Abstract Cryptography

and secure MPC

Ueli Maurer

ETH Zurich

joint work with Renato Renner

Secure Multi-Party Computation Workshop, Aarhus, June 2012.

Algebraic abstraction:

• group $\langle G, \star, e, \hat{} \rangle$

Algebraic abstraction:

- group $\langle G, \star, e, \hat{} \rangle$
- field $\langle F, +, \cdot, 0, 1 \rangle$

Algebraic abstraction:

- group $\langle G, \star, e, \hat{} \rangle$
- field $\langle F, +, \cdot, 0, 1 \rangle$
- vector space, graph, data structures, OSI layers, ...

Algebraic abstraction:

- group $\langle G, \star, e, \hat{} \rangle$
- field $\langle F, +, \cdot, 0, 1 \rangle$
- vector space, graph, data structures, OSI layers, ...

Levels of abstraction:

- 1. Abstract group: $\langle G, \star, e, \hat{} \rangle$
- 2. Instantiations: Integers, real number, elliptic curves
- 3. Representations: e.g. projective coordinates for ECs

Algebraic abstraction:

- group $\langle G, \star, e, \hat{} \rangle$
- field $\langle F, +, \cdot, 0, 1 \rangle$
- vector space, graph, data structures, OSI layers, ...

What is the abstraction of:

- cryptosystem ?
- digital signature scheme ?
- MPC protocol ?
- zero-knowledge proof ?
- algorithm, distinguisher, hybrid argument, ...?

Algebraic abstraction:

- group $\langle G, \star, e, \hat{} \rangle$
- field $\langle F, +, \cdot, 0, 1 \rangle$
- vector space, graph, data structures, OSI layers, ...

Goals of abstraction:

- eliminate irrelevant details, minimality
- simpler definitions
- generality of results
- simpler proofs
- elegance
- didactic suitability, understanding

Levels of abstraction in AC

#	main concept	concepts treated at this level
0. 0'.	Constructions Games	composability, construction trees isomorphism
1.	Abstract systems	cryptographic algebras
2.	Discrete systems	indistinguishability proofs
3.	System implem.	complexity, efficiency, asymptotics

The construction paradigm

The construction paradigm

Many scientific disciplines can be seen as being **constructive**.

The construction paradigm

Many scientific disciplines can be seen as being **constructive**.

Construct an object **S** from another object **R** via construction α .

Construct an object S from another object R via construction α .

Notation: $\mathbf{R} \xrightarrow{\alpha} \mathbf{S}$

Construct an object S from another object R via construction α .

Notation: $\mathbf{R} \xrightarrow{\alpha} \mathbf{S}$

Examples:

• A (k, n)-error-correcting code constructs a reliable channel from a noisy channel:

Construct an object **S** from another object **R** via construction α .

Notation: $\mathbf{R} \xrightarrow{\alpha} \mathbf{S}$

Examples:

• A (k, n)-error-correcting code constructs a reliable channel from a noisy channel:

 $\operatorname{NC}_n \xrightarrow{(enc,dec)} \operatorname{RC}_k$

Construct an object S from another object R via construction α .

Notation: $\mathbf{R} \xrightarrow{\alpha} \mathbf{S}$

Examples:

 A (k, n)-error-correcting code constructs a reliable channel from a noisy channel:

$$\mathsf{NC}_n \stackrel{(enc,dec)}{\longrightarrow} \mathsf{RC}_k$$

• An extractor constructs a uniform *m*-bit string U_m from any RV X with min-entropy > m + c and U_s :

$$(X,U_s) \xrightarrow{ext} U_m$$

Construct an object **S** from another object **R** via construction α .

Notation: $\mathbf{R} \xrightarrow{\alpha} \mathbf{S}$

Examples:

• A (k, m)-PRG constructs a uniform *m*-bit string from a uniform *k*-bit string:

$$\mathsf{U}_k \xrightarrow{\mathsf{PRG}} \mathsf{U}_m$$

Construct an object S from another object R via construction α .

Notation: $\mathbf{R} \xrightarrow{\alpha} \mathbf{S}$

Examples:

• A (k, m)-PRG constructs a uniform *m*-bit string from a uniform *k*-bit string:

$$\mathsf{U}_k \xrightarrow{\mathsf{PRG}} \mathsf{U}_m$$

 A key agreement protocol (KAP) constructs a shared secret *n*-bit key from ???:
 ??? ^{KAP}→ KEY_n

Construct an object S from another object R via construction α .

Notation: $\mathbf{R} \xrightarrow{\alpha} \mathbf{S}$

Involved types:

- resource
- constructor
- construction notion

Construct an object S from another object R via construction α .

Notation: $\mathbf{R} \xrightarrow{\alpha, \epsilon} \mathbf{S}$

Involved types:

- resource
- constructor
- construction notion
- metric on space of resources

$$\mathsf{d}(\mathsf{R},\mathsf{S}) \leq \epsilon \quad \Longleftrightarrow \quad \mathsf{R} \approx_{\epsilon} \mathsf{S}$$

Construct an object S from another object R via construction α .

Notation: $\mathbf{R} \xrightarrow{\alpha, \epsilon} \mathbf{S}$

Examples:

• A (k, n)-error-correcting code constructs a reliable channel from a noisy channel:

 $\operatorname{NC}_n \xrightarrow{(enc,dec)} \operatorname{RC}_k$

Construct an object **S** from another object **R** via construction α .

Notation: $\mathbf{R} \xrightarrow{\alpha, \epsilon} \mathbf{S}$

Examples:

• A (k, n)-error-correcting code constructs a reliable channel from a noisy channel:

$$\begin{array}{c} \mathsf{NC}_{n} \stackrel{(\mathsf{enc},\mathsf{dec})}{\longrightarrow} \mathsf{RC}_{k} \\ \mathbf{R} \stackrel{(\beta,\gamma),\epsilon}{\longrightarrow} \mathbf{S} : \iff \mathbf{S} \approx_{\epsilon} \beta \, \mathbf{R} \, \gamma \end{array}$$

Construct an object S from another object R via construction α .

Notation: $\mathbf{R} \xrightarrow{\alpha, \epsilon} \mathbf{S}$

Examples:

• A (k, n)-error-correcting code constructs a reliable channel from a noisy channel:

$$\operatorname{NC}_{n} \stackrel{(\operatorname{enc},\operatorname{dec})}{\longrightarrow} \operatorname{RC}_{k}$$
$$\operatorname{R} \stackrel{(\beta,\gamma),\epsilon}{\longrightarrow} \operatorname{S} :\iff \operatorname{S} \approx_{\epsilon} \beta \operatorname{R} \gamma$$
$$\operatorname{IC}_{n} \stackrel{(\operatorname{enc},\operatorname{dec}),\epsilon}{\longrightarrow} \operatorname{RC}_{k} \iff \operatorname{RC}_{k} \approx_{\epsilon} \operatorname{enc} \operatorname{NC}_{n} \operatorname{dec}$$

Levels of abstraction in AC

#	main concept	concepts treated at this level
0.	Constructions	composability, construction trees
0'.	Games	isomorphism
1.	Abstract systems	cryptographic algebras
2.	Discrete systems	indistinguishability proofs
3.	System implem.	complexity, efficiency, asymptotics

resource set $\langle \Omega, || \rangle$, constructor set $\langle \Gamma, \circ, |, id \rangle$

resource set $\langle \Omega, || \rangle$, constructor set $\langle \Gamma, \circ, |, id \rangle$ Construction = subset of $\Omega \times \Gamma \times \Omega$

Possible notation:
$$\mathbf{R} \xrightarrow{\alpha} \mathbf{S}$$

resource set $\langle \Omega, || \rangle$, constructor set $\langle \Gamma, \circ, |, id \rangle$

Construction = subset of $\Omega \times \Gamma \times \Omega$

Possible notation: $\mathbf{R} \xrightarrow{\alpha} \mathbf{S}$

Definition: A construction is serially composable if 1. $\mathbf{R} \xrightarrow{\alpha} \mathbf{S} \wedge \mathbf{S} \xrightarrow{\beta} \mathbf{T} \Rightarrow \mathbf{R} \xrightarrow{\alpha \circ \beta} \mathbf{T}$

resource set $\langle \Omega, || \rangle$, constructor set $\langle \Gamma, \circ, |, id \rangle$

Construction = subset of $\Omega \times \Gamma \times \Omega$

Possible notation: $\mathbf{R} \xrightarrow{\alpha} \mathbf{S}$

Definition: A construction is serially composable if

1.
$$\mathbf{R} \xrightarrow{\alpha} \mathbf{S} \wedge \mathbf{S} \xrightarrow{\beta} \mathbf{T} \Rightarrow \mathbf{R} \xrightarrow{\alpha \circ \beta} \mathbf{T}$$

and generally composable if also:

2.
$$\mathbf{R} \xrightarrow{\mathrm{id}} \mathbf{R}$$

3. $\mathbf{R} \xrightarrow{\alpha} \mathbf{S} \Rightarrow \mathbf{R} \| \mathbf{T} \xrightarrow{\alpha | \mathrm{id}} \mathbf{S} \| \mathbf{T}$

resource set $\langle \Omega, || \rangle$, constructor set $\langle \Gamma, \circ, |, id \rangle$

Construction = subset of $\Omega \times \Gamma \times \Omega$

Possible notation: $\mathbf{R} \xrightarrow{\alpha} \mathbf{S}$

Definition: A construction is serially composable if

1.
$$\mathbf{R} \xrightarrow{\alpha} \mathbf{S} \wedge \mathbf{S} \xrightarrow{\beta} \mathbf{T} \Rightarrow \mathbf{R} \xrightarrow{\alpha \circ \beta} \mathbf{T}$$

and generally composable if also:

2.
$$\mathbf{R} \xrightarrow{\mathrm{id}} \mathbf{R}$$

3. $\mathbf{R} \xrightarrow{\alpha} \mathbf{S} \Rightarrow \mathbf{R} \| \mathbf{T} \xrightarrow{\alpha | \mathrm{id}} \mathbf{S} \| \mathbf{T}$
 $\wedge \mathbf{T} \| \mathbf{R} \xrightarrow{\mathrm{id} | \alpha} \mathbf{T} \| \mathbf{S}$

One-time pad: A constructive perspective

One-time pad: A constructive perspective

Perfect secrecy (Shannon):

C and **M** are statistically independent.

otp-dec^B otp-enc^A [KEY,AUT]

otp-dec^B otp-enc^A [KEY,AUT]

otp-dec^B otp-enc^A [KEY,AUT]

SEC

otp-dec^B otp-enc^A [KEY,AUT] sim^E SEC

 $otp-dec^{B} otp-enc^{A} [KEY,AUT] \equiv sim^{E} SEC$

 $otp-dec^{B} otp-enc^{A} [KEY,AUT] \equiv sim^{E} SEC$

Symmetric encryption in CC

Levels of abstraction in AC

#	main concept	concepts treated at this level
0.	Constructions	composability, construction trees
0'.	Games	isomorphism
1.	Abstract systems	cryptographic algebras
2.	Discrete systems	indistinguishability proofs
3.	System implem.	complexity, efficiency, asymptotics

Levels of abstraction in AC

#	main concept	concepts treated at this level
0.	Constructions	composability, construction trees
U ^r .	Games	isomorphism
1.	Abstract systems	cryptographic algebras
2.	Discrete systems	indistinguishability proofs
3.	System implem.	complexity, efficiency, asymptotics

Resource **S** is constructed from **R** by protocol π :

$\mathbf{R} \xrightarrow{\pi} \mathbf{S}$

Resource **S** is constructed from **R** by protocol π :

 $\mathbf{R} \xrightarrow{\pi} \mathbf{S}$

Example: Alice-Bob-Eve setting, $\pi = (\pi_1, \pi_2)$

Resource **S** is constructed from **R** by protocol π :

 $\mathbf{R} \xrightarrow{\pi} \mathbf{S}$

Example: Alice-Bob-Eve setting, $\pi = (\pi_1, \pi_2)$

Resource **S** is constructed from **R** by protocol π :

 $\mathbf{R} \xrightarrow{\pi} \mathbf{S}$

Example: Alice-Bob-Eve setting, $\pi = (\pi_1, \pi_2)$

Levels of abstraction in AC

#	main concept	concepts treated at this level
0. 0'.	Constructions Games	composability, construction trees isomorphism
1.	Abstract systems	cryptographic algebras
2.	Discrete systems	indistinguishability proofs
3.	System implem.	complexity, efficiency, asymptotics

 $-\alpha \frac{1}{|\mathbf{R}|^{2}}$

Resource set Φ (here for interface set $\mathcal{I} = \{1, 2, 3, 4\}$) **Converter set** Σ

Resource set Φ (here for interface set $\mathcal{I} = \{1, 2, 3, 4\}$) **Converter set** Σ

Levels of abstraction in AC

#	main concept	concepts treated at this level
0.	Constructions	composability, construction trees
0'.	Games	isomorphism
1.	Abstract systems	cryptographic algebras
2.	Discrete systems	indistinguishability proofs
3.	System implem.	complexity, efficiency, asymptotics

Games and isomorphisms

Levels of abstraction in AC

#	main concept	concepts treated at this level
0.	Constructions	composability, construction trees
0'.	Games	isomorphism
1.	Abstract systems	cryptographic algebras
2.	Discrete systems	indistinguishability proofs
3.	System implem.	complexity, efficiency, asymptotics

Levels of abstraction in AC

#	main concept	concepts treated at this level
0. 0'.	Constructions Games	composability, construction trees isomorphism
1.	Abstract systems	cryptographic algebras
2.	Discrete systems	indistinguishability proofs
3.	System implem.	complexity, efficiency, asymptotics

 $\pi = (\pi_1, \ldots, \pi_n)$ $\sigma = (\sigma_1, \ldots, \sigma_n)$

$$\exists \sigma \ \forall \mathcal{P} \subseteq \mathcal{I} : \quad \pi_{\mathcal{P}} \ \mathsf{R} \equiv \ \sigma_{\overline{\mathcal{P}}} \ \mathsf{S}$$

 $\pi = (\pi_1, \ldots, \pi_n)$ $\sigma = (\sigma_1, \ldots, \sigma_n)$

$$\exists \boldsymbol{\sigma} \; \forall \mathcal{P} \subseteq \mathcal{I} : \quad \boldsymbol{\pi}_{\mathcal{P}} \; \mathsf{R} \equiv \; \boldsymbol{\sigma}_{\overline{\mathcal{P}}} \; \mathsf{S}$$

$$\exists \sigma \ \forall \mathcal{P} \subseteq \mathcal{I} : \quad \pi_{\mathcal{P}} \ \mathsf{R} \equiv \ \sigma_{\overline{\mathcal{P}}} \ \mathsf{S}$$

$$\exists \boldsymbol{\sigma} \; \forall \mathcal{P} \subseteq \mathcal{I} : \quad \boldsymbol{\pi}_{\mathcal{P}} \; \mathsf{R} \equiv \; \boldsymbol{\sigma}_{\overline{\mathcal{P}}} \; \mathsf{S}$$

$$\mathbf{R} \cong^{\pi} \mathbf{S} :\iff \begin{cases} \pi_1 \mathbf{R} \pi_2 \approx \mathbf{S} \\ \pi_1 \mathbf{R} \approx \mathbf{S} \sigma_2 \\ \mathbf{R} \pi_2 \approx \sigma_1 \mathbf{S} \\ \mathbf{R} \approx \sigma_1 \mathbf{S} \sigma_2 \end{cases}$$

$$\mathbf{R} \cong^{\boldsymbol{\pi}} \mathbf{S} :\iff \begin{cases} \pi_{1}\mathbf{R}\pi_{2} \approx \mathbf{S} \\ \pi_{1}\mathbf{R} \approx \mathbf{S}\sigma_{2} \\ \mathbf{R}\pi_{2} \approx \sigma_{1}\mathbf{S} \\ \mathbf{R} \approx \sigma_{1}\mathbf{S}\sigma_{2} \end{cases} \end{cases} \begin{cases} \Leftrightarrow \text{ abstract UC} \end{cases}$$

$$\mathbf{R} \cong^{\pi} \mathbf{S} :\iff \begin{cases} \pi_1 \mathbf{R} \pi_2 \approx \mathbf{S} \\ \pi_1 \mathbf{R} \approx \mathbf{S} \sigma_2 \\ \mathbf{R} \pi_2 \approx \sigma_1 \mathbf{S} \\ \mathbf{R} \approx \sigma_1 \mathbf{S} \sigma_2 \end{cases}$$

Special case: **R** = channel (neutral element, e.g. $\pi_1 \mathbf{R} = \pi_1$)

$$\mathbf{R} \cong^{\pi} \mathbf{S} :\iff \begin{cases} \pi_1 & \pi_2 \approx \mathbf{S} \\ \pi_1 & \approx \mathbf{S}\sigma_2 \\ & \pi_2 \approx \sigma_1 \mathbf{S} \\ & & \approx \sigma_1 \mathbf{S}\sigma_2 \end{cases}$$

Special case: **R** = channel (neutral element, e.g. $\pi_1 \mathbf{R} = \pi_1$)

$$\mathbf{R} \cong^{\boldsymbol{\pi}} \mathbf{S} :\iff \begin{cases} \pi_1 \quad \pi_2 \approx \mathbf{S} \\ \pi_1 \quad \approx \mathbf{S}\sigma_2 \\ \pi_2 \approx \sigma_1 \mathbf{S} \\ \approx \sigma_1 \mathbf{S}\sigma_2 \end{cases} \xrightarrow{\mathbf{S}} \pi_1 \pi_2 \approx \mathbf{S}\sigma_2 \sigma_1 \mathbf{S} \approx \mathbf{S}$$

Special case: **R** = channel (neutral element, e.g. $\pi_1 \mathbf{R} = \pi_1$)

$$\mathbf{R} \cong^{\pi} \mathbf{S} :\iff \begin{cases} \pi_1 & \pi_2 \approx \mathbf{S} \\ \pi_1 & \approx \mathbf{S}\sigma_2 \\ \pi_2 \approx \sigma_1 \mathbf{S} \\ \approx \sigma_1 \mathbf{S}\sigma_2 \end{cases} \xrightarrow{\mathbf{S}} \pi_1 \pi_2 \approx \mathbf{S}\sigma_2 \sigma_1 \mathbf{S} \approx \mathbf{S}\sigma_2 \sigma_1 \mathbf{S} \approx \mathbf{S}\sigma_2 \sigma_1 \mathbf{S} \approx \mathbf{S}\sigma_2 \sigma_1 \mathbf{S}\sigma_$$

Special case: \mathbf{R} = channel (neutral element, e.g. $\pi_1 \mathbf{R} = \pi_1$) **Theorem:** A resource **S** such that $\mathbf{S} \alpha \mathbf{S} \not\approx \mathbf{S}$ for all α cannot be constructed from a communication channel.

$$\mathbf{R} \cong^{\pi} \mathbf{S} :\iff \begin{cases} \pi_1 & \pi_2 \approx \mathbf{S} \\ \pi_1 & \approx \mathbf{S}\sigma_2 \\ \pi_2 \approx \sigma_1 \mathbf{S} \\ \approx \sigma_1 \mathbf{S}\sigma_2 \end{cases} \xrightarrow{} \Rightarrow \pi_1 \pi_2 \approx \mathbf{S}\sigma_2 \sigma_1 \mathbf{S} \approx \mathbf{S}$$

Special case: **R** = channel (neutral element, e.g. $\pi_1 \mathbf{R} = \pi_1$)

Theorem: A resource **S** such that $S\alpha S \approx S$ for all α cannot be constructed from a communication channel.

$$\mathbf{R} \cong^{\pi} \mathbf{S} :\iff \begin{cases} \pi_1 & \pi_2 \approx \mathbf{S} \\ \pi_1 & \approx \mathbf{S}\sigma_2 \\ \pi_2 \approx \sigma_1 \mathbf{S} \\ \approx \sigma_1 \mathbf{S}\sigma_2 \end{cases} \xrightarrow{} \Rightarrow \pi_1 \pi_2 \approx \mathbf{S}\sigma_2 \sigma_1 \mathbf{S} \approx \mathbf{S}$$

Special case: **R** = channel (neutral element, e.g. $\pi_1 \mathbf{R} = \pi_1$)

Theorem: A resource **S** such that $S\alpha S \approx S$ for all α cannot be constructed from a communication channel.

$$\mathbf{R} \cong^{\pi} \mathbf{S} :\iff \begin{cases} \pi_1 & \pi_2 \approx \mathbf{S} \\ \pi_1 & \approx \mathbf{S}\sigma_2 \\ \pi_2 \approx \sigma_1 \mathbf{S} \\ \approx \sigma_1 \mathbf{S}\sigma_2 \end{cases} \xrightarrow{\mathbf{S}} \pi_1 \pi_2 \approx \mathbf{S}\sigma_2 \sigma_1 \mathbf{S} \approx \mathbf{S} \end{cases}$$

Special case: **R** = channel (neutral element, e.g. $\pi_1 \mathbf{R} = \pi_1$)

Theorem: A resource **S** such that $S\alpha S \approx S$ for all α cannot be constructed from a communication channel.

$$\mathbf{R} \cong^{\pi} \mathbf{S} :\iff \begin{cases} \pi_1 & \pi_2 \approx \mathbf{S} \\ \pi_1 & \approx \mathbf{S}\sigma_2 \\ \pi_2 \approx \sigma_1 \mathbf{S} \\ \approx \sigma_1 \mathbf{S}\sigma_2 \end{cases} \xrightarrow{\mathbf{S}} \pi_1 \pi_2 \approx \mathbf{S}\sigma_2 \sigma_1 \mathbf{S} \approx \mathbf{S} \end{cases}$$

Special case: **R** = channel (neutral element, e.g. $\pi_1 \mathbf{R} = \pi_1$)

Theorem: A resource **S** such that $S\alpha S \approx S$ for all α cannot be constructed from a communication channel.

$$\mathbf{R} \cong^{\pi} \mathbf{S} :\iff \begin{cases} \pi_1 & \pi_2 \approx \mathbf{S} \\ \pi_1 & \approx \mathbf{S}\sigma_2 \\ \pi_2 \approx \sigma_1 \mathbf{S} \\ \approx \sigma_1 \mathbf{S}\sigma_2 \end{cases} \xrightarrow{} \Rightarrow \pi_1 \pi_2 \approx \mathbf{S}\sigma_2 \sigma_1 \mathbf{S} \approx \mathbf{S}$$

Special case: **R** = channel (neutral element, e.g. $\pi_1 \mathbf{R} = \pi_1$)

Theorem: A resource **S** such that $S\alpha S \approx S$ for all α cannot be constructed from a communication channel.

$$\mathbf{R} \cong^{\pi} \mathbf{S} :\iff \begin{cases} \pi_1 & \pi_2 \approx \mathbf{S} \\ \pi_1 & \approx \mathbf{S}\sigma_2 \\ \pi_2 \approx \sigma_1 \mathbf{S} \\ \approx \sigma_1 \mathbf{S}\sigma_2 \end{cases} \xrightarrow{} \Rightarrow \pi_1 \pi_2 \approx \mathbf{S}\sigma_2 \sigma_1 \mathbf{S} \approx \mathbf{S}$$

Special case: **R** = channel (neutral element, e.g. $\pi_1 \mathbf{R} = \pi_1$)

Theorem: A resource **S** such that $S\alpha S \approx S$ for all α cannot be constructed from a communication channel.

Corollary [CF01]: Commitment cannot be constructed (from a communication channel).

Corollary: A delayed communication channel cannot be constructed (from a communication channel).

Definition: A **specification** is a set \mathcal{R} of resources.

Definition: A **specification** is a set \mathcal{R} of resources.

- a guaranteed choice space
- a possible choice space

Definition: A **specification** is a set \mathcal{R} of resources.

Of special interest: Specifications with (for each party)

- a guaranteed choice space
- a possible choice space

guaranteed choice space

Definition: A specification is a set \mathcal{R} of resources.

- a guaranteed choice space
- a possible choice space

Definition: A **specification** is a set \mathcal{R} of resources.

- a guaranteed choice space
- a possible choice space

Definition: A **specification** is a set \mathcal{R} of resources.

- a guaranteed choice space
- a possible choice space

Definition: A specification is a set \mathcal{R} of resources.

- a guaranteed choice space
- a possible choice space

Abstraction by sets of resources

Definition: A **specification** is a set \mathcal{R} of resources.

Of special interest: Specifications with (for each party)

- a guaranteed choice space
- a possible choice space

Abstraction by sets of resources

Definition: A **specification** is a set \mathcal{R} of resources.

Of special interest: Specifications with (for each party)

- a guaranteed choice space
- a possible choice space

Definition: S is an abstraction of \mathcal{R} via π :

 $\mathcal{R} \sqsubseteq^{\pi} \mathcal{S} :\iff \forall \mathbf{R} \in \mathcal{R} \ \exists \mathbf{S} \in \mathcal{S} : \ \mathbf{R} \cong^{\pi} \mathbf{S}$

Abstraction by sets of resources

Definition: A **specification** is a set \mathcal{R} of resources.

Of special interest: Specifications with (for each party)

- a guaranteed choice space
- a possible choice space

Definition: S is an abstraction of \mathcal{R} via π :

 $\mathcal{R} \sqsubseteq^{\pi} \mathcal{S} :\iff \forall \mathbf{R} \in \mathcal{R} \ \exists \mathbf{S} \in \mathcal{S} : \ \mathbf{R} \cong^{\pi} \mathbf{S}$

Theorem: $\mathcal{R} \sqsubseteq^{\pi} \mathcal{S}$ is generally composable.

Theorem: An unleakable (uncoercible) secure communication channel cannot be constructed from an authenticated channel and a secret key.

• top-down abstraction

- top-down abstraction
- isomorphism: exact relation between ideal and real

- top-down abstraction
- isomorphism: exact relation between ideal and real
- no central adversary; local simulators

- top-down abstraction
- isomorphism: exact relation between ideal and real
- no central adversary; local simulators
- all resources captured
 - communication model not hard-wired into the model
 - absence can be modeled

- top-down abstraction
- isomorphism: exact relation between ideal and real
- no central adversary; local simulators
- all resources captured
 - communication model not hard-wired into the model
 - absence can be modeled
- feasibility/efficiency notions free; not hard-wired

- top-down abstraction
- isomorphism: exact relation between ideal and real
- no central adversary; local simulators
- all resources captured
 - communication model not hard-wired into the model
 - absence can be modeled
- feasibility/efficiency notions free; not hard-wired
- specifications: guaranteed/possible choice domains

- top-down abstraction
- isomorphism: exact relation between ideal and real
- no central adversary; local simulators
- all resources captured
 - communication model not hard-wired into the model
 - absence can be modeled
- feasibility/efficiency notions free; not hard-wired
- specifications: guaranteed/possible choice domains
- existing frameworks can be captured as special cases
 - universal composability (UC) by Canetti
 - reactive simulatability by Pfitzmann/Waidner/Backes
 - indifferentiability [MRH04]
 - collusion-preserving computation [AKMZ12]

Thank you!

Constructing channels and keys: •-calculus

 $A \longrightarrow B$ (insecure) channel from A to B

The symbol "•" stands for exclusive access to the channel.

"•" at output: receiver is exclusive \longrightarrow confidentiality

"•" at input: sender is exclusive \longrightarrow authenticity

- $A \longrightarrow B$ secret channel from A to B
- $A \bullet \longrightarrow B$ authentic channel from A to B
- $A \bullet \rightarrow \bullet B$ secure channel from A to B (secret and authentic)
- $A \longrightarrow B$ secret key shared by A and B

Key transport in CC

Key transport in CC

Key transport in CC

Symmetric cryptosystem in CC

Symmetric cryptosystem in CC

MACs in CC

Public-key cryptosystems in CC

Public-key cryptosystems in CC

Diffie-Hellman key agreement in CC

Diffie-Hellman key agreement in CC

Note: Conservation law of the •-calculus.

Note: Conservation law of the •-calculus.

Are there any other cryptographic transformations?