
Abstract Cryptography
and secure MPC

Ueli Maurer

ETH Zurich

joint work with Renato Renner

Secure Multi-Party Computation Workshop, Aarhus, June 2012.



Abstraction



Abstraction

Algebraic abstraction:

• group 〈G, ?, e,̂ 〉



Abstraction

Algebraic abstraction:

• group 〈G, ?, e,̂ 〉
• field 〈F,+, ·,0,1〉



Abstraction

Algebraic abstraction:

• group 〈G, ?, e,̂ 〉
• field 〈F,+, ·,0,1〉
• vector space, graph, data structures, OSI layers, ...



Abstraction

Algebraic abstraction:

• group 〈G, ?, e,̂ 〉
• field 〈F,+, ·,0,1〉
• vector space, graph, data structures, OSI layers, ...

Levels of abstraction:

1. Abstract group: 〈G, ?, e,̂ 〉

2. Instantiations: Integers, real number, elliptic curves

3. Representations: e.g. projective coordinates for ECs



Abstraction

Algebraic abstraction:

• group 〈G, ?, e,̂ 〉
• field 〈F,+, ·,0,1〉
• vector space, graph, data structures, OSI layers, ...

What is the abstraction of:

• cryptosystem ?
• digital signature scheme ?
• MPC protocol ?
• zero-knowledge proof ?
• algorithm, distinguisher, hybrid argument, ...?



Abstraction

Algebraic abstraction:

• group 〈G, ?, e,̂ 〉
• field 〈F,+, ·,0,1〉
• vector space, graph, data structures, OSI layers, ...

Goals of abstraction:

• eliminate irrelevant details, minimality
• simpler definitions
• generality of results
• simpler proofs
• elegance
• didactic suitability, understanding



Levels of abstraction in AC

# main concept concepts treated at this level

0. Constructions composability, construction trees

0’. Games isomorphism

1. Abstract systems cryptographic algebras

2. Discrete systems indistinguishability proofs

3. System implem. complexity, efficiency, asymptotics



The construction paradigm



The construction paradigm

Many scientific disciplines can be seen as being constructive.



The construction paradigm

Many scientific disciplines can be seen as being constructive.

Construct an object S from another object R via construction α.



The construction paradigm

Many scientific disciplines can be seen as being constructive.

Construct an object S from another object R via construction α.

Notation: R α−→ S



The construction paradigm

Many scientific disciplines can be seen as being constructive.

Construct an object S from another object R via construction α.

Notation: R α−→ S

Examples:
• A (k, n)-error-correcting code constructs a reliable channel

from a noisy channel:



The construction paradigm

Many scientific disciplines can be seen as being constructive.

Construct an object S from another object R via construction α.

Notation: R α−→ S

Examples:
• A (k, n)-error-correcting code constructs a reliable channel

from a noisy channel:

NCn
(enc,dec)−→ RCk



The construction paradigm

Many scientific disciplines can be seen as being constructive.

Construct an object S from another object R via construction α.

Notation: R α−→ S

Examples:
• A (k, n)-error-correcting code constructs a reliable channel

from a noisy channel:

NCn
(enc,dec)−→ RCk

• An extractor constructs a uniform m-bit string Um
from any RV X with min-entropy > m+ c and Us:

(X,Us)
ext−→ Um



The construction paradigm

Many scientific disciplines can be seen as being constructive.

Construct an object S from another object R via construction α.

Notation: R α−→ S

Examples:
• A (k,m)-PRG constructs a uniform m-bit string

from a uniform k-bit string:

Uk
PRG−→ Um



The construction paradigm

Many scientific disciplines can be seen as being constructive.

Construct an object S from another object R via construction α.

Notation: R α−→ S

Examples:
• A (k,m)-PRG constructs a uniform m-bit string

from a uniform k-bit string:

Uk
PRG−→ Um

• A key agreement protocol (KAP) constructs a shared
secret n-bit key from ???:

??? KAP−→ KEYn



The construction paradigm

Many scientific disciplines can be seen as being constructive.

Construct an object S from another object R via construction α.

Notation: R α−→ S

Involved types:

• resource
• constructor
• construction notion



The construction paradigm

Many scientific disciplines can be seen as being constructive.

Construct an object S from another object R via construction α.

Notation: R
α,ε−→ S

Involved types:

• resource
• constructor
• construction notion
• metric on space of resources

d(R,S) ≤ ε ⇐⇒ R ≈ε S



The construction paradigm

Many scientific disciplines can be seen as being constructive.

Construct an object S from another object R via construction α.

Notation: R
α,ε−→ S

Examples:
• A (k, n)-error-correcting code constructs a reliable channel

from a noisy channel:

NCn
(enc,dec)−→ RCk



The construction paradigm

Many scientific disciplines can be seen as being constructive.

Construct an object S from another object R via construction α.

Notation: R
α,ε−→ S

Examples:
• A (k, n)-error-correcting code constructs a reliable channel

from a noisy channel:

NCn
(enc,dec)−→ RCk

R
(β, γ),ε−→ S :⇐⇒ S ≈ε β R γ



The construction paradigm

Many scientific disciplines can be seen as being constructive.

Construct an object S from another object R via construction α.

Notation: R
α,ε−→ S

Examples:
• A (k, n)-error-correcting code constructs a reliable channel

from a noisy channel:

NCn
(enc,dec)−→ RCk

R
(β, γ),ε−→ S :⇐⇒ S ≈ε β R γ

NCn
(enc,dec),ε−→ RCk ⇐⇒ RCk ≈ε enc NCn dec



Levels of abstraction in AC

# main concept concepts treated at this level

0. Constructions composability, construction trees

0’. Games isomorphism

1. Abstract systems cryptographic algebras

2. Discrete systems indistinguishability proofs

3. System implem. complexity, efficiency, asymptotics



Constructions and composability

resource set 〈Ω, ||〉, constructor set 〈Γ, ◦, | , id〉



Constructions and composability

resource set 〈Ω, ||〉, constructor set 〈Γ, ◦, | , id〉

Construction = subset of Ω× Γ×Ω

Possible notation: R α−→ S



Constructions and composability

resource set 〈Ω, ||〉, constructor set 〈Γ, ◦, | , id〉

Construction = subset of Ω× Γ×Ω

Possible notation: R α−→ S

Definition: A construction is serially composable if

1. R α−→ S ∧ S
β−→ T ⇒ R

α◦β−→ T



Constructions and composability

resource set 〈Ω, ||〉, constructor set 〈Γ, ◦, | , id〉

Construction = subset of Ω× Γ×Ω

Possible notation: R α−→ S

Definition: A construction is serially composable if

1. R α−→ S ∧ S
β−→ T ⇒ R

α◦β−→ T

and generally composable if also:

2. R id−→ R

3. R α−→ S ⇒ R||T
α|id−→ S||T



Constructions and composability

resource set 〈Ω, ||〉, constructor set 〈Γ, ◦, | , id〉

Construction = subset of Ω× Γ×Ω

Possible notation: R α−→ S

Definition: A construction is serially composable if

1. R α−→ S ∧ S
β−→ T ⇒ R

α◦β−→ T

and generally composable if also:

2. R id−→ R

3. R α−→ S ⇒ R||T
α|id−→ S||T

∧ T||R
id|α−→ T||S



One-time pad: A constructive perspective

1

C , C  , ...1ciphertext

1 2

key
21 key

21

2

2

addition modulo 2

M  , M  , ... M  , M  , ...
plaintext plaintext

K , K , ... K , K , ...



One-time pad: A constructive perspective

1

C , C  , ...1ciphertext

1 2

key
21 key

21

2

2

addition modulo 2

M  , M  , ... M  , M  , ...
plaintext plaintext

K , K , ... K , K , ...

Perfect secrecy (Shannon):

C and M are statistically independent.



One-time pad in constructive cryptography

.

otp-decB otp-encA [KEY,AUT] ≡ simE SEC



One-time pad in constructive cryptography

. .

A B

E

AUT

A

E

B

$
KEY

otp-decB otp-encA [KEY,AUT] ≡ simE SEC



One-time pad in constructive cryptography

. .

A B

E

AUT

A

E

B

$
KEY

otp-decB otp-encA [KEY,AUT] ≡ simE SEC



One-time pad in constructive cryptography

. otp−enc

A B

E

AUT

A

E

B

$
KEY

otp-decB otp-encA [KEY,AUT] ≡ simE SEC



One-time pad in constructive cryptography

. otp−decotp−enc

A B

E

AUT

A

E

B

$
KEY

otp-decB otp-encA [KEY,AUT] ≡ simE SEC



One-time pad in constructive cryptography

. otp−decotp−enc

A B

E

AUT

A

E

B

$
KEY

otp-decB otp-encA [KEY,AUT] ≡ simE SEC



One-time pad in constructive cryptography

. .

BA

ESEC

otp−decotp−enc

A B

E

AUT

A

E

B

$
KEY

otp-decB otp-encA [KEY,AUT] ≡ simE SEC



One-time pad in constructive cryptography

.

$

sim

BA

ESEC

otp−decotp−enc

A B

E

AUT

A

E

B

$
KEY

otp-decB otp-encA [KEY,AUT] ≡ simE SEC



One-time pad in constructive cryptography

.

$

sim

BA

ESEC

otp−decotp−enc

A B

E

AUT

A

E

B

$
KEY

otp-decB otp-encA [KEY,AUT] ≡ simE SEC



One-time pad in constructive cryptography

.

|.|

$

sim

BA

ESEC

otp−decotp−enc

A B

E

AUT

A

E

B

$
KEY

otp-decB otp-encA [KEY,AUT] ≡ simE SEC



One-time pad in constructive cryptography

. .

|.|

$

sim

BA

ESEC

otp−decotp−enc

A B

E

AUT

A

E

B

$
KEY

otp-decB otp-encA [KEY,AUT] ≡ simE SEC

written as a construction: [KEY,AUT]
OTP−→ SEC



Symmetric encryption in CC

.

|.|

$

sim

SEC

A B

E

dec

D

enc

E
A B

E

AUT

A

E

B

$
KEY

decB encA [KEY,AUT] ≈ simE SEC

written as a construction: [KEY,AUT]
tSYMt−→ SEC



Levels of abstraction in AC

# main concept concepts treated at this level

0. Constructions composability, construction trees

0’. Games isomorphism

1. Abstract systems cryptographic algebras

2. Discrete systems indistinguishability proofs

3. System implem. complexity, efficiency, asymptotics



Levels of abstraction in AC

# main concept concepts treated at this level

0. Constructions composability, construction trees

0’. Games isomorphism

1. Abstract systems cryptographic algebras

2. Discrete systems indistinguishability proofs

3. System implem. complexity, efficiency, asymptotics



Constructive cryptography

Resource S is constructed from R by protocol π:

R π−→ S



Constructive cryptography

Resource S is constructed from R by protocol π:

R π−→ S

Example: Alice-Bob-Eve setting, π = (π1, π2)



Constructive cryptography

Resource S is constructed from R by protocol π:

R π−→ S

Example: Alice-Bob-Eve setting, π = (π1, π2)

R π−→ S :⇔ ∃σ : π1
A π2

B R ≈ σE S



Constructive cryptography

Resource S is constructed from R by protocol π:

R π−→ S

Example: Alice-Bob-Eve setting, π = (π1, π2)

R π−→ S :⇔ ∃σ : π1
A π2

B R ≈ σE S

and

π1
A π2

B ⊥E R ≈ ⊥E S



Proof of composition theorem for ABE-setting

SR

σ

E

BAπ2π1

E

BA



Proof of composition theorem for ABE-setting

TS

SR

σ′

B

E

Aπ′
2π′

1
E

BA

σ

E

BAπ2π1

E

BA



Proof of composition theorem for ABE-setting

TS

SR

σ′

B

E

Aπ′
2π′

1
E

BA

σ

π′
1

E

BAπ′
1 π2π1

E

BA



Proof of composition theorem for ABE-setting

TS

SR

σ′

B

E

Aπ′
2π′

1
E

BA

σ

π′
1

E

BAπ′
1 π2π1

E

BA

Definition: d non-expanding: d(αiR,αiS) ≤ d(R,S)



Proof of composition theorem for ABE-setting

TS

SR

σ′

B

E

Aπ′
2π′

1
E

BA

σ

π′
1

E

BAπ′
1 π2π1

E

BA

Definition: d non-expanding: d(αiR,αiS) ≤ d(R,S)

Example: efficient (e.g. poly-time) implementable systems



Proof of composition theorem for ABE-setting

TS

SR

σ′

B

E

Aπ′
2π′

1
E

BA

σ

π′
2π′

1
E

BAπ′
2π′

1 π2π1

E

BA

Definition: d non-expanding: d(αiR,αiS) ≤ d(R,S)

Example: efficient (e.g. poly-time) implementable systems



Proof of composition theorem for ABE-setting

TS

SR

σ

σ′

B

E

A

σ

π′
2π′

1
E

BA

σ

π′
2π′

1
E

BAπ′
2π′

1 π2π1

E

BA

Definition: d non-expanding: d(αiR,αiS) ≤ d(R,S)

Example: efficient (e.g. poly-time) implementable systems



Proof of composition theorem for ABE-setting

TS

SR

σ

σ′

B

E

A

σ

π′
2π′

1
E

BA

σ

π′
2π′

1
E

BAπ′
2π′

1 π2π1

E

BA

Definition: d non-expanding: d(αiR,αiS) ≤ d(R,S)

Example: efficient (e.g. poly-time) implementable systems



Levels of abstraction in AC

# main concept concepts treated at this level

0. Constructions composability, construction trees

0’. Games isomorphism

1. Abstract systems cryptographic algebras

2. Discrete systems indistinguishability proofs

3. System implem. complexity, efficiency, asymptotics



Cryptographic algebra 〈Φ,Σ〉

R
2

3

4

1



Cryptographic algebra 〈Φ,Σ〉

R
2

3

4

1α



Cryptographic algebra 〈Φ,Σ〉

R
2

3

4

1

β

α



Cryptographic algebra 〈Φ,Σ〉

R
2

3

4

1 γ

β

α



Cryptographic algebra 〈Φ,Σ〉

R
2

3

4

1 γ

β

α

Resource set Φ (here for interface set I = {1,2,3,4})
Converter set Σ



Cryptographic algebra 〈Φ,Σ〉

R
2

3

4

1 γ

β

α

Resource set Φ (here for interface set I = {1,2,3,4})
Converter set Σ

Algebraic laws:

• αiR ∈Φ for all R ∈Φ, α ∈Σ, i ∈ I
• αiβjR = βjαiR for all i 6= j

• 1iR = R for all i



Levels of abstraction in AC

# main concept concepts treated at this level

0. Constructions composability, construction trees

0’. Games isomorphism

1. Abstract systems cryptographic algebras

2. Discrete systems indistinguishability proofs

3. System implem. complexity, efficiency, asymptotics



Games and isomorphisms

{1,2} {1,2,3}1

2

1 2 3

8 8

5 3

7

5

Alice Bob

outcome



Games and isomorphisms

{1,2} {1,2,3}1

2

1 2 3

5 7

3 3

8

7

outcome

{1,2} {1,2,3}1

2

1 2 3

8 8

5 3

7

5

Alice Bob

outcome



Games and isomorphisms

?=~

{1,2} {1,2,3}1
2

1 2 3
5 7

3 3

8

7

outcome

{1,2} {1,2,3}1
2

1 2 3
8 8

5 3

7

5

Alice Bob

outcome



Games and isomorphisms

{1,2} {1,2,3}1

2

1 2 3

8 8

5 3

7

5

Alice Bob

outcome



Games and isomorphisms

{a,b,c} {1,2}a

b

1 2

3 5

7

3 5c

8

outcome

{1,2} {1,2,3}1

2

1 2 3

8 8

5 3

7

5

Alice Bob

outcome



Games and isomorphisms

{a,b,c} {1,2}a

b

1 2

3 5

7

3 5c

8

outcome

{1,2} {1,2,3}1

2

1 2 3

8 8

5 3

7

5

Alice Bob

outcome



Games and isomorphisms

=~

{a,b,c} {1,2}a

b

1 2

3 5

7

3 5c

8

outcome

{1,2} {1,2,3}1

2

1 2 3

8 8

5 3

7

5

Alice Bob

outcome



Games and isomorphisms

=~

{a,b,c} {1,2}a

b

1 2

3 5

7

3 5c

8

outcome

{1,2} {1,2,3}1

2

1 2 3

8 8

5 3

7

5

Alice Bob

outcome

Complete local relations



Levels of abstraction in AC

# main concept concepts treated at this level

0. Constructions composability, construction trees

0’. Games isomorphism

1. Abstract systems cryptographic algebras

2. Discrete systems indistinguishability proofs

3. System implem. complexity, efficiency, asymptotics



Levels of abstraction in AC

# main concept concepts treated at this level

0. Constructions composability, construction trees

0’. Games isomorphism

1. Abstract systems cryptographic algebras

2. Discrete systems indistinguishability proofs

3. System implem. complexity, efficiency, asymptotics



Resource isomorphisms

SR
1

2

3

4

2

3

4

1

π



Resource isomorphisms

SR

β4

β3

β2

β1
1

2

3

4

α4

α3

α2

α1

2

3

4

1

π



Resource isomorphisms

SR

β4

β3

β2

β1
1

2

3

4

α4

α3

α2

α1

2

3

4

1

π

Theorem: R is isomorphic to S ....



Resource isomorphisms

SR

β4

1

2

3

4

2

3

4

1

π

Theorem: R is isomorphic to S ....



Resource isomorphisms

SR

β4

π4 β4

1

2

3

4

2

3

4

1

π

Theorem: R is isomorphic to S ....



Resource isomorphisms

SR

π4

π3

π2

π1
1

2

3

4

2

3

4

1

π

Theorem: R is isomorphic to S ....



Resource isomorphisms

SR
1

2

3

4

α4

2

3

4

1

π

Theorem: R is isomorphic to S ....



Resource isomorphisms

SR

α4

σ4

1

2

3

4

α4

2

3

4

1

π

Theorem: R is isomorphic to S ....



Resource isomorphisms

SR

σ4

σ3

σ2

σ1
1

2

3

4

2

3

4

1

π

Theorem: R is isomorphic to S ....



Resource isomorphisms

SR

σ4

σ3

σ2

σ1
1

2

3

4

2

3

4

1

π = (π1, . . . ,πn) σ = (σ1, . . . ,σn)

Theorem: R is isomorphic to S ....



Resource isomorphisms

SR

σ4

σ3

σ2

σ1
1

2

3

4

2

3

4

1

π = (π1, . . . ,πn) σ = (σ1, . . . ,σn)

Theorem: R is isomorphic to S via π, denoted R ∼=π S, if

∃σ ∀P ⊆ I : πP R ≡ σP S



Resource isomorphisms

SR

σ4

σ3

π2

π1
1

2

3

4

2

3

4

1

π = (π1, . . . ,πn) σ = (σ1, . . . ,σn)

Theorem: R is isomorphic to S via π, denoted R ∼=π S, if

∃σ ∀P ⊆ I : πP R ≡ σP S



Resource isomorphisms

SR σ3

σ2

σ1

π4

1

2

3

4

2

3

4

1

π = (π1, . . . ,πn) σ = (σ1, . . . ,σn)

Theorem: R is isomorphic to S via π, denoted R ∼=π S, if

∃σ ∀P ⊆ I : πP R ≡ σP S



Resource isomorphisms

SR

σ4

σ2

π3π1
1

2

3

4

2

3

4

1

π = (π1, . . . ,πn) σ = (σ1, . . . ,σn)

Theorem: R is isomorphic to S via π, denoted R ∼=π S, if

∃σ ∀P ⊆ I : πP R ≡ σP S



Example: 2-party resources

R ∼=π S :⇐⇒



π1Rπ2 ≈ σ1Sσ2
π1Rπ2 ≈ σ1Sσ2
π1Rπ2 ≈ σ1Sσ2
π1Rπ2 ≈ σ1Sσ2



Example: 2-party resources

R ∼=π S :⇐⇒



π1Rπ2 ≈ σ1Sσ2
π1Rπ2 ≈ σ1Sσ2
π1Rπ2 ≈ σ1Sσ2
π1Rπ2 ≈ σ1Sσ2

⇔ abstract UC



Example: 2-party resources

R ∼=π S :⇐⇒



π1Rπ2 ≈ σ1Sσ2
π1Rπ2 ≈ σ1Sσ2
π1Rπ2 ≈ σ1Sσ2
π1Rπ2 ≈ σ1Sσ2

Special case: R = channel (neutral element, e.g. π1R = π1)



Example: 2-party resources

R ∼=π S :⇐⇒



π1Rπ2 ≈ σ1Sσ2
π1Rπ2 ≈ σ1Sσ2
π1Rπ2 ≈ σ1Sσ2
π1Rπ2 ≈ σ1Sσ2

Special case: R = channel (neutral element, e.g. π1R = π1)



Example: 2-party resources

R ∼=π S :⇐⇒



π1Rπ2 ≈ σ1Sσ2
π1Rπ2 ≈ σ1Sσ2
π1Rπ2 ≈ σ1Sσ2
π1Rπ2 ≈ σ1Sσ2

Special case: R = channel (neutral element, e.g. π1R = π1)

⇒ π1π2 ≈ Sσ2σ1S ≈ S



Example: 2-party resources

R ∼=π S :⇐⇒



π1Rπ2 ≈ σ1Sσ2
π1Rπ2 ≈ σ1Sσ2
π1Rπ2 ≈ σ1Sσ2
π1Rπ2 ≈ σ1Sσ2

Special case: R = channel (neutral element, e.g. π1R = π1)

Theorem: A resource S such that SαS 6≈ S for all α cannot
be constructed from a communication channel.

⇒ π1π2 ≈ Sσ2σ1S ≈ S



Example: 2-party resources

R ∼=π S :⇐⇒



π1Rπ2 ≈ σ1Sσ2
π1Rπ2 ≈ σ1Sσ2
π1Rπ2 ≈ σ1Sσ2
π1Rπ2 ≈ σ1Sσ2

Special case: R = channel (neutral element, e.g. π1R = π1)

Theorem: A resource S such that SαS 6≈ S for all α cannot
be constructed from a communication channel.

Corollary [CF01]: Commitment cannot be constructed (from
a communication channel).

⇒ π1π2 ≈ Sσ2σ1S ≈ S



Example: 2-party resources

R ∼=π S :⇐⇒



π1Rπ2 ≈ σ1Sσ2
π1Rπ2 ≈ σ1Sσ2
π1Rπ2 ≈ σ1Sσ2
π1Rπ2 ≈ σ1Sσ2

Special case: R = channel (neutral element, e.g. π1R = π1)

Theorem: A resource S such that SαS 6≈ S for all α cannot
be constructed from a communication channel.

Corollary [CF01]: Commitment cannot be constructed (from
a communication channel).

C

⇒ π1π2 ≈ Sσ2σ1S ≈ S



Example: 2-party resources

R ∼=π S :⇐⇒



π1Rπ2 ≈ σ1Sσ2
π1Rπ2 ≈ σ1Sσ2
π1Rπ2 ≈ σ1Sσ2
π1Rπ2 ≈ σ1Sσ2

Special case: R = channel (neutral element, e.g. π1R = π1)

Theorem: A resource S such that SαS 6≈ S for all α cannot
be constructed from a communication channel.

Corollary [CF01]: Commitment cannot be constructed (from
a communication channel).

C

⇒ π1π2 ≈ Sσ2σ1S ≈ S



Example: 2-party resources

R ∼=π S :⇐⇒



π1Rπ2 ≈ σ1Sσ2
π1Rπ2 ≈ σ1Sσ2
π1Rπ2 ≈ σ1Sσ2
π1Rπ2 ≈ σ1Sσ2

Special case: R = channel (neutral element, e.g. π1R = π1)

Theorem: A resource S such that SαS 6≈ S for all α cannot
be constructed from a communication channel.

Corollary [CF01]: Commitment cannot be constructed (from
a communication channel).

CC

⇒ π1π2 ≈ Sσ2σ1S ≈ S



Example: 2-party resources

R ∼=π S :⇐⇒



π1Rπ2 ≈ σ1Sσ2
π1Rπ2 ≈ σ1Sσ2
π1Rπ2 ≈ σ1Sσ2
π1Rπ2 ≈ σ1Sσ2

Special case: R = channel (neutral element, e.g. π1R = π1)

Theorem: A resource S such that SαS 6≈ S for all α cannot
be constructed from a communication channel.

Corollary [CF01]: Commitment cannot be constructed (from
a communication channel).

?
CC α

⇒ π1π2 ≈ Sσ2σ1S ≈ S



Example: 2-party resources

R ∼=π S :⇐⇒



π1Rπ2 ≈ σ1Sσ2
π1Rπ2 ≈ σ1Sσ2
π1Rπ2 ≈ σ1Sσ2
π1Rπ2 ≈ σ1Sσ2

Special case: R = channel (neutral element, e.g. π1R = π1)

Theorem: A resource S such that SαS 6≈ S for all α cannot
be constructed from a communication channel.

Corollary [CF01]: Commitment cannot be constructed (from
a communication channel).

Corollary: A delayed communication channel cannot be
constructed (from a communication channel).

⇒ π1π2 ≈ Sσ2σ1S ≈ S



Abstraction by sets of resources

Definition: A specification is a setR of resources.



Abstraction by sets of resources

Definition: A specification is a setR of resources.

Of special interest: Specifications with (for each party)
• a guaranteed choice space
• a possible choice space



Abstraction by sets of resources

Definition: A specification is a setR of resources.

Of special interest: Specifications with (for each party)
• a guaranteed choice space
• a possible choice space

guaranteed choice space



Abstraction by sets of resources

Definition: A specification is a setR of resources.

Of special interest: Specifications with (for each party)
• a guaranteed choice space
• a possible choice space

guaranteed choice space

possible choice space



Abstraction by sets of resources

Definition: A specification is a setR of resources.

Of special interest: Specifications with (for each party)
• a guaranteed choice space
• a possible choice space

actual choice space

guaranteed choice space

possible choice space



Abstraction by sets of resources

Definition: A specification is a setR of resources.

Of special interest: Specifications with (for each party)
• a guaranteed choice space
• a possible choice space

actual choice space

guaranteed choice space

possible choice space



Abstraction by sets of resources

Definition: A specification is a setR of resources.

Of special interest: Specifications with (for each party)
• a guaranteed choice space
• a possible choice space

actual choice space

guaranteed choice space

possible choice space



Abstraction by sets of resources

Definition: A specification is a setR of resources.

Of special interest: Specifications with (for each party)
• a guaranteed choice space
• a possible choice space

actual choice space

guaranteed choice space

possible choice space

S

ψ4

ψ3

ψ2

ψ1

2

3

4

1



Abstraction by sets of resources

Definition: A specification is a setR of resources.

Of special interest: Specifications with (for each party)
• a guaranteed choice space
• a possible choice space

Definition: S is an abstraction of R via π:

R vπ S :⇐⇒ ∀R∈R ∃S∈S : R ∼=π S



Abstraction by sets of resources

Definition: A specification is a setR of resources.

Of special interest: Specifications with (for each party)
• a guaranteed choice space
• a possible choice space

Definition: S is an abstraction of R via π:

R vπ S :⇐⇒ ∀R∈R ∃S∈S : R ∼=π S

Theorem: R vπ S is generally composable.



Example: Encryption, capturing coercibility

|.|

$

sim_E

SEC

dec

D

enc

E
A B

E

AUT

A

E

B

$
KEY



Example: Encryption, capturing coercibility

sim_B

|.|

$

sim_E

SEC

enc

E
A B

E

AUT

A

E

B

$
KEY



Example: Encryption, capturing coercibility

sim_B

|.|

$

sim_E

SEC

enc

E
A B

E

AUT

A

E

B

$
KEY



Example: Encryption, capturing coercibility

sim_B

|.|

$

sim_E

SEC

enc

E
A B

E

AUT

A

E

B

$
KEY

Theorem: An unleakable (uncoercible) secure
communication channel cannot be constructed from an
authenticated channel and a secret key.



Some Features of Abstract Cryptography



Some Features of Abstract Cryptography

• top-down abstraction



Some Features of Abstract Cryptography

• top-down abstraction

• isomorphism: exact relation between ideal and real



Some Features of Abstract Cryptography

• top-down abstraction

• isomorphism: exact relation between ideal and real

• no central adversary; local simulators



Some Features of Abstract Cryptography

• top-down abstraction

• isomorphism: exact relation between ideal and real

• no central adversary; local simulators

• all resources captured
– communication model not hard-wired into the model
– absence can be modeled



Some Features of Abstract Cryptography

• top-down abstraction

• isomorphism: exact relation between ideal and real

• no central adversary; local simulators

• all resources captured
– communication model not hard-wired into the model
– absence can be modeled

• feasibility/efficiency notions free; not hard-wired



Some Features of Abstract Cryptography

• top-down abstraction

• isomorphism: exact relation between ideal and real

• no central adversary; local simulators

• all resources captured
– communication model not hard-wired into the model
– absence can be modeled

• feasibility/efficiency notions free; not hard-wired

• specifications: guaranteed/possible choice domains



Some Features of Abstract Cryptography

• top-down abstraction

• isomorphism: exact relation between ideal and real

• no central adversary; local simulators

• all resources captured
– communication model not hard-wired into the model
– absence can be modeled

• feasibility/efficiency notions free; not hard-wired

• specifications: guaranteed/possible choice domains

• existing frameworks can be captured as special cases
– universal composability (UC) by Canetti
– reactive simulatability by Pfitzmann/Waidner/Backes
– indifferentiability [MRH04]
– collusion-preserving computation [AKMZ12]



Thank you!



Constructing channels and keys: •-calculus

A−−−→ B (insecure) channel from A to B

The symbol “•” stands for exclusive access to the channel.

“•” at output: receiver is exclusive −→ confidentiality

“•” at input: sender is exclusive −→ authenticity

A−−−→•B secret channel from A to B

A •−−−→ B authentic channel from A to B

A •−−−→•B secure channel from A to B (secret and authentic)

A •===• B secret key shared by A and B

A ===• B one-sided key: A knows that at most B knows
the key, but B does not know who holds the key.



Key transport in CC

A •
t1t2−−−→•B

KT−→ A
t2•===• B



Key transport in CC

A •
t1t2−−−→•B

KT−→ A
t2•===• B

A
t1t2−−−→•B

KT−→ A
t2

===• B



Key transport in CC

A •
t1t2−−−→•B

KT−→ A
t2•===• B

A
t1t2−−−→•B

KT−→ A
t2

===• B

Attention: A •
t1t2−−−→ B

KT−→/ A
t2•=== B



Symmetric cryptosystem in CC

A
t1

===• B
A

t2t3−−−→ B
t2 ≥ t1


SYM−→ A

t2t3−−−→•B



Symmetric cryptosystem in CC

A
t1

===• B
A

t2t3−−−→ B
t2 ≥ t1


SYM−→ A

t2t3−−−→•B

A
t1

===• B
A •

t2t3−−−→ B
t2 ≥ t1


SYM−→ A •

t2t3−−−→•B



MACs in CC

A
t1•=== B

A
t2t3−−−→ B

t2 ≥ t1


MAC−→ A •

t2t3−−−→ B



MACs in CC

A
t1•=== B

A
t2t3−−−→ B

t2 ≥ t1


MAC−→ A •

t2t3−−−→ B

A
t1•=== B

A
t2t3−−−→•B
t2 ≥ t1


MAC−→ A •

t2t3−−−→•B



Combining Encryption and MAC

Goal: A
t1•===• B

A
t2t3−−−→ B

t2 ≥ t1


???−→ A •

t2t3−−−→•B



Combining Encryption and MAC

Goal: A
t1•===• B

A
t2t3−−−→ B

t2 ≥ t1


???−→ A •

t2t3−−−→•B

Key expansion:

A
t1•===• B

PRG−→

A

t1•===• B
A

t1•===• B



Combining Encryption and MAC

Goal: A
t1•===• B

A
t2t3−−−→ B

t2 ≥ t1


???−→ A •

t2t3−−−→•B

Key expansion:

A
t1•===• B

PRG−→

A

t1•===• B
A

t1•===• B

Encrypt-then-MAC:
A

t1•=== B

A
t2t3−−−→ B

t2 ≥ t1


MAC−→ A •

t2t3−−−→ B

A
t1

===• B
A •

t2t3−−−→ B
t2 ≥ t1


SYM−→ A •

t2t3−−−→•B



Combining Encryption and MAC

Goal: A
t1•===• B

A
t2t3−−−→ B

t2 ≥ t1


???−→ A •

t2t3−−−→•B

Key expansion:

A
t1•===• B

PRG−→

A

t1•===• B
A

t1•===• B

MAC-then-encrypt:
A

t1
===• B

A
t2t3−−−→ B

t2 ≥ t1


SYM−→ A

t2t3−−−→•B

A
t1•=== B

A
t2t3−−−→•B
t2 ≥ t1


MAC−→ A •

t2t3−−−→•B



Public-key cryptosystems in CC

A •
t1t2−−−→ B

A
t4t3←−−− B

t3 > t2


PKC−→ A •

t4t3←−−− B



Public-key cryptosystems in CC

A •
t1t2−−−→ B

A
t4t3←−−− B

t3 > t2


PKC−→ A •

t4t3←−−− B

A •
t1t2−−−→ B

A
t4t3←−−−•B

t3 > t2


PKC−→ A •

t4t3←−−−•B



Diffie-Hellman key agreement in CC

A •−−−→ B

A←−−−•B


DH−→ A •===• B



Diffie-Hellman key agreement in CC

A •−−−→ B

A←−−−•B


DH−→ A •===• B

A •−−−→ B

A←−−−B


DH−→/ A •=== B



Digital signature schemes in CC

A •
t1t2−−−→ B

A
t3t4−−−→ B

t4 ≥ t2


DSS−→ A •

t3t4−−−→ B



Digital signature schemes in CC

A •
t1t2−−−→ B

A
t3t4−−−→ B

t4 ≥ t2


DSS−→ A •

t3t4−−−→ B

A •
t1t2−−−→ B

A
t3t4−−−→•B
t4 ≥ t2


DSS−→ A •

t3t4−−−→•B



Digital signature schemes in CC

A •
t1t2−−−→ B

A
t3t4−−−→ B

t4 ≥ t2


DSS−→ A •

t3t4−−−→ B

A •
t1t2−−−→ B

A
t3t4−−−→•B
t4 ≥ t2


DSS−→ A •

t3t4−−−→•B

Note: Conservation law of the •-calculus.



Digital signature schemes in CC

A •
t1t2−−−→ B

A
t3t4−−−→ B

t4 ≥ t2


DSS−→ A •

t3t4−−−→ B

A •
t1t2−−−→ B

A
t3t4−−−→•B
t4 ≥ t2


DSS−→ A •

t3t4−−−→•B

Note: Conservation law of the •-calculus.

Are there any other cryptographic transformations?


