such that ��t(j) = h.

Observe that ��t di¤ers from �t only in that ��t(i) = s and ��t(j) = h. By IPA, iBt+1s0 (�t)j0.

This a contradiction with b occurring.

37



Case 3. s 6= s0 and �t(i) 6= �t+1(i). Consequently, (s; s0) �i (�t(i); �t+1(i)). Since � is
weakly stable, one of the two conditions must hold: (a) (�t(i); �t+1(i)) �i (�t(i); s0) or/and
(b) j�t+1(s0)j = rs0 and no j0 2 �t+1(s0) with iBt+1s0 (�t)j0 exists.

Suppose (a) occurs. Recall that by assumption, in this case 3, (s; s0) �i (�t(i); �t+1(i)),
hence, (s; s0) �i (�t(i); s0). Using 1 (2), this implies that (s; s) �i (�t(i); �t(i)). Then,
(s; �t+1(i)) �i (�t(i); �t+1(i)). Consider the pair (s; i). As pointed out earlier, j�t(s)j < rs
(conditions 1 or 2) or/and i Bts (�t�1)j (conditions 3 or 4) for some j 2 �t(s). This means
that � is not weakly stable which is a contradiction.

Suppose now (b) occurs but not (a), therefore (�t (i) ; s0) �i (�t(i); �t+1(i)). Recall that
(s; s0) �i (�t(i); �t+1(i)); since � is not strongly stable. In addition, one of the 4 conditions
listed in the beginning of the proof must be satis�ed. Since j�t+1(s0)j = rs0, 1 and 3 are

ruled out. If condition 2 is satis�ed, then iBt+1s0 (��t)j0 for some j0 2 �t+1(s0). Furthermore,
��t di¤ers from �t only in that ��t(i) = s. By IPA, i Bt+1s0 (�t)j0. This is a contradiction

with (b) occurring. If condition 4 is satis�ed, then there must exist j; j0 such that, for any

��t 2 M(i; j; �), i Bts (�t�1)j and i Bt+1s0 (��t)j0. Fix ��t such that ��t(j) = h. Observe that

��t di¤ers from �t only in that ��t(i) = s and ��t(j) = h. By IPA, i Bt+1s0 (�t)j0. This is a

contradiction with (b) occurring.

Proof of Lemma 2. Necessity. Assume � is weakly stable. We need to show that for all t,

�t is statically stable under isolated preferences and �t�1. Suppose otherwise. Then there

must exist, t, and a school-child pair (s; i) such that

1. if i 2 It, then s �1i �t(i) and at least one of the following is satis�ed: j�t(s)j < rs or
iBts (�t�1)j for some j 2 �t(s),

2. if i 2 It�1, then s �2i (�t�1)�t(i) and at least one of the following is satis�ed: j�t(s)j <
rs or iBts (�t�1)j for some j 2 �t(s).

Suppose i 2 It. Then we are in case 1. Since � is is weakly stable, the following

2 conditions cannot be satis�ed at the same time: (a) (s; �t+1(i)) �i (�t(i); �t+1(i)) and
(b) j�t(s)j < rs and/or i Bts (�t�1)j for some j 2 �t(s). If (b) is not true, then this is

a contradiction because (s; i) must satisfy the conditions given in case 1. Hence, assume

that (b) is satis�ed but (a) is not, i.e., (�t(i); �t+1(i)) �i (s; �t+1(i)). If �t(i) 6= �t+1(i),

assumption 1 implies that (�t(i); �t(i)) �i (s; s). By the de�nition of �1, �t(i) �1i s which
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contradicts with the assumption that s �1i �t(i). Suppose �t(i) = �t+1(i). Recall that

s �1i �t(i), hence, (s; s) �i (�t(i); �t+1(i)). Recall that (b) is satis�ed. Thus, by moving to
school s in period t, child i would have the highest priority at school s at time t+1. Hence,

� is not strongly stable. Hence, i =2 It.
Suppose i 2 It�1. Then we are in case 2. Because � is weakly stable, the following

2 conditions cannot be satis�ed at the same time: (a) (�t�1(i); s) �i (�t�1(i); �t(i)) and
(b) j�t(s)j < rs and/or i Bts (�t�1)j for some j 2 �t(s). If (b) is not true, then this is a
contradiction because (s; i) must satisfy the conditions given in case 2. Hence, (b) must be

satis�ed but (a) is not, i.e., (�t�1(i); �t(i)) �i (�t�1(i); s). By the de�nition of �2i (�t�1),
we have that �t(i) �2i (�t�1)s which contradicts with the assumption that s �2i (�t�1)�t(i).
Hence, i =2 It�1. Therefore, for all t, �t is statically stable under isolated preferences and
�t�1.

Su¢ ciency. For any t, �t is statically stable under isolated preferences and �t�1. First let us

show that � is weakly stable. Suppose otherwise. Then, at some period t, there must exist

a pair (s; i) such that one of the two conditions below is satis�ed:

1. (a) (s; �t+1(i)) �i (�t(i); �t+1(i)), and

(b) j�t(s)j < rs or/and iBts (�t�1)j for some j 2 �t(s):

or

(a) (�t�1(i); s) �i (�t�1(i); �t(i)), and

(b) j�t(s)j < rs or/and iBts (�t�1)j for some j 2 �t(s):

Suppose case 1 occurs. If s 6= �t+1(i), then by assumption 1, and recall (s; �t+1(i)) �i
(�t(i); �t+1(i)); we would have that:

(s; s) �i (�t(i); �t(i)):

By de�nition of �1i , we have that s �1i �t(i). This and 1b mean that �t is not statically
stable under isolated preferences and �t�1. This is a contradiction. Suppose, on the other

hand, that s = �t+1(i). If (�t+1(i); �t+1(i)) �i (�t(i); �t(i)), then the de�nition of �1i yields
�t+1(i) �1i �t(i). This and 1b mean that �t is not statically stable under isolated preferences
and �t�1.
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Suppose (�t(i); �t(i)) �i (�t+1(i); �t+1(i)). This and assumption 1 yield (�t(i); �t(i)) �i
(�t(i); �t+1(i)). Now consider period t + 1. Then by the de�nition of �2i (�t), �t(i) �2i
(�t)�t+1(i). In addition, observe that child i has the highest priority at school �t(i). The

last 2 conditions contradict with �t+1 being statically stable under isolated preferences and

�t.

Suppose case 2 occurs. By the de�nition of �2i (�t�1), we have that s �2i (�t�1)�t(i) since
(�t�1(i); s) �i (�t�1(i); �t(i)). But this and 2b directly imply that �t is not statically stable
under isolated preferences and �t�1. This is a contradiction.

We have shown that � is weakly stable. Now we are left to show that � is strongly

stable if IPA is satis�ed.7 Suppose otherwise. Then by lemma 1, for some period t and some

school-child pair (s; i),

1. �t(i) = �t+1(i)

2. (s; s) �i (�t(i); �t+1(i))

3. j�t(s)j < rs or/and iBts (�t�1)j for some j 2 �t(s)

The �rst 2 conditions and the de�nition of �1i yield s �1i �t(i). This and the third
condition imply that �t is not statically stable under isolated preferences and �t�1.

Proof of Proposition 1. Recall that time �1 matching ��1 is �xed for all matchings we con-
sider.

On contrary to the proposition, suppose that some strongly stable matching � Pareto

dominates matching �GS.

Step 1. If i 2 I�1, then �0GS(i) = �0(i).
Proof of Step 1. For any 2 year old child, her isolated preference is �2i (��1). From lemma 2,
we have that �0GS and �

0 are stable period 0 matchings under isolated preferences and ��1.

GS [12] show that �0GS Pareto dominates every other statically stable period 0 matchings

under isolated preferences and ��1 in terms of isolated preferences. This means �0GS(i) �2i
(��1)�0(i) if �0GS(i) 6= �0(i). By de�nition of �2i (��1), (��1(i); �0GS(i)) �i (��1(i); �0(i)) if
�0GS(i) 6= �0(i). Hence, if � Pareto dominates �GS, then it must be �0GS(i) = �0(i).

7Note that if the children�s preferences satisfy independence, then theorem 1 implies the result directly
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Step 2. If i 2 I0, then �0GS(i) = �0(i).
Proof of Step 2. Suppose �0GS(i) 6= �0(i) for some i 2 I0. Then, as in the proof of step 1, we
obtain that �0GS(i) �1i �0(i). By the de�nition of the isolated preferences �1i , we have that
(�0GS(i); �

0
GS(i)) �i (�0(i); �0(i)). In addition, strong stability implies that if �0GS(i) 6= �1GS(i)

then (�0GS(i); �
1
GS(i)) �i (�0GS(i); �0GS(i)); otherwise, �GS is not strongly stable. If �0(i) =

�1(i), then combining the previous 2 relations, one obtains (�0GS(i); �
1
GS(i)) �i (�0(i); �0(i)).

This contradicts with � Pareto dominating �GS. Hence, �
0(i) 6= �1(i). This and strong

stability of � imply that (�0(i); �1(i)) �i (�0(i); �0(i)). Since � Pareto Dominates �GS, it
must be that (�0(i); �1(i)) �i (�0GS(i); �1GS(i)). Recall that (�0GS(i); �0GS(i)) �i (�0(i); �0(i))
and (�0GS(i); �

1
GS(i)) �i (�0GS(i); �0GS(i)). These relations and assumption 1, indeed (??)

imply that (�1(i); �1(i)) �i (�1GS(i); �1GS(i)).
By lemma 2, we know that �1 is statically stable under isolated preferences and �0. Now

suppose we ran the GS algorithm at period 1 under isolated preferences and �0. Let us denote

the resulting matching ��1. From [12], we know that if ��1(i) 6= �1(i), then ��1(i) �2i (�0)�1(i).
By the de�nition of �2i (�0), (�0(i); ��1(i)) �i (�0(i); �1(i)). Recall that (�0(i); �1(i)) �i
(�0(i); �0(i)) and �0(i) 6= �1(i). These imply that ��1(i) 6= �0(i). Then by assumption 1,

(�0(i); ��1(i)) �i (�0(i); �1(i)) implies (��1(i); ��1(i)) �i (�1(i); �1(i)).
Before proceeding any further let us sum up the preference relations for any i 2 I0 if �

Pareto dominates �:

(��1(i); ��1(i)) �i (�1(i); �1(i)) �i (�1GS(i); �1GS(i)) �i (�0GS(i); �0GS(i)) �i (�0(i)); �0(i)) (1)

Next we will proceed to show that ��1 is statically stable under isolated preferences and

�0GS. Let us postpone the proof momentarily to discuss its implications. From lemma 2,

we know that �1GS is a stable matching under isolated preferences and �
0
GS. In addition, it

must Pareto dominate ��1 in terms of the isolated preferences, since ��1 is statically stable

and the �1GS must Pareto dominate all stable matchings (see [12]). Hence, if �
1
GS(i) 6= ��1(i),

then �1GS(i) �2i (�0GS)��1(i). By the de�nition of �2i (�0), (�0GS(i); �1GS(i)) �i (�0GS(i); ��1(i)).
Recalling that (�0GS(i); �

0
GS(i)) �i (�0(i); �0(i)), we �nd that (�0GS(i); ��1(i)) �i (�0(i); ��1(i)).

Assumption 1 and (��1(i); ��1(i)) �i (�1(i); �1(i)) yield (�0(i); ��1(i)) �i (�0(i); �1(i)). Ac-
cordingly, (�0GS(i); �

1
GS(i)) �i (�0(i); �1(i)). However, recall that � Pareto dominates �GS.

This is the contradiction we are looking for. Thus, after showing that ��1 is statically stable

under isolated preferences and �0GS the proof is complete.

41



We now proceed to show that ��1 is indeed a stable matching under isolated preferences

and �0GS. We already know from Assumption 1 and (1) that, for all i 2 I0, ��1(i) �2i (�0)�1(i)
if ��1(i) 6= �1(i). Also, from [12], we know that, for all i 2 I1, ��1(i) �1i �1(i) if ��1(i) 6= �1(i).
Recall that ��1 is statically stable matching under isolated preferences and �0. Now consider

the isolated preferences in period 1 from �0GS and suppose, under these isolated preferences,

��1 is not stable. Therefore, there must exist a school-child pair (s; i) such that both conditions

are satis�ed:

I. � if i 2 I0, then s �2i (�0GS)��1(i); or

� if i 2 I1, then s �1i ��1(i);

II. j��1(s)j < jrsj or/and iB1s (�0GS)j for some j 2 ��1(s).

Because ��1 statically stable under the isolated preferences and �0, the conditions 1 and

2 below cannot be satis�ed at the same time.

1. (a) if i 2 I0, then s �2i (�0)��1(i); or

(b) if i 2 I1, then s �1i ��1(i):

2. j��1(s)j < rs or/and iB1s (�0)j for some j 2 ��1(s):

Suppose i 2 I0. Then s �2i (�0GS)��1(i). We show that in this case condition 1 (a) is

satis�ed. By the de�nition of �2i (�0GS), (�0GS(i); s) �i (�0GS(i); ��1(i)). If �0(i) = �0GS, then
(�0(i); s) �i (�0(i); ��1(i)). This means that condition 1a is satis�ed. Let �0(i) 6= �0GS. Then
preference relations given in (1), assumption 1, (�0GS(i); s) �i (�0GS(i); ��1(i)) and the fact
that (s; s) �i (��1 (i) ; ��1 (i)) imply that (�0(i); s) �i (�0(i); ��1(i)). Hence, condition 1 (a) is
satis�ed.

Suppose i 2 I1. Then s �1i ��1(i). Since�1 does not depend on the last period�s matching,
condition 1 (b) is satis�ed. Therefore, we �nd that either 1 (a) or 1 (b) is satis�ed. This means

that 2 cannot be satis�ed. Clearly, it must be that j��1(s)j = rs. This implies that school s�s
priority ranking must satisfy iB1s (�0GS)j and j B1s (�0)i, for at least some j 2 ��1 (s). There
are 2 cases consider:

1. i =2 �0GS(s); or

2. i 2 �0GS(s) and i 2 I0:
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If case (1.) happens, this implies that j =2 �0GS(s); otherwise, j would have the highest
priority at school s, hence, we reach a contradiction with iB1s (�0GS)j. Therefore, j =2 �0GS(s).
Since school s�s priority ranking satis�es IPA, given that iB1s (�0GS)j it must be that j 2 �0(s)
and j 2 I0 to have the required reversal of school s�s priority ranking. Then �0GS(j) 6= �0(j).
This, as argued earlier in step 1, implies that (�0GS(j); �

0
GS(j)) �j (�0(j); �0(j)) = (s; s);

where the last equality comes from the fact above, that if j =2 �0GS(s), it must be that

j 2 �0(s). Now recall that j 2 ��1(s).

1. Therefore, (�0GS(j); �
0
GS(j)) �j (�0(j); ��1(j)) which is a contradiction (see preference

relation 1).

Suppose (2.) happens, i 2 �0GS(s), i.e., s = �0GS(i). We know s �2i (�0GS)��1(i). These
conditions yield (�0GS(i); �

0
GS(i)) �i (�0GS(i); ��1(i)). This is a contradiction which we are

looking for.

This completes the proof of step 2.

Step 3. The GS algorithm yields a strongly stable matching that is not Pareto dominated

by any other strongly stable matchings.

Proof of Step 3. Proving step 3 is just a matter of reiterating the arguments of steps 1 and

2 assuming previous periods�matchings are identical with the ones resulted from the GS

algorithm.

7.1 Aarhus Assignment Mechanism8

PLACE ASSIGNMENT RULES

In brief, places are assigned in this order:

1. Children with special needs, e.g., children with disabilities

2. Children with siblings in the same institution

3. Bilingual children who, after expert evaluation, are deemed in need of special assistance

in day care

4. The oldest child in an assignment district (anvisningsdistrikt) who is written up for

a guaranteed place. That is, a place corresponding to the rules of the place guarantee. An

assignment district is the area the child lives in. It consists of 1 to 3 school districts

8For the original document see: https://www.borger.dk/selvbetjening/sider/fakta.aspx?sbid=8632
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5. The oldest child in an assignment district who is written up for a guaranteed place.

Aarhus municipality is divided into 8 major guarantee districts (garantidistrikter) along the

approach roads. A guarantee district consists of one or several assignment districts

6. The oldest child in an assignment district who is written up for a guaranteed place

7. The oldest child on the waiting list for a particular institution, even if the child has

another place already

Guaranteed place and desired place

You can choose a guaranteed place, but at the same time request one or more speci�c

institutions. These wishes will be taken into account when we �nd a place for you. However,

we cannot guarantee that you get one of these desired places. If none of the institutions you

are interested in have openings, you will be o¤ered a guaranteed place.

A guaranteed place is a place within the district you live in, or at a distance from your

home which involves no more than half an hour of extra transport each way to and from

work. The municipal placement guarantee is satis�ed when you have been o¤ered a place.

To be assigned a guaranteed seat at a desired time, the application must be received by the

placement guarantee o¢ ce (Pladsanvisningen) no later than 3 months before the place is

desired.
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