
ar
X

iv
:1

10
7.

29
94

v1
 [

cs
.G

T
]

 1
5

Ju
l 2

01
1

Budget Feasible Mechanism Design via Random Sampling

Xiaohui Bei∗ Ning Chen† Nick Gravin† Pinyan Lu‡

Abstract

Budget feasible mechanism considers algorithmic mechanism design questions where there is
a budget constraint on the total payment of the mechanism. An important question in the field is
that under which valuation domains there exist budget feasible mechanisms that admit ‘small’
approximations (compared to a socially optimal solution). Singer [20] showed that additive
and submodular functions admit a constant approximation mechanism. Recently, Dobzinski,
Papadimitriou, and Singer [10] gave an O(log2 n) approximation mechanism for subadditive
functions and remarked that: “A fundamental question is whether, regardless of computational
constraints, a constant-factor budget feasible mechanism exists for subadditive function.”

In this paper, we give the first attempt to this question. We give a polynomial time O(logn

log logn
)

sub-logarithmic approximation ratio mechanism for subadditive functions, improving the best
known ratio O(log2 n). Further, we connect budget feasible mechanism design to the concept of
approximate core in cooperative game theory, and show that there is a mechanism for subaddi-
tive functions whose approximation is, via a characterization of the integrality gap of a linear
program, linear to the largest value to which an approximate core exists. Our result implies
in particular that the class of XOS functions, which is a superclass of submodular functions,
admits a constant approximation mechanism. We believe that our work could be a solid step
towards solving the above fundamental problem eventually, and possibly, with an affirmative
answer.

∗Tsinghua University, China. Email: beixiaohui@gmail.com.
†Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological Uni-

versity, Singapore. Email: ningc@ntu.edu.sg, ngravin@pmail.ntu.edu.sg.
‡Microsoft Research Asia. Email: pinyanl@microsoft.com.

http://arxiv.org/abs/1107.2994v1

1 Introduction

Consider a scenario where a company is running a set of machines and each of which serves a set
of jobs. There is an incurred expense for each machine to serve the jobs, and the total expense of
the company is the sum of the expenses of all machines. Assume now the company would like to
save its running expense by removing some of served jobs and paying those jobs a certain amount
of subsidy. We may assume that every job has a cost of being not served (or equivalently, benefit
of being served); the bottom line is therefore to have their cost compensated. The question that
the company considers is that which jobs should be chosen such that the saved expense as much as
possible given a universal budget constraint.

Formally, there is a set of agents (i.e., jobs) A, and for any subset S ⊆ A there is a public
known valuation v(S). (In the above example, v(S) gives how much expenses it can be saved if S
is removed.) Each agent i ∈ A has a cost c(i), which gives an incurred cost to the agent if he is
selected. This defines a natural optimization problem, i.e., find a subset S that maximizes v(S)
subject to

∑
i∈S c(i) ≤ B, where B is a sharp budget which gives an upper bound of compensation

that can be distributed among agents. The budgeted optimization problem has been considered
in a variety of domains with respect to different valuation functions, e.g., additive (i.e., knapsack),
submodular, and subadditive.

However, agents, as self-interested entities, may want to get as much subsidy as possible. In
particular, they can hide their true incurred cost c(i) (which is known only by themselves) and
claim ‘any’ amount, say b(i). We therefore adopt the approach of mechanism design to manage
self-interested, but strategic, behaviors of the agents. Specifically, given submitted bids b(i) from
all agents, a mechanism decides a winner set S and a payment p(i) to each winner i. A mechanism
is called truthful (a.k.a. incentive compatible) if it is a dominant strategy for every agent to submit
his true cost, i.e., b(i) = c(i). Truthfulness is one of the central solution concepts in mechanism
design; it ensures that every participant will behave precisely according to the mechanism protocol
and his true interest.

Our problem has an important and practical extra ingredient: Budget, i.e., the total payment of
a mechanism should be upper bounded by B. The budget constraint introduces a new dimension
to mechanism design and restricts the space of truthful mechanisms. For example, in a single
parameter domain, a monotone allocation rule plus its associated threshold payment, while still
gives a sufficient and necessary condition for truthfulness [16], may not necessarily generate a
budget feasible solution. Thus, a number of well known truthful designs (e.g., the seminal VCG
mechanism [21, 8, 14]) do not apply, and new ideas have to be developed.

Another significant change due to the budget constraint is that, unlike the VCG mechanism
which always generates a socially optimal solution, we cannot hope to have an output which is both
socially optimal and budget feasible even if we are given unlimited computational power. Indeed,
in a simple example like path procurement (whose valuation v(·) is a superadditive function), any
budget feasible mechanism can have an arbitrarily bad solution. Therefore, the question that one
may ask is that under which valuation domains there exist budget feasible truthful mechanisms
that admit ‘small’ approximations (compared to a socially optimal solution).

The answer to the question crucially depends on the properties and classifications of the con-
sidered valuation function. In particular, given the following hierarchy for the functions [15]:

additive ⊂ gross substitutes ⊂ submodular ⊂ XOS ⊂ subadditive,

which one admits a positive answer? Singer [20] initiated the study of approximate budget feasible

1

mechanism design and gave constant approximation mechanisms for additive and submodular func-
tions. In recent work, Dobzinski, Papadimitriou, and Singer [10] considered subadditive functions
and showed an O(log2 n) approximation mechanism. Further, it was remarked that:

“A fundamental question is whether, regardless of computational constraints, a constant-
factor budget feasible mechanism exists for subadditive function.”

— Dobzinski, Papadimitriou, Singer [10]

Our Results. In this paper, we give the first attempt to this question. Our first result is a sub-
logarithmic approximation ratio mechanism for subadditive functions, improving the best known
ratio O(log2 n).

Theorem 1. There is a polynomial time budget feasible truthful mechanism for subadditive func-
tions with an approximation ratio of O(logn

log logn), where n is the number of agents.

Here we assume that we are given an demand oracle for the subadditive valuation function.
This is in the same setting as the mechanism in [10] since it was proved that a value oracle is
not sufficient [20]. The sub-logarithmic approximation further sheds light on the hope of a positive
answer to the above question. We continue to explore budget feasible mechanisms under the domain
of XOS and subadditive functions. Consider the following linear program (LP), where α(·)’s are
variables.

min
∑

S⊆A

α(S) · v(S)

s.t. α(S) ≥ 0, ∀ S ⊆ A∑

S: i∈S

α(S) ≥ 1, ∀ i ∈ A

In the above LP, if we consider each α(S) as the fraction covered by the subset S, the last constraint
requires that all items in A are fractionally covered; hence, it describes a linear program for the
set cover of A. An important observation of the LP is that for any subadditive function v(·), the
value of the optimal integral solution is precisely v(A).

The above LP has a strong connection to cores of cost sharing games (considering v(·) instead
as a cost function), which is a central notion in cooperative game theory [18]. Roughly speaking,
the core of a game is a stable cooperation among all agents to share v(A) where no subset of agents
can benefit by breaking away from the grand coalition. It is well known that the cores of many
cost sharing games are empty. This motivates the notion of α-approximate core, which requires all
the agents to share only α fraction of v(A). The classic Bondareva-Shapley Theorem [5, 19] says
that for subadditive functions, the largest value α for which the α-approximate core is nonempty is
equal to the integrality gap of the LP. Further, the integrality gap of the LP is one (i.e., v(A) is also
an optimal fractional solution) if and only if the valuation function is XOS; this is also equivalent
to the non-emptiness of the core.

Given an instance of our problem with agents set A, we may consider the above LP and its
integrality gap for every subinstance A′ ⊆ A; among which the largest integrality gap characterizes
the worst scenario between the optimal integral and fractional solution of the problem. Our second
result is the following.

2

Theorem 2. There is a budget feasible truthful mechanism for subadditive functions with approxi-
mation ratio linear to the largest integrality gap over all subinstances of the above LP. In particular,
for XOS functions, the mechanism has a constant approximation ratio.

For some special subadditive functions whose integrality gaps are bounded by constants (XOS is
one such example), our mechanism will have a constant approximation. Note that the mechanism
may have exponential running time. For some special XOS functions like matching and clique,
the mechanism can be implemented in polynomial time (given a demand query to the valuation
function, see Section 6). Further, our mechanisms also work for non-monotone functions and a
generalized subadditive functions (see Section 5).

Our results show an interesting connection between budget feasible mechanism design and
integrality gap, as well as the existence of α-approximate core. While our mechanisms do not
answer the above fundamental question posed in [10] directly, we believe that they could be a solid
step towards solving the problem eventually, and possibly, with an affirmative answer.

In the design of budget feasible mechanisms, due to the sharp budget constraint, the major
approach used by previous works, e.g., [20, 6, 10], is based on a simple idea of adding agents one
by one greedily and carefully to ensure that the budget constraint is not violated. Our mechanisms
use another simple, but powerful, approach: Random sampling. We add agents into a test set
T with probability half each and compute an optimal budgeted solution on T (to derive efficient
computation, a constant approximation to the optimum suffices). Note that all agents in T are only
for the purpose of ‘evaluation’ and will not be winners anyway. The computed optimal solution on
T gives a close estimate to the optimal solution of the whole set with a high probability. We then,
using the evaluation from T as a threshold, compute a real winner set from the remaining agents.
Random sampling appears as a powerful approach and has been used in other domains of mechanism
design, e.g., digital goods auctions [13], secretary problem [2, 1], social welfare maximization [9],
and mechanism design without money [7]. It is intriguing to find applications of random sampling
in other mechanism design problems.

Related Work. Our work falls into the subject of algorithmic mechanism design, which is a
fascinating field initiated by the seminal work of Nisan and Ronen [17]. There are two main
threads in algorithmic mechanism design: approximate social welfare with efficient computation or
with frugal payment; our work belongs to the latter.

As mentioned earlier, the study of approximate mechanism design with a budget constraint
was originated by Singer [20] and constant approximation mechanisms were given for additive and
submodular functions. The approximation ratios were later improved in [6]. Dobzinski, Papadim-
itriou, and Singer [10] considered subadditive functions and showed an O(log2 n) approximation
mechanism. They also considered cut function, which is a special non-monotone function, and gave
constant approximation mechanisms. Ghosh and Roth [12] considered a budget feasible mechanism
design model for selling privacy where there are externalities for each agent’s cost.

In an independent work, Badanidiyuru, Dobzinski, and Oren [3] considered maximizing social
welfare for subadditive functions with a knapsack constraint and gave a 2 + ǫ approximation al-
gorithm with demand queries. We consider the same problem and present a 4 + ǫ approximation
algorithm; the algorithm is used as a subroutine in our truthful mechanisms. However, the focus
of our paper is completely different from [3]: ours is on truthful mechanism design, whereas [3] is
on social welfare maximization.

3

2 Preliminaries

In a marketplace there are n agents (or items), denoted by A. Each agent i ∈ A has a privately
known incurred cost c(i) ≥ 0. For any given subset S ⊆ A of agents, there is a publicly known
valuation v(S), meaning the social welfare derived from S. We assume that v(∅) = 0 and the
valuation function is monotone, i.e., v(S) ≤ v(T) for any S ⊂ T ⊆ A (in Section 5, we will discuss
how to remove the monotone assumption).

We will consider XOS and subadditive functions in the paper; both are rather general classes
and contain a number of well studied functions as special cases, e.g., additive, gross substitutes,
and submodular.

• Subadditive (a.k.a. complement free): v(S) + v(T) ≥ v(S ∪ T) for any S, T ⊆ A.

• XOS (a.k.a. fractionally subadditive): There is a set of linear functions f1, . . . , fm such that
v(S) = max

{
f1(S), f2(S), . . . , fm(S)

}
for any S ⊆ A. Note that the number of functions m

can be exponential in n = |A|.

Another definition is that v(S) ≤
∑

T∈2A x(T) ·v(T) whenever
∑

T :i∈T x(T) ≥ 1 for any i ∈ S,
where 0 ≤ x(T) ≤ 1 and 2A is the power set of A. That is, if every element in S is fractionally
covered, then the sum of the values of all subsets weighted by the corresponding coefficients
is at least as large as v(S). Feige [11] showed that the two definitions are equivalent.

Our objective is to pick a subset of agents with maximum possible valuation given a sharp
budget B to cover their incurred costs, i.e., max

S⊆A
v(S) given c(S) =

∑
i∈S c(i) ≤ B. However,

agents, as self-interested entities, have their own objective as well; each agent i may not tell his true
privately known cost c(i), but, instead, submit a bid b(i) strategically. We use mechanism design
and its solution concept truthfulness to manage strategic behaviors of the agents. Upon receiving
b(i) from each agent, a mechanism decides an allocation S ⊆ A of the winners and a payment p(i)
to each i ∈ A. We assume that the mechanism has no positive transfer (i.e., p(i) = 0 if i /∈ S) and
is individually rational (i.e., p(i) ≥ b(i) if i ∈ S).

In a mechanism, agents bid strategically to maximize their utilities, which is p(i)− c(i) if i is a
winner and 0 otherwise. We say a mechanism is truthful if it is of the best interest for each agent to
report his true cost, i.e., b(i) = c(i). For randomized mechanisms, we consider universal truthfulness
in this paper: a randomized mechanism is called universally truthful if it takes a distribution over
deterministic truthful mechanisms.

Our setting is a single parameter domain, as each agent has only one private parameter which
is his cost. It is well- known [16] that in the single parameter setting, a mechanism is truthful if
and only if its allocation rule is monotone (i.e., a winner keeps winning if he unilaterally decreases
his bid) and the payment to each winner is his threshold bid (i.e., the maximal bid for which the
agent still wins). Therefore, to the end of designing a truthful mechanism, it suffices to design a
monotone allocation.

A mechanism is said to be budget feasible if its total payment is within the budget constraint,
i.e.,

∑
i p(i) ≤ B. Assume without loss of generality that c(i) ≤ B for any agent i ∈ A, since

such agent will never win in any budget feasible truthful mechanism. We evaluate a mechanism
according to its approximation ratio, which is defined as max

I

opt(I)
M(I) , where M(I) is the (expected)

value of a mechanism M on instance I and opt(I) is the optimal value of the following problem:
max

S⊆A
v(S) subjected to c(S) ≤ B. Our goal in the present paper is to design truthful budget

feasible mechanisms for XOS and subadditive functions with small approximation ratios.

4

3 A Sub-Logarithmic Approximation Mechanism

In this section we give an o(log n) approximation truthful mechanism for subadditive valuation
function. Note that the representation of a subadditive function usually requires exponential size
in n. Thus, we assume that we are given access to a demand oracle, which, for any given price
vector p(1), . . . , p(n), returns us a subset T ∈ argmaxS⊆A

(
v(S)−

∑
i∈S p(i)

)
. A demand oracle

enables us to evaluate the values of the function v(·), and a polynomial number of queries can be
asked in a polynomial time mechanism.

3.1 Subadditive Function Maximization with Budget

We first describe an algorithm that approximates maxS⊆A v(S) given that c(S) ≤ B. That is, we
ignore for a while strategic behavior of agents and consider a pure maximization problem where
the objective is to pick a subset with maximum possible valuation under the budget constraint.
Dobzinski et al. [10] considered the same question and gave a 4 approximation algorithm for the
unweighted case (i.e., the restriction is on the size of selected subset). Our algorithm extends their
result to the weighted case and runs in polynomial in n time if we are given a demand oracle.

SA-alg-max

• Let v∗ = maxi∈A v(i) and V = {v∗, 2v∗, . . . , nv∗}

• For each v ∈ V

– Set p(i) = v

2B · c(i) for each i ∈ A, and find T ∈ argmaxS⊆A

(
v(S)−

∑
i∈S

p(i)
)
.

– Let Sv = ∅.

– If v(T) < v

2, then continue to next v.

– Else, in decreasing order of c(i) put items from T into Sv while budget

constraint is not violated.

• Output: Sv with the largest value v(Sv) for all v ∈ V.

Lemma 3.1. SA-alg-max is an 8 approximation algorithm for subadditive function maximization
given a demand oracle.

Proof. Let S∗ be an optimal solution. Note that v(S∗) ≥ v∗ = maxi∈A v(i) and c(S∗) ≤ B. For
all v ≤ v(S∗), we first prove that the algorithm will generate a non-empty set Sv with v(Sv) ≥

v
4 .

Since T is the maximum set returned by the oracle, we have

v(T)−
v

2B
c(T) ≥ v(S∗)−

v

2B
c(S∗) ≥ v −

v

2B
·B ≥

v

2

Hence, v(T) ≥ v
2 . If c(T) ≤ B, then Sv = T and we are done. Otherwise, by the greedy procedure

of picking items from T to Sv, we are guaranteed that c(Sv) ≥
B
2 . Assume for contradiction that

v(Sv) <
v
4 . Then

v(T \ Sv)−
v

2B
c(T \ Sv) ≥ v(T)− v(Sv)−

v

2B

(
c(T)− c(Sv)

)

> v(T)−
v

4
−

v

2B
c(T) +

v

2B
·
B

2

= v(T)−
v

2B
c(T)

5

The later contradicts to the definition of T , since T \ Sv is then better than T . Thus, we always
have v(Sv) ≥

v
4 for each v ≤ v(S∗). Since the algorithm tries all possible v ∈ V (including one with

v(S∗)
2 < v ≤ v(S∗)) and outputs the largest v(Sv), the output is guaranteed to be within a factor

of 8 to the optimal value v(S∗).

Note that we can actually modify the algorithm to get a 4 + ǫ approximation with runtime
polynomial in n and 1

ǫ
. To do so one may simply replace V by a larger set

{
ǫv∗, 2ǫv∗, . . . , ⌈n

ǫ
⌉ǫv∗

}
.

Both algorithms suffice for our purpose; for the rest of the paper, for simplicity we will use the 8
approximation algorithm to avoid extra parameter ǫ in the analysis.

We will use SA-alg-max as a subroutine to build a mechanism for subadditive functions in the
subsequent section. When there are different possible sets maximizing v(S)−

∑
i∈S p(i), we require

the algorithm to compute a fixed set T (i.e., the result will be the same for all possible answers on
oracle queries). This property is important for truthfulness of our mechanism. To implement this,
we assume that there is a fixed order of all items i1 ≺ i2 ≺ · · · ≺ in. We first compute

T1 ∈ argmax
S⊆A

(
v(S) −

∑

i∈S

p(i)

)
and T2 ∈ arg max

S⊆A\{i1}

(
v(S)−

∑

i∈S

p(i)

)
.

If v(T1)−
∑

i∈T1
p(i) = v(T2)−

∑
i∈T2

p(i), we know that there is a subset without i1 that gives us
the maximum; thus, we can ignore i1 for consideration. If v(T1)−

∑
i∈T1

p(i) > v(T2)−
∑

i∈T2
p(i),

we know that i1 should be included in any optimal solution; hence, we will always include i1 and
proceed the process iteratively for i2, i3, . . . , in. One can see that this process gives a fixed outcome
that maximizes v(S) −

∑
i∈S p(i).

3.2 Mechanism

In this section, we will describe our mechanism for subadditive functions.

SA-random-sample

1. Pick each item independently at random with probability 1
2 into group T.

2. Run SA-alg-max for items in group T; let v be the value of the returned subset.

3. For k = 1 to |A \ T |

• Run SA-alg-max on the set
{
i ∈ A \ T | c(i) ≤ B

k

}
where each item has a cost

B

k
, denote the output by X.

• If v(X) ≥ log logn

80 logn
· v

– Output X as the winner set and pay B

k
to each item in X.

– Halt.

4. Output ∅.

In the above mechanism, we first sample in expectation half of items to form a testing group T ,
and then use SA-alg-max to compute an approximate solution for items in T given the budget
constraint B. As it can be seen in the analysis of the mechanism, the computed value v is in
expectation within a constant factor from the optimal value of the whole set A. That is, we are

6

able to learn the rough value of the optimal solution by random sampling. Next we consider the
remaining items A \ T and try to find a subset X with relatively big value in which every item
willing to “share” the budget B at a fixed share B

k
. (This part of our mechanism can be viewed as

a reversion of the classic cost sharing mechanism.) Finally, we use the information v from random
sampling as a benchmark to determine whether X should be a winner set or not.

The final mechanism for subadditive functions, which we denote by SA-mechanism-main, is a
uniform distribution of the above SA-random-sample and the following one which simply picks
a single item with the largest value.

mechanism-largest-item

• Let i ∈ argmaxi v(i) be the winner.

• Pay all budget B to the winner i.

Theorem 3.1. SA-mechanism-main runs in polynomial time given a demand oracle and is a
universally truthful budget feasible mechanism with an approximation ratio of O(logn

log logn).

To the end of proving the claim, we first establish the following lemma.

Lemma 3.2. For any given subset S ⊆ A and a positive integer k, assume that v(S) ≥ k · v(i)
for any i ∈ S. Further, suppose that S is divided uniformly at random into two groups T1 and T2.
Then, with probability at least 1

2 , we have v(T1) ≥
k−1
4k v(S) and v(T2) ≥

k−1
4k v(S).

Proof. We first claim that there are disjoint subsets S1 and S2 with S1 ∪S2 = S such that v(S1) ≥
k−1
2k v(S) and v(S2) ≥ k−1

2k v(S). This can be seen by the following recursive process: Initially
let S1 = ∅ and S2 = S; and we move items from S2 to S1 arbitrarily until the point when
v(S1) ≥

k−1
2k v(S). Consider the S1, S2 at the end of the process; we claim that at this point, we

also have v(S2) ≥
k−1
2k v(S). Note that v(S) ≤ v(S1) + v(S2). Let i be the last item moved from

S2 to S1; therefore, v(S1 \ {i}) < k−1
2k v(S), which implies that v(S2 ∪ {i}) > k+1

2k v(S). Thus,

v(S2) + v(i) ≥ v(S2 ∪ {i}) > k+1
2k v(S). As v(i) ≤ 1

k
v(S), we know that v(S2) >

1
2v(S) >

k−1
2k v(S).

Consider sets X1 = S1 ∩T1, Y1 = S1 ∩T2, X2 = S2 ∩T1 and Y2 = S2 ∩T2. Due to subadditivity
we have k−1

2k v(S) ≤ v(S1) ≤ v(X1) + v(Y1); hence, either v(X1) ≥ k−1
4k v(S) or v(Y1) ≥ k−1

4k v(S).

Similarly, we have that either v(X2) ≥
k−1
4k v(S) or v(Y2) ≥

k−1
4k v(S). Clearly, partitioning S1 into

X1,Y1 and partitioning S2 into X2, Y2 are independent to each other. Therefore, with probability
1
2 the most valuable parts of S1’s partition and S2’s partition will get into different sets T1 and T2,
respectively. Thus the lemma follows.

Proof of Theorem 3.1. Let S = A \ T . It is obvious that the mechanism runs in polynomial time
since SA-alg-max is in polynomial time. If the mechanism chooses mechanism-largest-item,
certainly it is budget feasible as the total payment is precisely B. If it chooses SA-random-

sample, either no item is a winner or X is selected as the winner set. Note that |X| ≤ k and each
item in X gets a payment of B

k
. It is therefore budget feasible as well.

(Truthfulness.) Truthfulness for mechanism-largest-item is obvious (as the outcome is irrelevant
to the submitted bids). Next we will prove that SA-random-sample is truthful as well. The
random sampling step does not depend on the bids of the items, and items in T have no incentive
to lie as they cannot win anyway. Hence, it suffices to only consider items in S. Observe that every
agent will be a candidate to the winning set only if c(i) ≤ B

k
. Consider any item i ∈ S and fixed

bids of other items. There are the following three possibilities if i reports his true cost c(i).

7

• Item i wins with a payment B
k
. Then we have c(i) ≤ B

k
and his utility is B

k
− c(i) ≥ 0. If i

reports a bid which is still less than or equal to B
k
, the output and all the payments do not

change. If i reports a bid which is larger than B
k
, he still could not win for a share larger than

B
k
and will not be considered for all smaller shares. Therefore, he derives 0 utility. Thus for

either case, i does not have incentive to lie.

• Item i loses and payment to each winner is B
k
≥ c(i). In this case, if i reduces or increases

his bid, he cannot change the output of the mechanism. Thus i always has zero utility.

• Item i loses and payment to each winner is B
k

< c(i) or the winning set is empty. In this
case, if i reduces his bid, he will not change the process of the mechanism until the payment
offered by the mechanism is less than c(i). Thus, even if i could win for some value k, the
payment he gets would be less than c(i), in which case his utility is negative. If i increases
his bid, he lose and thus derives zero utility.

Therefore, SA-random-sample is a universally truthful mechanism.

(Approximation Ratio.) It remains to estimate the approximation ratio. For any subset Z ⊆ A,
let OPT (Z) denote the optimal solution over the agents in Z under the budget constraint; and
OPT = OPT (A) denote the optimal solution for the whole set.

If there exists an item i ∈ A such that v(i) ≥ 1
2v(OPT), then mechanism-largest-item

will output an item with value at least 1
2v(OPT) and we are done. In the following, we assume

that v(i) < 1
2v(OPT) for all i ∈ A. Then, by Lemma 3.2, with probability at least 1

2 we have
v(OPT (T)) ≥ 1

8v(OPT) and v(OPT (S)) ≥ 1
8v(OPT). Hence, with probability at least 1

4 we have

v(OPT (S)) ≥ v(OPT (T)) ≥
1

8
v(OPT). (1)

Therefore, it suffices to prove that the main mechanism has an approximation ratio of O(logn
log logn)

given the inequalities (1).
Since SA-alg-max is an 8 approximation of v(OPT (T)), we have v ≥ 1

8v(OPT (T)) ≥ 1
64v(OPT).

Clearly, if SA-random-sample outputs a non-empty set, then its value is at least log logn
80 logn · v ≥

log logn
5120 logn · v(OPT). Hence, it remains to prove that the mechanism will always output a non-empty
set given formula (1).

Let S∗ = {1, 2, 3, . . . ,m} ⊆ S be an optimal solution of S given the budget constraint B and
c1 ≥ c2 ≥ · · · ≥ cm. We recursively divide the agents in S∗ into different groups as follows:

• Let α1 be the largest integer such that c1 ≤ B
α1
. Put the first min{α1,m} agents into group

Z1.

• Let βr = α1 + · · ·+ αr. If βr < m let αr+1 be the largest integer such that c
βr+1

≤ B
αr+1

; put

the next min{αr+1,m− βr} agents into group Zr+1.

Let us denote by x+1 the number of groups. Since items in S∗ are ordered by c1 ≥ c2 ≥ · · · ≥ cm,
we have αr+1 ≥ αr for any r. If there exists a set Zj such that v(Zj) ≥ log logn

10 logn · v, then the

mechanism does not output an empty set, as it could buy αj items at price B
αj

given that SA-alg-

max is an 8-approximation and the threshold we set is v(Zj) ≥
log logn
80 logn · v. Thus, we may assume

8

that v(Zj) <
log logn
10 logn · v for each j = 1, 2, . . . , x+ 1. On the other hand, by subadditivity, we have

x+1∑

j=1

v(Zj) ≥ v(S∗) = v(OPT (S)) ≥ v(OPT (T)) ≥ v.

Putting the two inequalities together, we can conclude that (x+ 1) · log logn
10 logn · v > v, which implies

that

x >
5 log n

log log n
≥

5 logm

log logm
.

On the other hand, since S∗ = {1, 2, 3, . . . ,m} is a solution for S within the budget constraint,
we have that

∑m
j=1 cj ≤ B. Further, since c1 > B

α1+1 , cβ1+1
> B

α2+1 , . . . , cβx+1
> B

αx+1+1 , we have

B ≥
m∑

j=1

cj ≥ c1 + α1cβ1+1
+ · · · + αxcβx+1

>
B

α1 + 1
+

α1B

α2 + 1
+ · · · +

αxB

αx+1 + 1
.

Hence,

1 ≥
1

α1 + 1
+

α1

α2 + 1
+ · · ·+

αx

αx+1 + 1
≥

1

2α1
+

α1

2α2
+ · · ·+

αx

2αx+1
.

In particular, we get

2 ≥
1

α1
+

α1

α2
+ · · ·+

αx−1

αx
≥ x

x

√
1

α1

α1

α2
· · ·

αx−1

αx
,

where the last inequality is simply the inequality of arithmetic and geometric means. Hence, we

get 2 ≥ x
x
√

1
αx

, which is equivalent to αx ≥ (x2)
x. Now plugging in the fact that m ≥ αx and

x ≥ 5 logm
log logm , we come to a contradiction. This concludes the proof.

4 Integrality-Gap Approximation Mechanisms

The mechanism SA-mechanism-main gives a sub-logarithmic approximation for subadditive func-
tions. The next question one would ask is whether there exists a constant approximation truthful
mechanism. In this section we give another mechanism attempting to answer this question. Our
mechanism has an approximation ratio which equals to the integrality gap of a linear program. For
special cases when the integrality gap can be bounded by a constant (e.g., all XOS functions have
integrality gap 1), our mechanism will have a constant approximation ratio.

For simplicity, we will first present our mechanism for XOS functions. Next in Section 4.2, we
will discuss how to generalize it to subadditive functions.

4.1 XOS Functions

We will first consider XOS functions. Given an XOS function v(·), by its definition, assume that
v(S) = max {f1(S), f2(S), . . . , fm(S)} for any S ⊆ A, where each fj(·) is a nonnegative additive
function, i.e., fj(S) =

∑
i∈S fj(i). Note that the value m may not be bounded by a polynomial of

n = |A|.
In our mechanism, we use a random mechanism Additive-mechanism for additive valuation

functions as an auxiliary procedure, where Additive-mechanism is a universally truthful mecha-
nism and has an approximation factor of at most 3 (see, e.g., Theorem B.2, [6]).

9

XOS-random-sample

1. Pick each item independently at random with probability 1
2 into group T.

2. Compute an optimal solution OPT (T) for items in T given budget B.

3. Set a threshold t = v(OPT (T))
8B .

4. Consider items in A \ T and find a set S∗ ∈ arg max
S⊆A\T

{
v(S)− t · c(S)

}
.

5. Find an additive function f with f(S∗) = v(S∗) in the XOS representation of v(·).

6. Run Additive-mechanism for function f(·) with respect to set S∗ and budget B.

7. Output the result of Additive-mechanism.

In the above mechanism, again we use the approach of random sampling to evaluate the optimal
solution and use this information to compute a proper threshold t for the rest of items. Specifically,
we find a subset S∗ with the largest difference between its value and cost, multiplied by the threshold
t (in the computation of S∗, if there are multiple choices, again, we pick one according to a fixed
order). Finally, we use the property of XOS functions to find a linear representation of v(S∗) and
run a truthful mechanism for linear functions with respect to S∗. Note that the runtime of the
mechanism is exponential1.

Consider the threshold t, subset S∗, and additive function f defined in the XOS-random-

sample. We have the following observation.

Claim 4.1. For any S ⊆ S∗, f(S)− t · c(S) ≥ 0.

Proof. Suppose by a contradiction that there exists a subset S ⊆ S∗ such that f(S)− t · c(S) < 0.
Let S′ = S∗ \ S. Since f is an additive function, we have c(S′) + c(S) = c(S∗) and f(S′) + f(S) =
f(S′ ∪ S) = f(S∗) = v(S∗). Thus,

v(S′)− t · c(S′) ≥ f(S′)− t · c(S′)

= v(S∗)− t · c(S∗)−
(
f(S)− t · c(S)

)

> v(S∗)− t · c(S∗),

which contradicts the definition of S∗.

The following claim is critical for truthfulness.

Claim 4.2. If any item j ∈ S∗ reports a different cost b(j) < c(j), then set S∗ remains the same.

Proof. Let b be the bid vector where j reports b(j) and others remain unchanged. First we notice
that for any set S with j ∈ S,

(
v(S)− t · b(S)

)
−
(
v(S)− t · c(S)

)
= t

(
c(j)− b(j)

)
is a fixed positive

value. Hence,

v(S∗)− t · b(S∗) = v(S∗)− t · c(S∗) + t
(
c(j) − b(j)

)

≥ v(S) − t · c(S) + t
(
c(j) − b(j)

)

= v(S) − t · b(S).

1Indeed, in the second step of the mechanism, we can use SA-alg-max to compute an approximate solution,
which suffices for our purpose. Step 4 can be done easily by a demand query. Hence, if we are given an access to
an oracle which, for any subset X of items, gives a linear function f with f(X) = v(X), then the mechanism can be
implemented in polynomial time.

10

Further, for any set S with j /∈ S, we have

v(S∗)− t · b(S∗) > v(S∗)− t · c(S∗)

≥ v(S)− t · c(S)

= v(S)− t · b(S).

Therefore, we may conclude that S∗ = arg max
S⊆A\T

(
v(S)− t · b(S)

)
.

Our main mechanism for XOS functions, denoted by XOS-mechanism-main, is simply a uni-
form distribution of the two mechanisms mechanism-largest-item and XOS-random-sample.
We have the following result.

Theorem 4.1. The mechanism XOS-mechanism-main is budget feasible, universally truthful,
and provides a constant approximation ratio for XOS valuation functions.

The theorem follows from the following lemmas.

Lemma 4.1. The main mechanism XOS-mechanism-main is universally truthful.

Proof. Our mechanism is a combination of two mechanisms, in which mechanism-largest-item

is obviously truthful. Therefore, it remains to prove that XOS-random-sample is truthful. To
this end, since all items are single parameter, it suffices to show that XOS-random-sample is
monotone, that is, a winning item will still be in the winning set with a smaller bid. Assume that
item i is in the winning set of XOS-random-sample. If i decreases its bid, then by Claim 4.2 and
the rule of the mechanism, S∗ does not change. When the mechanism runs Additive-mechanism

for S∗ with respect to additive function f(·), since Additive-mechanism is a truthful mechanism,
i will still be in the winning set when decreasing its bid. Therefore, XOS-random-sample is
monotone, and thus, truthful.

Lemma 4.2. The main mechanism XOS-mechanism-main is budget feasible.

Proof. It suffices to prove that both mechanism-largest-item and XOS-random-sample are
budget feasible. Clearly, mechanism-largest-item is budget feasible. XOS-random-sample

uses a budget feasible mechanism Additive-mechanism as a final output for winning set and
payments to them. Therefore, threshold payments in XOS-random-sample can be only smaller
than those in Additive-mechanism providing us that XOS-random-sample is budget feasible
as well.

Lemma 4.3. The main mechanism XOS-mechanism-main has a constant approximation ratio.

Proof. Let OPT denote the optimal solution given budget B, and let k = mini∈OPT
v(OPT)

v(i) . Thus

v(OPT) ≥ k · v(i) for each i ∈ OPT . By Lemma 3.2, we have v(OPT ∩ T) ≥ k−1
4k v(OPT) with

probability at least 1
2 . Thus, if we denote the optimal solution of T given budget B by OPT (T),

then we have v(OPT (T)) ≥ v(OPT ∩T) ≥ k−1
4k v(OPT) with probability at least 1

2 , as OPT ∩ T is
a particular solution and OPTT is an optimal solution for set T with budget constraint.

We let OPT ∗ be the optimal solution with respect to the item set S∗, additive value function f
and budget B. In the following we will show that f(OPT ∗) is a good approximation to the actual
social optimum v(OPT). Consider the following two cases:

11

• c(S∗) > B. Given the condition, we can always find a subset S′ ⊆ S∗, such that B
2 ≤ c(S′) ≤

B. By Claim 4.1, we know f(S′) ≥ t · c(S′) ≥ v(OPT (T))
8B · B

2 ≥ v(OPT (T))
16 . Then by the fact

that OPT ∗ is an optimal solution and S′ is a particular solution with budget constraint B,
we have f(OPT ∗) ≥ f(S′) ≥ v(OPT (T))

16 ≥ k−1
64k v(OPT) with probability at least 1

2 .

• c(S∗) ≤ B. Then OPT ∗ = S∗. Let S′ = OPT\T ; thus, c(S′) ≤ c(OPT) ≤ B. By
Lemma 3.2, we have v(S′) ≥ k−1

4k v(OPT) with probability at least 1
2 . Recall that S∗ =

arg max
S⊆A\T

(v(S)− t · c(S)). Then with probability at least 1
2 , we have

f(OPT ∗) = f(S∗) = v(S∗)

≥ v(S∗)− t · c(S∗)

≥ v(S′)− t · c(S′)

≥
k − 1

4k
v(OPT)−

v(OPT (T))

8B
· B

≥
k − 1

4k
v(OPT)−

v(OPT)

8

=
k − 2

8k
v(OPT).

In either case, we get f(OPT ∗) ≥ min
{
k−1
64k v(OPT), k−2

8k v(OPT)
}
≥ k−2

64k v(OPT) with proba-
bility at least 1

2 . Then in the last step of our mechanism XOS-random-sample, we use the output
of Additive-mechanism(f, S∗, B) as our final output. Recall that Additive-mechanism has ap-
proximation factor of at most 3 with respect to the optimal solution f(OPT ∗). Thus, the solution
given by XOS-random-sample is at least 1

3 · f(OPT ∗) ≥ 1
3 ·

1
2 · k−2

64k v(OPT) = k−2
384kv(OPT).

On the other hand, since k = mini∈OPT
v(OPT)

v(i) , the solution given by mechanism-largest-

item satisfies maxi v(i) ≥
1
k
v(OPT). Combining the two mechanisms together, our main mecha-

nism XOS-mechanism-main has performance at least

(
1

2
·
k − 2

384k
+

1

2
·
1

k

)
v(OPT) =

k + 382

768k
v(OPT) ≥

1

768
v(OPT).

This completes the proof of the lemma.

4.2 Subadditive Functions

Here we use our results of the previous subsection for XOS functions to design a truthful mechanism
for subadditive functions. Let S1, . . . , SN be a permutation of all possible subsets of A, where
N = |2A| is the size of the power set 2A. For each subset S ⊆ A, consider the following linear
program, where there is a variable αj associated with each subset Sj .

LP (S) : min

N∑

j=1

αj · v(Sj)

s.t. αj ≥ 0, 1 ≤ j ≤ N
∑

j: i∈Sj

αj ≥ 1, ∀ i ∈ S

12

In the above linear program, the minimum is taken over all possible non-negative values of α =
(α1, . . . , αN). If we consider each αj as the fraction of the cover by subset Sj , the last constraint
implies that all items in S are fractionally covered. Hence, LP(S) describes a linear program
for the set cover of S. For any subadditive function v(·), it can be seen that the value of the
optimal integral solution to the above LP(S) is always v(S). Indeed, one has S ⊆

⋃
j: αj≥1 Sj and∑

j αj · v(Sj) ≥
∑

j: αj≥1 v(Sj) ≥ v
(⋃

j: αj≥1 Sj

)
≥ v(S).

Let ṽ(S) be the value of the optimal fractional solution of LP(S), and I(S) = v(S)
ṽ(S) be the

integrality gap of LP(S). Let I = maxS⊆A I(S); the integrality gap I gives a worst-case upper

bound on the integrality gap of all subsets. Hence, we have v(S)
I ≤ ṽ(S) ≤ v(S) for any S ⊆ A.

The classic Bondareva-Shapley Theorem [5, 19] says that the integrality gap I(S) is one (i.e., v(S)
is also an optimal fractional solution to the LP) if and only if v(·) is an XOS function.

Lemma 4.4. ṽ(·) is an XOS function.

Proof. For any subset S ⊆ A, consider any non-negative vector γ = (γ1, . . . , γN) ≥ 0 that satisfies∑
j: i∈Sj

γj ≥ 1 for any i ∈ S. Then, we have

N∑

j=1

γj · ṽ(Sj) =
N∑

j=1

γj · min
βj,·≥0

N∑

k=1

βj,k · v(Sk)

∣∣∣∣∣∣
∀ i ∈ Sj,

∑

k: i∈Sk

βj,k ≥ 1

= min
β≥0

N∑

j=1

γj

N∑

k=1

βj,k · v(Sk)

∣∣∣∣∣∣
∀ j,∀ i ∈ Sj,

∑

k: i∈Sk

βj,k ≥ 1

= min
β≥0

N∑

k=1

(N∑

j=1

γjβj,k

)
· v(Sk)

∣∣∣∣∣∣
∀ j,∀ i ∈ Sj,

∑

k: i∈Sk

βj,k ≥ 1

≥ min
α≥0

N∑

k=1

αk · v(Sk)

∣∣∣∣∣∣
∀ i ∈ S,

∑

k: i∈Sk

αk ≥ 1

= ṽ(S)

The inequality above follows from the fact that for any i ∈ S,

∑

k: i∈Sk

∑

j

γjβj,k =
∑

j

γj
∑

k: i∈Sk

βj,k ≥
∑

j

γj ≥
∑

j: i∈Sj

γj ≥ 1.

Hence, ṽ(·) is fractionally subadditive, which is equivalent to XOS.

We are now ready to present our mechanism for subadditive functions.

SA-mechanism-main-2

1. For each subset S ⊆ A, compute ṽ(S).

2. Run XOS-mechanism-main for the instance with respect to XOS function ṽ(·).

3. Output the result of XOS-mechanism-main.

13

Theorem 4.2. The mechanism SA-mechanism-main-2 is budget feasible, universally truthful,
and provides an approximation ratio of O(I) for subadditive functions, where recall that I is the
largest integrality gap of LP(S) for all subsets.

Proof. Note that the valuations v(·) are public knowledge; thus computing ṽ(·) and run XOS-

mechanism-main with respect to ṽ(·) do not affect truthfulness. The claim then follows from

Theorem 4.1 and the fact that v(S)
I ≤ ṽ(S) ≤ v(S) for any S ⊆ A (i.e., using ṽ(·) instead of v(·) we

only lose a factor of I in the approximation ratio).

5 Extensions

In the current section we consider two extensions for valuation functions where the mechanisms
described before still can be applied.

5.1 Non-Monotone Functions

In general, v(·) can be a non-monotone subadditive (or XOS) function, e.g., the cut function studied
in [10]. That is, for any S ⊂ T ⊆ A, it is not necessarily that v(S) ≤ v(T). We next describe how
to apply our mechanisms to non-monotone functions.

For any subset S ⊆ A, define
v̂(S) = max

T⊆S
v(T).

Clearly, v̂(·) is monotone and inherits the classification of v(·); that is, if v(·) is subadditive (or
XOS), so does v̂. Note that given a demand oracle, v̂(·) can be computed easily. Then we can
apply our mechanisms to v̂(·) directly. Further, we have the following observations.

• For any subset S ⊆ A, let OPT (S) be an optimal solution of v(·) on S. Then OPT (S) is an
optimal solution of v̂(·) on S as well. In particular, this implies that v̂(·) and v(·) will have
the same optimal value on the whole set and testing set in random sampling.

• In mechanism XOS-random-sample, the computed S∗ ∈ argmaxS⊆A\T

{
v(S) − t · c(S)

}

is an optimal solution for maxS⊆A\T

{
v̂(S) − t · c(S)

}
as well, i.e., v̂(S∗) = v(S∗). Let f̂ be

the linear function with f̂(S∗) = v̂(S∗) = v(S∗) computed for v̂(·). Note that in f̂(S∗), each
item i ∈ S∗ has a non-negative contribution to the value of f̂(S∗) (otherwise, S∗ will not be
an optimal solution). Hence, we can run Additive-mechanism for additive function f̂(·) on
S∗, which yields the desired result.

Therefore, all our mechanisms described above continue to work for non-monotone functions with
the same approximation ratios.

5.2 Relaxed Subadditive Functions

A valuation function v(·) is called K-subadditive if for any disjoint subsets S1, S2, . . . , Sℓ ⊆ A of
items, v(S1 ∪ S2 ∪ · · · ∪ Sℓ) ≤ K ·

(
v(S1) + v(S2) + · · ·+ v(Sℓ)

)
. Note that a function is subadditive

in the usual sense if and only if it is 1-subadditive.
For this case we may consider another valuation function: For any S ⊆ A, define

v̌(S) = min
{
v(S1) + v(S2) + · · · + v(Sℓ)

∣∣ S1, . . . , Sℓ is a partition of S
}
.

14

Note that v̌(·) approximates v(·) within a factor of K, that is, K· v̌(S) ≥ v(S) ≥ v̌(S). It can be seen
that this new function is subadditive. Thus, by applying our mechanisms to v̌(·), we lose an extra
factor of K in the approximation ratio with respect to the optimal solution of v(·). In particular,
when K is a constant, our mechanisms will have the same order of approximation ratio.

6 Special Examples

In this section we consider a few concrete examples of XOS and subadditive functions. The main
purpose of which is to illustrate how general scheme works in particular settings, and give cer-
tain evidence that the general approach is natural and can be efficiently implemented in certain
circumstances.

6.1 Matching

In the instance of matching, we are given a (bipartite) graph G = (U,E), where each edge e ∈ E
corresponds to an agent with a value v(e) and a privately known cost c(e). For any subset of edges
S ⊆ E, its value v(S) is defined to be the total value of the largest matching induced by the edge
set S. It is well known that matching is not submodular (e.g., edge (u3, u4) contributes one to the
set {(u1, u2), (u2, u3)} but contributes zero to {(u2, u3)} when all edges have unit value). However,
matching is in the class of XOS functions; hence, our mechanism XOS-mechanism-main gives a
constant approximation.

We argue that our mechanism XOS-random-sample, and thus, XOS-mechanism-main, can
be implemented in polynomial time for matching. In random sampling, computing an optimal
solution for the testing group T is equivalent to solving a maximum weighted matching problem
with a budget constraint, which admits a polynomial-time approximation scheme [4]. (Note that
similar to SA-mechanism-main and its subroutine SA-alg-max, it is not necessary to compute
an optimal solution for the testing group; any constant approximation suffices to our mechanisms.)
The set S∗ can be computed according to the following simple subroutine: for each remaining edge
e ∈ E \ T we set the new value w(e) = v(e) − t · c(e) and then compute a maximal matching
with respect to w in the induced subgraph E \ T ; this forms the set S∗. Finally, for this given
selected matching S∗, its valuation is already additive with respect to its members. Therefore, the
implementation can be done in polynomial time. This gives the following claim.

Proposition 6.1. XOS-mechanism-main is a constant approximation mechanism for matching
and can be implemented in polynomial time.

6.2 Clique

Given a graph G = (U,E), each vertex i is an agent with a value v(i) and a privately known cost
c(i). For a given subset of vertices S ⊆ U , its value v(S) is defined to be the value of the largest
weighted clique in S, i.e., v(S) = max

{∑
i∈T v(i) | T ⊆ S is a clique

}
. Note that clique is not

submodular as well (e.g., consider a graph with vertices {i1, i2, i3, i4} of unit value each and edges
{(i1, i2), (i1, i4), (i2, i3), (i2, i4)}; the contribution of i1 to {i2, i3} is zero, but to {i2, i3, i4} is one).
Further, it can be seen that clique is an XOS function (this follows simply from the definition of
v(S)). Hence, given a demand oracle, SA-alg-max computes a subset whose value is a constant
approximation to the optimal solution. In addition, the set S∗ can be computed by a single demand

15

query; and the linear function for v(S∗) can be found easily by demand queries for elements in S∗

one by one. Hence, we have the following claim.

Proposition 6.2. XOS-mechanism-main plus subroutine SA-alg-max gives a constant approx-
imation mechanism for clique and can be implemented in polynomial time given a demand oracle2.

6.3 From Cost Minimization to Valuation Maximization

In this section we will consider our motivating example discussed at the beginning of the Introduc-
tion. A company serves a set A of agents (or jobs). Let R denote the set of solution spaces, i.e.,
all possible ways to serve the agents. For any r ∈ R, there is a cost function fr(·) which gives the
running cost to serve different subsets of agents by solution r. For any subset S ⊆ A, we want to
spend as little cost as possible. Hence, the cost to the company is given by

c(S) = min
{
fr(S) | r ∈ R

}
.

The model includes a number of well-studied problems. For example, in job scheduling, R cor-
responds to all possible assignments between jobs and machines; in facility location, R includes
all combinations of facilities to open; and in congestion games, R gives all possible assignments
between agents and resources. For each of these minimization problems, the cost of the whole set
c(A) gives the value of an optimal solution.

Assume now the company would like to remove some of the agents from A by paying them a
certain amount of subsidy. Our objective is save the running cost as much as possible. Hence, for
any S ⊆ A, we can define

v(S) = c(A) − c(A \ S).

That is, the valuation of S is equal to the difference of the costs between the whole set A and the
remaining set A \ S.

Proposition 6.3. If c(·) is a supermodular function, then v(·) is a submodular function.

The above claim applies to, e.g., congestion games when the latency functions are polynomials
with positive coefficients (thus the cost function is supermodular); hence, our mechanisms can be
applied, as well as mechanisms specifically designed for submodular valuation [20, 6]. When c(·) is
a submodular function, it can be seen that v(·) is neither submodular nor subadditive. However,
in some examples (e.g., in job scheduling, the cost is a square root function with respect to the
total length of scheduled jobs), we can show that v(·) is a relaxed subadditive function, and our
mechanisms therefore can be applied.

Our model links cost minimization problems with budget feasible mechanism design. For a vari-
ety of problems, e.g., facility location, and job scheduling with various minimization objectives, the
valuation function v(·) defined above may not necessarily fall into the class of (relaxed) subadditive
functions. The design of budget feasible mechanisms with small approximations for these problem
is an intriguing question, which we leave for future work.

2Our result does not contradict to the hardness of max-clique approximation. Indeed, given the access to powerful
oracles, even a simple value query of the whole set will give the value of an optimal clique solution.

16

References

[1] M. Babaioff, M. Dinitz, A. Gupta, N. Immorlica, K. Talwar: Secretary Problems: Weights and Dis-
counts, SODA 2009, 1245-1254.

[2] M. Babaioff, N. Immorlica, R. Kleinberg,Matroids, Secretary Problems, and Online Mechanisms, SODA
2007, 434-443.

[3] A. Badanidiyuru, S. Dobzinski, S. Oren, Optimization with Demand Oracles, arXiv.org/abs/1107.2869.

[4] A. Berger, V. Bonifaci, F. Grandoni, G. Schafer, Budgeted Matching and Budgeted Matroid Intersection
via the Gasoline Puzzle, Math. Program., V.128(1-2), 355-372, 2011.

[5] O. Bondareva, Some Applications of Linear Programming to Cooperative Games, Problemy Kibernetiki,
V.10, 119-139, 1963.

[6] N. Chen, N. Gravin, P. Lu, On the Approximability of Budget Feasible Mechanisms, SODA 2011, 685-
699.

[7] N. Chen, N. Gravin, P. Lu, Mechanism Design without Money via Stable Matching,
arxiv.org/abs/1104.2872.

[8] E. H. Clarke, Multipart Pricing of Public Goods, Public Choice, V.11, 17-33, 1971.

[9] S. Dobzinski, Two Randomized Mechanisms for Combinatorial Auctions, APPROX 2007, 89-103.

[10] S. Dobzinski, C. Papadimitriou, Y. Singer, Mechanisms for Complement Free Procurement, EC 2011,
273-282.

[11] U. Feige, On Maximizing Welfare When Utility Functions Are Subadditive, SIAM J. Computing,
V.39(1), 122-142, 2009.

[12] A. Ghosh, A. Roth, Selling Privacy at Auction, EC 2011, 199-208.

[13] A. Goldberg, J. Hartline, A. Karlin, M. Saks, A. Wright, Competitive Auctions, Games and Economic
Behavior, V.55(2), 242-269, 2006.

[14] T. Groves, Incentives in Teams, Econometrica, V.41, 617-631, 1973.

[15] B. Lehmann, D. Lehmann, N. Nisan, Combinatorial Auctions with Decreasing Marginal Utilities, EC
2001, 18-28.

[16] R. Myerson, Optimal Auction Design, Mathematics of Operations Research, V.6(1), 1981.

[17] N. Nisan, A. Ronen, Algorithmic Mechanism Design, STOC 1999, 129-140.

[18] N. Nisan, T. Roughgarden, E. Tardos, V. Vazirani, Algorithmic Game Theory, Cambridge University
Press, 2007.

[19] L. Shapley, On Balanced Sets and Cores, Naval Research Logistics Quarterly, V.14, 453-460, 1967.

[20] Y. Singer, Budget Feasible Mechanisms, FOCS 2010, 765-774.

[21] W. Vickrey, Counterspeculation, Auctions and Competitive Sealed Tenders, Journal of Finance, V.16,
8-37, 1961.

17

	1 Introduction
	2 Preliminaries
	3 A Sub-Logarithmic Approximation Mechanism
	3.1 Subadditive Function Maximization with Budget
	3.2 Mechanism

	4 Integrality-Gap Approximation Mechanisms
	4.1 XOS Functions
	4.2 Subadditive Functions

	5 Extensions
	5.1 Non-Monotone Functions
	5.2 Relaxed Subadditive Functions

	6 Special Examples
	6.1 Matching
	6.2 Clique
	6.3 From Cost Minimization to Valuation Maximization

