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• group 〈G, ?, e,̂ 〉
• field 〈F,+, ·,0,1〉
• vector space, graph, data structures, OSI layers, ...

Levels of abstraction:

1. Abstract group: 〈G, ?, e,̂ 〉

2. Instantiations: Integers, real number, elliptic curves

3. Representations: e.g. projective coordinates for ECs



Abstraction

Algebraic abstraction:

• group 〈G, ?, e,̂ 〉
• field 〈F,+, ·,0,1〉
• vector space, graph, data structures, OSI layers, ...

What is the abstraction of:

• cryptosystem ?
• digital signature scheme ?
• MPC protocol ?
• zero-knowledge proof ?
• algorithm, distinguisher, hybrid argument, ...?



Abstraction

Algebraic abstraction:

• group 〈G, ?, e,̂ 〉
• field 〈F,+, ·,0,1〉
• vector space, graph, data structures, OSI layers, ...

Goals of abstraction:

• eliminate irrelevant details, minimality
• simpler definitions
• generality of results
• simpler proofs
• elegance
• didactic suitability, understanding



Levels of abstraction in AC

# main concept concepts treated at this level

0. Constructions composability, construction trees

0’. Games isomorphism

1. Abstract systems cryptographic algebras

2. Discrete systems indistinguishability proofs

3. System implem. complexity, efficiency, asymptotics
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Notation: R α−→ S

Examples:
• A (k, n)-error-correcting code constructs a reliable channel

from a noisy channel:

NCn
(enc,dec)−→ RCk

• An extractor constructs a uniform m-bit string Um
from any RV X with min-entropy > m+ c and Us:

(X,Us)
ext−→ Um
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The construction paradigm

Many scientific disciplines can be seen as being constructive.

Construct an object S from another object R via construction α.

Notation: R α−→ S

Examples:
• A (k,m)-PRG constructs a uniform m-bit string

from a uniform k-bit string:

Uk
PRG−→ Um

• A key agreement protocol (KAP) constructs a shared
secret n-bit key from ???:

??? KAP−→ KEYn
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Many scientific disciplines can be seen as being constructive.

Construct an object S from another object R via construction α.

Notation: R
α,ε−→ S

Involved types:

• resource
• constructor
• construction notion
• metric on space of resources

d(R,S) ≤ ε ⇐⇒ R ≈ε S
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The construction paradigm

Many scientific disciplines can be seen as being constructive.

Construct an object S from another object R via construction α.

Notation: R
α,ε−→ S

Examples:
• A (k, n)-error-correcting code constructs a reliable channel

from a noisy channel:

NCn
(enc,dec)−→ RCk

R
(β, γ),ε−→ S :⇐⇒ S ≈ε β R γ

NCn
(enc,dec),ε−→ RCk ⇐⇒ RCk ≈ε enc NCn dec
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# main concept concepts treated at this level

0. Constructions composability, construction trees

0’. Games isomorphism

1. Abstract systems cryptographic algebras

2. Discrete systems indistinguishability proofs

3. System implem. complexity, efficiency, asymptotics
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resource set 〈Ω, ||〉, constructor set 〈Γ, ◦, | , id〉

Construction = subset of Ω× Γ×Ω

Possible notation: R α−→ S

Definition: A construction is serially composable if

1. R α−→ S ∧ S
β−→ T ⇒ R

α◦β−→ T

and generally composable if also:

2. R id−→ R

3. R α−→ S ⇒ R||T
α|id−→ S||T

∧ T||R
id|α−→ T||S
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One-time pad: A constructive perspective

1

C , C  , ...1ciphertext

1 2

key
21 key

21

2

2

addition modulo 2

M  , M  , ... M  , M  , ...
plaintext plaintext

K , K , ... K , K , ...

Perfect secrecy (Shannon):

C and M are statistically independent.
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One-time pad in constructive cryptography

. .

|.|

$

sim

BA

ESEC

otp−decotp−enc

A B

E

AUT

A

E

B

$
KEY

otp-decB otp-encA [KEY,AUT] ≡ simE SEC

written as a construction: [KEY,AUT]
OTP−→ SEC



Symmetric encryption in CC

.

|.|

$

sim

SEC

A B

E

dec

D

enc

E
A B

E

AUT

A

E

B

$
KEY

decB encA [KEY,AUT] ≈ simE SEC

written as a construction: [KEY,AUT]
tSYMt−→ SEC
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Constructive cryptography

Resource S is constructed from R by protocol π:

R π−→ S

Example: Alice-Bob-Eve setting, π = (π1, π2)

R π−→ S :⇔ ∃σ : π1
A π2

B R ≈ σE S

and

π1
A π2

B ⊥E R ≈ ⊥E S
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Cryptographic algebra 〈Φ,Σ〉

R
2

3

4

1 γ

β

α

Resource set Φ (here for interface set I = {1,2,3,4})
Converter set Σ

Algebraic laws:

• αiR ∈Φ for all R ∈Φ, α ∈Σ, i ∈ I
• αiβjR = βjαiR for all i 6= j

• 1iR = R for all i
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Complete local relations
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Example: 2-party resources

R ∼=π S :⇐⇒
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π1Rπ2 ≈ σ1Sσ2
π1Rπ2 ≈ σ1Sσ2
π1Rπ2 ≈ σ1Sσ2
π1Rπ2 ≈ σ1Sσ2

Special case: R = channel (neutral element, e.g. π1R = π1)

Theorem: A resource S such that SαS 6≈ S for all α cannot
be constructed from a communication channel.

Corollary [CF01]: Commitment cannot be constructed (from
a communication channel).

Corollary: A delayed communication channel cannot be
constructed (from a communication channel).

⇒ π1π2 ≈ Sσ2σ1S ≈ S
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Definition: A specification is a setR of resources.

Of special interest: Specifications with (for each party)
• a guaranteed choice space
• a possible choice space
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Abstraction by sets of resources

Definition: A specification is a setR of resources.

Of special interest: Specifications with (for each party)
• a guaranteed choice space
• a possible choice space

Definition: S is an abstraction of R via π:

R vπ S :⇐⇒ ∀R∈R ∃S∈S : R ∼=π S

Theorem: R vπ S is generally composable.
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Example: Encryption, capturing coercibility

sim_B
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Theorem: An unleakable (uncoercible) secure
communication channel cannot be constructed from an
authenticated channel and a secret key.
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Some Features of Abstract Cryptography

• top-down abstraction

• isomorphism: exact relation between ideal and real

• no central adversary; local simulators

• all resources captured
– communication model not hard-wired into the model
– absence can be modeled

• feasibility/efficiency notions free; not hard-wired

• specifications: guaranteed/possible choice domains

• existing frameworks can be captured as special cases
– universal composability (UC) by Canetti
– reactive simulatability by Pfitzmann/Waidner/Backes
– indifferentiability [MRH04]
– collusion-preserving computation [AKMZ12]



Thank you!



Constructing channels and keys: •-calculus

A−−−→ B (insecure) channel from A to B

The symbol “•” stands for exclusive access to the channel.

“•” at output: receiver is exclusive −→ confidentiality

“•” at input: sender is exclusive −→ authenticity

A−−−→•B secret channel from A to B

A •−−−→ B authentic channel from A to B

A •−−−→•B secure channel from A to B (secret and authentic)

A •===• B secret key shared by A and B

A ===• B one-sided key: A knows that at most B knows
the key, but B does not know who holds the key.
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A •
t1t2−−−→ B

A
t3t4−−−→ B

t4 ≥ t2


DSS−→ A •

t3t4−−−→ B

A •
t1t2−−−→ B

A
t3t4−−−→•B
t4 ≥ t2
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t3t4−−−→•B

Note: Conservation law of the •-calculus.

Are there any other cryptographic transformations?


