Abstract Cryptography and secure MPC

Ueli Maurer

ETH Zurich

joint work with Renato Renner

Secure Multi-Party Computation Workshop, Aarhus, June 2012.

Abstraction

Abstraction

Algebraic abstraction:

- group $\left\langle G, \star, e,{ }^{-}\right\rangle$

Abstraction

Algebraic abstraction:

- group $\left\langle G, \star, e,{ }^{\wedge}\right\rangle$
- field $\langle F,+, \cdot, 0,1\rangle$

Abstraction

Algebraic abstraction:

- group $\left\langle G, \star, e,{ }^{-}\right\rangle$
- field $\langle F,+, \cdot, 0,1\rangle$
- vector space, graph, data structures, OSI layers, ...

Abstraction

Algebraic abstraction:

- group $\left\langle G, \star, e,{ }^{-}\right\rangle$
- field $\langle F,+, \cdot, 0,1\rangle$
- vector space, graph, data structures, OSI layers, ...

Levels of abstraction:

1. Abstract group: $\left\langle G, \star, e,{ }^{\wedge}\right\rangle$
2. Instantiations: Integers, real number, elliptic curves
3. Representations: e.g. projective coordinates for ECs

Abstraction

Algebraic abstraction:

- group $\left\langle G, \star, e,{ }^{-}\right\rangle$
- field $\langle F,+, \cdot, 0,1\rangle$
- vector space, graph, data structures, OSI layers, ...

What is the abstraction of:

- cryptosystem ?
- digital signature scheme ?
- MPC protocol ?
- zero-knowledge proof?
- algorithm, distinguisher, hybrid argument, ...?

Abstraction

Algebraic abstraction:

- group $\left\langle G, \star, e,{ }^{-}\right\rangle$
- field $\langle F,+, \cdot, 0,1\rangle$
- vector space, graph, data structures, OSI layers, ...

Goals of abstraction:

- eliminate irrelevant details, minimality
- simpler definitions
- generality of results
- simpler proofs
- elegance
- didactic suitability, understanding

Levels of abstraction in AC

$\#$	main concept	concepts treated at this level
0^{\prime}	Constructions	composability, construction trees
0^{\prime}.	Games	isomorphism

1. Abstract systems
2. Discrete systems
3. System implem.
concepts treated at this level
composability, construction trees
isomorphism
cryptographic algebras
indistinguishability proofs
complexity, efficiency, asymptotics

The construction paradigm

The construction paradigm

Many scientific disciplines can be seen as being constructive.

The construction paradigm

Many scientific disciplines can be seen as being constructive.
Construct an object \mathbf{S} from another object \mathbf{R} via construction α.

The construction paradigm

Many scientific disciplines can be seen as being constructive.
Construct an object \mathbf{S} from another object \mathbf{R} via construction α.
Notation: $\quad \mathbf{R} \xrightarrow{\alpha} \mathbf{S}$

The construction paradigm

Many scientific disciplines can be seen as being constructive.
Construct an object \mathbf{S} from another object \mathbf{R} via construction α.
Notation: $\quad \mathbf{R} \xrightarrow{\alpha} \mathbf{S}$
Examples:

- A (k, n)-error-correcting code constructs a reliable channel from a noisy channel:

The construction paradigm

Many scientific disciplines can be seen as being constructive.
Construct an object \mathbf{S} from another object \mathbf{R} via construction α.
Notation: $\quad \mathbf{R} \xrightarrow{\alpha} \mathbf{S}$
Examples:

- A (k, n)-error-correcting code constructs a reliable channel from a noisy channel:

$$
\mathrm{NC}_{n} \xrightarrow{\text { (enc,dec) }} \mathrm{RC}_{k}
$$

The construction paradigm

Many scientific disciplines can be seen as being constructive.
Construct an object \mathbf{S} from another object \mathbf{R} via construction α.
Notation: $\quad \mathbf{R} \xrightarrow{\alpha} \mathbf{S}$

Examples:

- A (k, n)-error-correcting code constructs a reliable channel from a noisy channel:

$$
\mathrm{NC}_{n} \xrightarrow{\text { (enc,dec) }} \mathrm{RC}_{k}
$$

- An extractor constructs a uniform m-bit string U_{m} from any RV X with min-entropy $>m+c$ and U_{s} :

$$
\left(\mathrm{X}, \mathrm{U}_{s}\right) \xrightarrow{\mathrm{ext}} \mathrm{U}_{m}
$$

The construction paradigm

Many scientific disciplines can be seen as being constructive.
Construct an object \mathbf{S} from another object \mathbf{R} via construction α.
Notation: $\quad \mathbf{R} \xrightarrow{\alpha} \mathbf{S}$
Examples:

- A (k, m)-PRG constructs a uniform m-bit string from a uniform k-bit string:

$$
\mathrm{U}_{k} \xrightarrow{\mathrm{PRG}} \mathrm{U}_{m}
$$

The construction paradigm

Many scientific disciplines can be seen as being constructive.
Construct an object \mathbf{S} from another object \mathbf{R} via construction α.
Notation: $\quad \mathbf{R} \xrightarrow{\alpha} \mathbf{S}$

Examples:

- A (k, m)-PRG constructs a uniform m-bit string from a uniform k-bit string:

$$
\mathrm{U}_{k} \xrightarrow{\mathrm{PRG}} \mathrm{U}_{m}
$$

- A key agreement protocol (KAP) constructs a shared secret n-bit key from ???:

$$
\text { ??? } \xrightarrow{\mathrm{KAP}} \mathrm{KEY}_{n}
$$

The construction paradigm

Many scientific disciplines can be seen as being constructive.
Construct an object \mathbf{S} from another object \mathbf{R} via construction α.
Notation: $\quad \mathbf{R} \xrightarrow{\alpha} \mathbf{S}$
Involved types:

- resource
- constructor
- construction notion

The construction paradigm

Many scientific disciplines can be seen as being constructive.
Construct an object \mathbf{S} from another object \mathbf{R} via construction α.
Notation: $\quad \mathbf{R} \xrightarrow{\alpha, \epsilon} \mathbf{S}$
Involved types:

- resource
- constructor
- construction notion
- metric on space of resources

$$
\mathbf{d}(\mathbf{R}, \mathrm{S}) \leq \epsilon \quad \Longleftrightarrow \quad \mathbf{R} \approx_{\epsilon} \mathbf{S}
$$

The construction paradigm

Many scientific disciplines can be seen as being constructive.
Construct an object \mathbf{S} from another object \mathbf{R} via construction α.
Notation:

$$
\mathbf{R} \xrightarrow{\alpha, \epsilon} \mathbf{S}
$$

Examples:

- A (k, n)-error-correcting code constructs a reliable channel from a noisy channel:

$$
\mathrm{NC}_{n} \xrightarrow{\text { (enc,dec) }} \mathrm{RC}_{k}
$$

The construction paradigm

Many scientific disciplines can be seen as being constructive.
Construct an object \mathbf{S} from another object \mathbf{R} via construction α.
Notation:

$$
\mathbf{R} \xrightarrow{\alpha, \epsilon} \mathbf{S}
$$

Examples:

- A (k, n)-error-correcting code constructs a reliable channel from a noisy channel:

$$
\mathrm{NC}_{n} \xrightarrow{\text { (enc,dec) }} \mathrm{RC}_{k}
$$

$$
\mathbf{R} \xrightarrow{(\beta, \gamma), \epsilon} \mathbf{S} \quad: \Longleftrightarrow \quad \mathbf{S} \approx_{\epsilon} \beta \mathbf{R} \gamma
$$

The construction paradigm

Many scientific disciplines can be seen as being constructive.
Construct an object \mathbf{S} from another object \mathbf{R} via construction α.
Notation:

$$
\mathbf{R} \xrightarrow{\alpha, \epsilon} \mathbf{S}
$$

Examples:

- A (k, n)-error-correcting code constructs a reliable channel from a noisy channel:

$$
\mathrm{NC}_{n} \xrightarrow{\text { (enc,dec) }} \mathrm{RC}_{k}
$$

$$
\mathbf{R} \xrightarrow{(\beta, \gamma), \epsilon} \mathbf{S} \quad: \Longleftrightarrow \quad \mathbf{S} \approx_{\epsilon} \beta \mathbf{R} \gamma
$$

$\mathrm{NC}_{n} \xrightarrow{\text { (enc,dec), } \epsilon} \mathrm{RC}_{k} \quad \Longleftrightarrow \quad \mathrm{RC}_{k} \approx_{\epsilon}$ enc NC_{n} dec

Levels of abstraction in AC

$\#$	main concept	concepts treated at this level
0.	Constructions	composability, construction trees
0^{\prime}.	Games	isomorphism

1. Abstract systems
2. Discrete systems
3. System implem. complexity, efficiency, asymptotics

Constructions and composability

resource set $\langle\Omega, \|\rangle, \quad$ constructor set $\langle\Gamma, \circ, \mid, i d\rangle$

Constructions and composability

resource set $\langle\Omega, \|\rangle$, constructor set $\langle\Gamma, \circ, \mid, i d\rangle$
Construction $=$ subset of $\Omega \times \Gamma \times \Omega$
Possible notation:
$\mathbf{R} \xrightarrow{\alpha} \mathbf{S}$

Constructions and composability

resource set $\langle\Omega, \|\rangle$, constructor set $\langle\Gamma, \circ, \mid, i d\rangle$
Construction = subset of $\Omega \times \Gamma \times \Omega$
Possible notation:
$\mathbf{R} \xrightarrow{\alpha} \mathbf{S}$
Definition: A construction is serially composable if

$$
\text { 1. } \mathbf{R} \xrightarrow{\alpha} \mathbf{S} \wedge \mathbf{S} \xrightarrow{\beta} \mathbf{T} \Rightarrow \mathbf{R} \xrightarrow{\alpha \circ \beta} \mathbf{T}
$$

Constructions and composability

resource set $\langle\Omega, \|\rangle$, constructor set $\langle\Gamma, \circ, \mid, i d\rangle$
Construction $=$ subset of $\Omega \times \Gamma \times \Omega$
Possible notation: $\quad \mathbf{R} \xrightarrow{\alpha} \mathbf{S}$
Definition: A construction is serially composable if

1. $\mathbf{R} \xrightarrow{\alpha} \mathbf{S} \wedge \mathbf{S} \xrightarrow{\beta} \mathbf{T} \Rightarrow \mathbf{R} \xrightarrow{\alpha \circ \beta} \mathbf{T}$
and generally composable if also:
2. $\quad \mathbf{R} \xrightarrow{\text { id }} \mathbf{R}$
3. $\mathbf{R} \xrightarrow{\alpha} \mathbf{S} \Rightarrow \quad \mathbf{R}\|\mathbf{T} \xrightarrow{\alpha \mid \text { id }} \mathbf{S}\| \mathbf{T}$

Constructions and composability

resource set $\langle\Omega, \|\rangle$, constructor set $\langle\Gamma, \circ, \mid, i d\rangle$
Construction $=$ subset of $\Omega \times \Gamma \times \Omega$
Possible notation: $\quad \mathbf{R} \xrightarrow{\alpha} \mathbf{S}$
Definition: A construction is serially composable if

1. $\mathbf{R} \xrightarrow{\alpha} \mathbf{S} \wedge \mathbf{S} \xrightarrow{\beta} \mathbf{T} \Rightarrow \mathbf{R} \xrightarrow{\alpha \circ \beta} \mathbf{T}$
and generally composable if also:
2. $\quad \mathbf{R} \xrightarrow{\text { id }} \mathbf{R}$
3. $\mathbf{R} \xrightarrow{\alpha} \mathbf{S} \Rightarrow \quad \mathbf{R}\|\mathbf{T} \xrightarrow{\alpha \mid \text { id }} \mathbf{S}\| \mathbf{T}$

$$
\wedge \mathbf{T}\|\boldsymbol{R} \xrightarrow{\mathrm{id} \mid \alpha} \mathbf{T}\| \mathbf{S}
$$

One-time pad: A constructive perspective

One-time pad: A constructive perspective

Perfect secrecy (Shannon):

C and M are statistically independent.

One-time pad in constructive cryptography

One-time pad in constructive cryptography

One-time pad in constructive cryptography

[KEY,AUT]

One-time pad in constructive cryptography

otp-enc ${ }^{\text {A }}$ [KEY,AUT]

One-time pad in constructive cryptography

otp-dec ${ }^{B}$ otp-enc $^{\text {A }}$ [KEY,AUT]

One-time pad in constructive cryptography

otp-dec ${ }^{B}$ otp-enc $^{\text {A }}$ [KEY,AUT]

One-time pad in constructive cryptography

otp-dec $^{\mathrm{B}}$ otp-enc $^{\mathrm{A}}$ [KEY,AUT]

One-time pad in constructive cryptography

otp-dec $^{\mathrm{B}}$ otp-enc $^{\mathrm{A}}$ [KEY,AUT] sim $^{\mathrm{E}}$ SEC

One-time pad in constructive cryptography

otp-dec $^{\mathrm{B}}$ otp-enc $^{\mathrm{A}}[\mathrm{KEY}, \mathrm{AUT}] \equiv \operatorname{sim}^{\mathrm{E}}$ SEC

One-time pad in constructive cryptography

otp-dec $^{\mathrm{B}}$ otp-enc $^{\mathrm{A}}[\mathrm{KEY}, \mathrm{AUT}] \equiv \operatorname{sim}^{\mathrm{E}}$ SEC

One-time pad in constructive cryptography

otp-dec $^{\mathrm{B}}$ otp-enc $^{\mathrm{A}}[\mathrm{KEY}, \mathrm{AUT}] \equiv \operatorname{sim}^{\mathrm{E}}$ SEC written as a construction: $[\mathrm{KEY}$, AUT $] \xrightarrow{\text { OTP }}$ SEC

Symmetric encryption in CC

$\operatorname{dec}^{\mathrm{B}} \mathrm{enc}^{\mathrm{A}}[\mathrm{KEY}, \mathrm{AUT}] \approx \operatorname{sim}^{\mathrm{E}}$ SEC
written as a construction: [KEY, AUT] $\xrightarrow{\text { SYM }}$ SEC

Levels of abstraction in AC

$\#$	main concept	concepts treated at this level
0^{\prime}	Constructions	composability, construction trees
0^{\prime}.	Games	isomorphism

1. Abstract systems cryptographic algebras
2. Discrete systems indistinguishability proofs
3. System implem. complexity, efficiency, asymptotics

Levels of abstraction in AC

$\#$	main concept	concepts treated at this level
0.	Constructions	composability, construction trees
0^{\prime}.	Games	isomorphism

1. Abstract systems cryptographic algebras
2. Discrete systems indistinguishability proofs
3. System implem. complexity, efficiency, asymptotics

Constructive cryptography

Resource \mathbf{S} is constructed from \mathbf{R} by protocol π :

$$
\mathbf{R} \xrightarrow{\pi} \mathbf{S}
$$

Constructive cryptography

Resource \mathbf{S} is constructed from \mathbf{R} by protocol π :

$$
\mathbf{R} \xrightarrow{\pi} \mathbf{S}
$$

Example: Alice-Bob-Eve setting, $\pi=\left(\pi_{1}, \pi_{2}\right)$

Constructive cryptography

Resource \mathbf{S} is constructed from \mathbf{R} by protocol π :

$$
\mathbf{R} \xrightarrow{\pi} \mathbf{S}
$$

Example: Alice-Bob-Eve setting, $\pi=\left(\pi_{1}, \pi_{2}\right)$

$$
\mathbf{R} \xrightarrow{\pi} \mathbf{S}: \Leftrightarrow \quad \exists \sigma: \pi A^{\mathrm{A}} \pi_{2}^{\mathrm{B}} \mathbf{R} \approx \sigma^{\mathrm{E}} \mathbf{S}
$$

Constructive cryptography

Resource \mathbf{S} is constructed from \mathbf{R} by protocol π :

$$
\mathbf{R} \xrightarrow{\pi} \mathbf{S}
$$

Example: Alice-Bob-Eve setting, $\pi=\left(\pi_{1}, \pi_{2}\right)$

$$
\begin{array}{r}
\mathbf{R} \xrightarrow{\pi} \mathbf{S}: \Leftrightarrow \sigma: \pi_{1}^{\mathrm{A}} \pi_{2}^{\mathrm{B}} \mathbf{R} \approx \sigma^{\mathrm{E}} \mathbf{S} \\
\text { and } \\
\pi_{1}^{\mathrm{A}} \pi_{2}^{\mathrm{B}} \perp^{\mathrm{E}} \mathbf{R} \approx \perp^{\mathrm{E}} \mathbf{S}
\end{array}
$$

Proof of composition theorem for ABE-setting

$=$

Proof of composition theorem for ABE-setting

Proof of composition theorem for ABE-setting

Proof of composition theorem for ABE-setting

$\equiv-\frac{\sqrt{5} \cdot \sqrt{\frac{1}{9}}}{\sqrt{9}}$

Definition: d non-expanding: $\quad \mathbf{d}\left(\alpha^{i} \mathbf{R}, \alpha^{i} \mathbf{S}\right) \leq \mathbf{d}(\mathbf{R}, \mathbf{S})$

Proof of composition theorem for ABE-setting

Definition: d non-expanding: $\quad \mathbf{d}\left(\alpha^{i} \mathbf{R}, \alpha^{i} \mathbf{S}\right) \leq \mathbf{d}(\mathbf{R}, \mathbf{S})$
Example: efficient (e.g. poly-time) implementable systems

Proof of composition theorem for ABE-setting

Definition: d non-expanding: $\quad \mathbf{d}\left(\alpha^{i} \mathbf{R}, \alpha^{i} \mathbf{S}\right) \leq \mathbf{d}(\mathbf{R}, \mathbf{S})$
Example: efficient (e.g. poly-time) implementable systems

Proof of composition theorem for ABE-setting

Example: efficient (e.g. poly-time) implementable systems

Proof of composition theorem for ABE-setting

Example: efficient (e.g. poly-time) implementable systems

Levels of abstraction in AC

$\#$	main concept	concepts treated at this level
0.	Constructions	composability, construction trees
0^{\prime}.	Games	isomorphism

1.	Abstract systems	cryptographic algebras
2.	Discrete systems	indistinguishability proofs
3.	System implem.	complexity, efficiency, asymptotics

Cryptographic algebra $\langle\Phi, \Sigma\rangle$

$$
\sqrt[-1]{\sqrt[L_{1}^{2}]{R_{1}^{2}}}
$$

Cryptographic algebra $\langle\Phi, \Sigma\rangle$

Cryptographic algebra $\langle\Phi, \Sigma\rangle$

Cryptographic algebra $\langle\Phi, \Sigma\rangle$

Cryptographic algebra $\langle\Phi, \Sigma\rangle$

Resource set $\Phi \quad$ (here for interface set $\mathcal{I}=\{1,2,3,4\}$)
Converter set Σ

Cryptographic algebra $\langle\Phi, \Sigma\rangle$

Resource set Φ (here for interface set $\mathcal{I}=\{1,2,3,4\}$)
Converter set Σ

Algebraic laws:

- $\alpha^{i} \mathbf{R} \in \Phi \quad$ for all $\mathbf{R} \in \Phi, \alpha \in \Sigma, i \in \mathcal{I}$
- $\alpha^{i} \beta^{j} \mathbf{R}=\beta^{j} \alpha^{i} \mathbf{R} \quad$ for all $i \neq j$
- $1^{i} \mathbf{R}=\mathbf{R} \quad$ for all i

Levels of abstraction in AC

$\#$	main concept	concepts treated at this level
0.	Constructions	composability, construction trees
0^{\prime}.	Games	isomorphism

1. Abstract systems
2. Discrete systems
3. System implem. complexity, efficiency, asymptotics

Games and isomorphisms

Games and isomorphisms

Games and isomorphisms

Alice
$\{1,2\}$

Games and isomorphisms

Levels of abstraction in AC

$\#$	main concept	concepts treated at this level
0.	Constructions	composability, construction trees
0^{\prime}.	Games	isomorphism

1. Abstract systems
2. Discrete systems
3. System implem. complexity, efficiency, asymptotics

Levels of abstraction in AC

$\#$	main concept	concepts treated at this level
0.	Constructions	composability, construction trees
0^{\prime}.	Games	isomorphism

1.	Abstract systems	cryptographic algebras
2.	Discrete systems	indistinguishability proofs
3.	System implem.	complexity, efficiency, asymptotics

Resource isomorphisms

\[

\]

Resource isomorphisms

Resource isomorphisms

Theorem: \mathbf{R} is isomorphic to S

Resource isomorphisms

Theorem: R is isomorphic to S

Resource isomorphisms

Theorem: \mathbf{R} is isomorphic to S

Resource isomorphisms

Theorem: R is isomorphic to S

Resource isomorphisms

Theorem: \mathbf{R} is isomorphic to S

Resource isomorphisms

Theorem: \mathbf{R} is isomorphic to S

Resource isomorphisms

Theorem: \mathbf{R} is isomorphic to S

Resource isomorphisms

$$
\pi=\left(\pi_{1}, \ldots, \pi_{n}\right) \quad \sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right)
$$

Theorem: \mathbf{R} is isomorphic to S

Resource isomorphisms

Theorem: \mathbf{R} is isomorphic to \mathbf{S} via π, denoted $\mathbf{R} \cong{ }^{\pi} \mathbf{S}$, if

$$
\exists \sigma \forall \mathcal{P} \subseteq \mathcal{I}: \quad \pi_{\mathcal{P}} \mathrm{R} \equiv \sigma_{\overline{\mathcal{P}}} \mathrm{S}
$$

Resource isomorphisms

Theorem: \mathbf{R} is isomorphic to \mathbf{S} via π, denoted $\mathbf{R} \cong{ }^{\pi} \mathbf{S}$, if

$$
\exists \sigma \forall \mathcal{P} \subseteq \mathcal{I}: \quad \pi_{\mathcal{P}} \mathrm{R} \equiv \sigma_{\overline{\mathcal{P}}} \mathrm{S}
$$

Resource isomorphisms

$$
\pi=\left(\pi_{1}, \ldots, \pi_{n}\right)
$$

$$
\sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right)
$$

Theorem: \mathbf{R} is isomorphic to \mathbf{S} via π, denoted $\mathbf{R} \cong{ }^{\pi} \mathbf{S}$, if

$$
\exists \sigma \forall \mathcal{P} \subseteq \mathcal{I}: \quad \pi_{\mathcal{P}} \mathrm{R} \equiv \sigma_{\overline{\mathcal{P}}} \mathrm{S}
$$

Resource isomorphisms

Theorem: \mathbf{R} is isomorphic to \mathbf{S} via π, denoted $\mathbf{R} \cong{ }^{\pi} \mathbf{S}$, if

$$
\exists \sigma \forall \mathcal{P} \subseteq \mathcal{I}: \quad \pi_{\mathcal{P}} \mathrm{R} \equiv \sigma_{\overline{\mathcal{P}}} \mathrm{S}
$$

Example: 2-party resources

$$
\mathbf{R} \cong \pi \mathbf{S}: \Longleftrightarrow\left\{\begin{array}{c}
\pi_{1} \mathbf{R} \pi_{2} \approx \mathbf{S} \\
\pi_{1} \mathbf{R} \approx \mathbf{S} \sigma_{2} \\
\mathbf{R} \pi_{2} \approx \sigma_{1} \mathbf{S} \\
\mathbf{R} \approx \sigma_{1} \mathbf{S} \sigma_{2}
\end{array}\right.
$$

Example: 2-party resources

$\mathbf{R} \cong \pi \mathbf{S}: \Longleftrightarrow\left\{\begin{aligned} \pi_{1} \mathbf{R} \pi_{2} & \approx \quad \mathbf{S} \\ \pi_{1} \mathbf{R} & \approx \\ \mathbf{R} \pi_{2} & \mathrm{~S}_{2} \\ \mathbf{R} & \approx \sigma_{1} \mathbf{S} \\ \mathbf{R} & \sigma_{1} \sigma_{2}\end{aligned}\right\} \Leftrightarrow$ abstract UC

Example: 2-party resources

$$
\mathbf{R} \cong \pi \mathbf{S}: \Longleftrightarrow\left\{\begin{array}{l}
\pi_{1} \mathbf{R} \pi_{2} \approx \quad \mathbf{S} \\
\pi_{1} \mathbf{R} \approx \mathbf{S} \sigma_{2} \\
\mathbf{R} \pi_{2} \approx \sigma_{1} \mathbf{S} \\
\mathbf{R} \approx \sigma_{1} \mathbf{S} \sigma_{2}
\end{array}\right.
$$

Special case: $\mathbf{R}=$ channel (neutral element, e.g. $\pi_{1} \mathbf{R}=\pi_{1}$)

Example: 2-party resources

$$
\mathbf{R} \cong \pi \mathbf{S}: \Longleftrightarrow\left\{\begin{aligned}
\pi_{1} & \pi_{2} \\
\pi_{1} & \approx \mathbf{S} \\
& \pi_{2} \\
& \approx \sigma_{1} \mathbf{S} \\
& \approx \sigma_{1} \mathbf{S} \sigma_{2}
\end{aligned}\right.
$$

Special case: $\mathbf{R}=$ channel (neutral element, e.g. $\pi_{1} \mathbf{R}=\pi_{1}$)

Example: 2-party resources

$$
\mathbf{R} \cong \pi \mathbf{S}: \Longleftrightarrow\left\{\begin{array}{cc}
\pi_{1} & \pi_{2} \\
\pi_{1} & \approx \\
& \approx \\
& \pi_{2} \\
& \approx \sigma_{1} \\
& \mathbf{S} \sigma_{2} \\
& \approx \sigma_{1} \mathbf{S} \sigma_{2}
\end{array}\right\} \Rightarrow \pi_{1} \pi_{2} \approx \mathbf{S} \sigma_{2} \sigma_{1} \mathbf{S} \approx \mathbf{S}
$$

Special case: $\mathbf{R}=$ channel (neutral element, e.g. $\pi_{1} \mathbf{R}=\pi_{1}$)

Example: 2-party resources

$$
\mathbf{R} \cong \pi \mathbf{S}: \Longleftrightarrow\left\{\begin{array}{cc}
\pi_{1} & \pi_{2} \\
\pi_{1} & \approx \\
& \approx \mathbf{S} \\
& \pi_{2} \\
& \approx \sigma_{1} \mathbf{S} \\
& \approx \sigma_{1} \mathbf{S} \sigma_{2}
\end{array}\right\} \Rightarrow \pi_{1} \pi_{2} \approx \mathbf{S} \sigma_{2} \sigma_{1} \mathbf{S} \approx \mathbf{S}
$$

Special case: $\mathbf{R}=$ channel (neutral element, e.g. $\pi_{1} \mathbf{R}=\pi_{1}$)
Theorem: A resource \mathbf{S} such that $\mathbf{S} \alpha \mathbf{S} \not \approx \mathbf{S}$ for all α cannot be constructed from a communication channel.

Example: 2-party resources

$$
\mathbf{R} \cong \pi \mathbf{S}: \Longleftrightarrow\left\{\begin{array}{ccc}
\pi_{1} & \pi_{2} & \approx \\
\pi_{1} & \mathbf{S} \\
& \pi_{2} & \approx \sigma_{1} \mathbf{S} \sigma_{2} \\
& \approx \sigma_{1} \mathbf{S} \sigma_{2}
\end{array}\right\} \Rightarrow \pi_{1} \pi_{2} \approx \mathbf{S} \sigma_{2} \sigma_{1} \mathbf{S} \approx \mathbf{S}
$$

Special case: $\mathbf{R}=$ channel (neutral element, e.g. $\pi_{1} \mathbf{R}=\pi_{1}$)
Theorem: A resource \mathbf{S} such that $\mathbf{S} \alpha \mathbf{S} \not \approx \mathbf{S}$ for all α cannot be constructed from a communication channel.

Corollary [CF01]: Commitment cannot be constructed (from a communication channel).

Example: 2-party resources

$$
\mathbf{R} \cong \pi \mathbf{S}: \Longleftrightarrow\left\{\begin{array}{ccc}
\pi_{1} & \pi_{2} & \approx \\
\pi_{1} & \mathbf{S} \\
& \pi_{2} & \approx \sigma_{1} \mathbf{S} \sigma_{2} \\
& \approx \sigma_{1} \mathbf{S} \sigma_{2}
\end{array}\right\} \Rightarrow \pi_{1} \pi_{2} \approx \mathbf{S} \sigma_{2} \sigma_{1} \mathbf{S} \approx \mathbf{S}
$$

Special case: $\mathbf{R}=$ channel (neutral element, e.g. $\pi_{1} \mathbf{R}=\pi_{1}$) Theorem: A resource \mathbf{S} such that $\mathbf{S} \alpha \mathbf{S} \not \approx \mathbf{S}$ for all α cannot be constructed from a communication channel.

Corollary [CF01]: Commitment cannot be constructed (from a communication channel).

Example: 2-party resources

$$
\mathbf{R} \cong \pi \mathbf{S}: \Longleftrightarrow\left\{\begin{array}{ccc}
\pi_{1} & \pi_{2} & \approx \\
\pi_{1} & \mathbf{S} \\
& \pi_{2} & \approx \sigma_{1} \mathbf{S} \sigma_{2} \\
& \approx \sigma_{1} \mathbf{S} \sigma_{2}
\end{array}\right\} \Rightarrow \pi_{1} \pi_{2} \approx \mathbf{S} \sigma_{2} \sigma_{1} \mathbf{S} \approx \mathbf{S}
$$

Special case: $\mathbf{R}=$ channel (neutral element, e.g. $\pi_{1} \mathbf{R}=\pi_{1}$) Theorem: A resource \mathbf{S} such that $\mathbf{S} \alpha \mathbf{S} \not \approx \mathbf{S}$ for all α cannot be constructed from a communication channel.

Corollary [CF01]: Commitment cannot be constructed (from a communication channel).

Example: 2-party resources

$$
\mathbf{R} \cong \pi \mathbf{S}: \Longleftrightarrow\left\{\begin{array}{ccc}
\pi_{1} & \pi_{2} & \approx \\
\pi_{1} & \mathbf{S} \\
& \pi_{2} & \approx \sigma_{1} \mathbf{S} \sigma_{2} \\
& \approx \sigma_{1} \mathbf{S} \sigma_{2}
\end{array}\right\} \Rightarrow \pi_{1} \pi_{2} \approx \mathbf{S} \sigma_{2} \sigma_{1} \mathbf{S} \approx \mathbf{S}
$$

Special case: $\mathbf{R}=$ channel (neutral element, e.g. $\pi_{1} \mathbf{R}=\pi_{1}$) Theorem: A resource \mathbf{S} such that $\mathbf{S} \alpha \mathbf{S} \not \approx \mathbf{S}$ for all α cannot be constructed from a communication channel.

Corollary [CF01]: Commitment cannot be constructed (from a communication channel).

Example: 2-party resources

$$
\mathbf{R} \cong \pi \mathbf{S}: \Longleftrightarrow\left\{\begin{array}{ccc}
\pi_{1} & \pi_{2} & \approx \\
\pi_{1} & \mathbf{S} \\
& \pi_{2} \approx \sigma_{1} \mathbf{S} \sigma_{2} \\
& \approx \sigma_{1} \mathbf{S} \sigma_{2}
\end{array}\right\} \Rightarrow \pi_{1} \pi_{2} \approx \mathbf{S}_{\sigma_{2} \sigma_{1}} \mathbf{S} \approx \mathbf{S}
$$

Special case: $\mathbf{R}=$ channel (neutral element, e.g. $\pi_{1} \mathbf{R}=\pi_{1}$) Theorem: A resource \mathbf{S} such that $\mathbf{S} \alpha \mathbf{S} \not \approx \mathbf{S}$ for all α cannot be constructed from a communication channel.

Corollary [CF01]: Commitment cannot be constructed (from a communication channel).

Example: 2-party resources

$$
\mathbf{R} \cong \pi \mathbf{S}: \Longleftrightarrow\left\{\begin{array}{ccc}
\pi_{1} & \pi_{2} & \approx \\
\pi_{1} & \mathbf{S} \\
& \pi_{2} & \approx \sigma_{1} \mathbf{S} \sigma_{2} \\
& \approx \sigma_{1} \mathbf{S} \sigma_{2}
\end{array}\right\} \Rightarrow \pi_{1} \pi_{2} \approx \mathbf{S}_{\sigma_{2} \sigma_{1}} \mathbf{S} \approx \mathbf{S}
$$

Special case: $\mathbf{R}=$ channel (neutral element, e.g. $\pi_{1} \mathbf{R}=\pi_{1}$)
Theorem: A resource \mathbf{S} such that $\mathbf{S} \alpha \mathbf{S} \not \approx \mathbf{S}$ for all α cannot be constructed from a communication channel.

Corollary [CF01]: Commitment cannot be constructed (from a communication channel).

Corollary: A delayed communication channel cannot be constructed (from a communication channel).

Abstraction by sets of resources

Definition: A specification is a set \mathcal{R} of resources.

Abstraction by sets of resources

Definition: A specification is a set \mathcal{R} of resources.

Of special interest: Specifications with (for each party)

- a guaranteed choice space
- a possible choice space

Abstraction by sets of resources

Definition: A specification is a set \mathcal{R} of resources.

Of special interest: Specifications with (for each party)

- a guaranteed choice space
- a possible choice space

Abstraction by sets of resources

Definition: A specification is a set \mathcal{R} of resources.

Of special interest: Specifications with (for each party)

- a guaranteed choice space
- a possible choice space

Abstraction by sets of resources

Definition: A specification is a set \mathcal{R} of resources.

Of special interest: Specifications with (for each party)

- a guaranteed choice space
- a possible choice space

Abstraction by sets of resources

Definition: A specification is a set \mathcal{R} of resources.

Of special interest: Specifications with (for each party)

- a guaranteed choice space
- a possible choice space

Abstraction by sets of resources

Definition: A specification is a set \mathcal{R} of resources.

Of special interest: Specifications with (for each party)

- a guaranteed choice space
- a possible choice space

Abstraction by sets of resources

Definition: A specification is a set \mathcal{R} of resources.

Of special interest: Specifications with (for each party)

- a guaranteed choice space
- a possible choice space

Abstraction by sets of resources

Definition: A specification is a set \mathcal{R} of resources.

Of special interest: Specifications with (for each party)

- a guaranteed choice space
- a possible choice space

Definition: \mathcal{S} is an abstraction of \mathcal{R} via π :

$$
\mathcal{R} \sqsubseteq^{\pi} \mathcal{S}: \Longleftrightarrow \forall \mathbf{R} \in \mathcal{R} \quad \exists \mathbf{S} \in \mathcal{S}: \mathbf{R} \cong \pi
$$

Abstraction by sets of resources

Definition: A specification is a set \mathcal{R} of resources.

Of special interest: Specifications with (for each party)

- a guaranteed choice space
- a possible choice space

Definition: \mathcal{S} is an abstraction of \mathcal{R} via π :

$$
\mathcal{R} \sqsubseteq^{\pi} \mathcal{S}: \Longleftrightarrow \forall \mathbf{R} \in \mathcal{R} \quad \exists \mathrm{S} \in \mathcal{S}: \mathbf{R} \cong \pi
$$

Theorem: $\mathcal{R} \sqsubseteq^{\pi} \mathcal{S}$ is generally composable.

Example: Encryption, capturing coercibility

Theorem: An unleakable (uncoercible) secure communication channel cannot be constructed from an authenticated channel and a secret key.

Some Features of Abstract Cryptography

Some Features of Abstract Cryptography

- top-down abstraction

Some Features of Abstract Cryptography

- top-down abstraction
- isomorphism: exact relation between ideal and real

Some Features of Abstract Cryptography

- top-down abstraction
- isomorphism: exact relation between ideal and real
- no central adversary; local simulators

Some Features of Abstract Cryptography

- top-down abstraction
- isomorphism: exact relation between ideal and real
- no central adversary; local simulators
- all resources captured
- communication model not hard-wired into the model
- absence can be modeled

Some Features of Abstract Cryptography

- top-down abstraction
- isomorphism: exact relation between ideal and real
- no central adversary; local simulators
- all resources captured
- communication model not hard-wired into the model
- absence can be modeled
- feasibility/efficiency notions free; not hard-wired

Some Features of Abstract Cryptography

- top-down abstraction
- isomorphism: exact relation between ideal and real
- no central adversary; local simulators
- all resources captured
- communication model not hard-wired into the model
- absence can be modeled
- feasibility/efficiency notions free; not hard-wired
- specifications: guaranteed/possible choice domains

Some Features of Abstract Cryptography

- top-down abstraction
- isomorphism: exact relation between ideal and real
- no central adversary; local simulators
- all resources captured
- communication model not hard-wired into the model
- absence can be modeled
- feasibility/efficiency notions free; not hard-wired
- specifications: guaranteed/possible choice domains
- existing frameworks can be captured as special cases
- universal composability (UC) by Canetti
- reactive simulatability by Pfitzmann/Waidner/Backes
- indifferentiability [MRH04]
- collusion-preserving computation [AKMZ12]

Thank you!

Constructing channels and keys: •-calculus

$A \longrightarrow B \quad$ (insecure) channel from A to B

The symbol " \bullet " stands for exclusive access to the channel.
" \bullet " at output: receiver is exclusive \longrightarrow confidentiality
" \bullet " at input: sender is exclusive \longrightarrow authenticity
$A \longrightarrow B \quad$ secret channel from A to B
$A \bullet B \quad$ authentic channel from A to B
$A \bullet \bullet B \quad$ secure channel from A to B (secret and authentic)
$A \rightleftharpoons B$ secret key shared by A and B
$A \Longrightarrow B$ one-sided key: A knows that at most B knows the key, but B does not know who holds the key.

Key transport in CC

$$
A \bullet \xrightarrow{t_{1} t_{2}} \bullet B \quad \xrightarrow{\mathrm{KT}} \quad A \stackrel{t_{2}}{\longrightarrow} B
$$

Key transport in CC

$$
\begin{array}{ll}
A \bullet \xrightarrow{t_{1} t_{2}} \bullet B & \xrightarrow{\mathrm{KT}} \quad A \stackrel{t_{2}}{\rightleftharpoons} B \\
A \xrightarrow{t_{1} t_{2}} \bullet & \xrightarrow{\mathrm{KT}} \quad A \stackrel{t_{2}}{\rightleftharpoons} B
\end{array}
$$

Key transport in CC

$$
\begin{array}{ll}
A \bullet \xrightarrow{t_{1} t_{2}} \bullet B & \xrightarrow{\mathrm{KT}} B \\
A \xrightarrow{t_{1} t_{2}} B & \xrightarrow{t_{2}} B \\
& \xrightarrow{\mathrm{KT}} \quad A \stackrel{t_{2}}{\longrightarrow} B
\end{array}
$$

Attention:

$$
A \bullet \xrightarrow{t_{1} t_{2}} B
$$

$$
\xrightarrow{k T}
$$

$$
A \stackrel{t_{2}}{=} B
$$

Symmetric cryptosystem in CC

$$
\left.\begin{array}{c}
A \xrightarrow{t_{1}} B \xrightarrow{t_{2} t_{3}} B \\
t_{2} \geq t_{1}
\end{array}\right\} \quad \xrightarrow{\text { SYM }} \quad A \xrightarrow{t_{2} t_{3}} \bullet B
$$

Symmetric cryptosystem in CC

$$
\begin{aligned}
& \underset{\substack{A \\
t_{2} \geq t_{1}}}{\substack{t_{1}}} B \quad \xrightarrow{t_{2} t_{3}} B+B \\
& \underset{\substack{A \\
t_{2} \geq t_{1}}}{A \xrightarrow{t_{1}} B} B \quad A \bullet \xrightarrow{t_{2} t_{3}} B \quad B
\end{aligned}
$$

MACs in CC

$$
\left.\begin{array}{c}
A \stackrel{t_{1}}{A \stackrel{t_{2} t_{3}}{\longrightarrow}} B \\
t_{2} \geq t_{1}
\end{array}\right\} \quad \xrightarrow{\text { MAC }} \quad A \bullet \xrightarrow{t_{2} t_{3}} B
$$

MACs in CC

$$
\begin{aligned}
& \left.\begin{array}{c}
A \underset{\longrightarrow}{t_{1}} \\
t_{2} \geq t_{1}
\end{array}\right\} \quad B \quad A \stackrel{t_{2} t_{3}}{t_{2} t_{3}} B \\
& \underset{\substack{A \\
A \xrightarrow{t_{2} \geq t_{1}}}}{\stackrel{t_{1}}{t_{2} t_{3}}} B
\end{aligned}
$$

Combining Encryption and MAC

Goal:

$$
\left.\begin{array}{c}
A \xrightarrow{t_{1}} B \xrightarrow{t_{2} t_{3}} B \\
t_{2} \geq t_{1}
\end{array}\right\} \quad \xrightarrow{? ? ?} \quad A \bullet \xrightarrow{t_{2} t_{3}} \bullet B
$$

Combining Encryption and MAC

Goal:

$$
\left.\begin{array}{c}
A \xrightarrow{A \xrightarrow{t_{1}} B} B \\
t_{2} \geq t_{1}
\end{array}\right\} \quad \xrightarrow{t_{2} t_{3}} B ?
$$

Key expansion:

$$
A \stackrel{t_{1}}{\Longleftrightarrow} B
$$

$$
\xrightarrow{\mathrm{PRG}}\left\{\begin{array}{lll}
A \stackrel{t_{1}}{t_{1}} & B \\
A \stackrel{t_{1}}{\rightleftarrows} & B
\end{array}\right.
$$

Combining Encryption and MAC

Goal:

$$
\begin{gathered}
\left.A \xrightarrow{\substack{t_{1}}} \begin{array}{l}
t_{2} t_{3} \\
t_{2} \geq t_{1}
\end{array}\right\} \quad \xrightarrow{? ? ?} \quad A \bullet \xrightarrow{t_{2} t_{3}} \bullet B \\
\bullet
\end{gathered}
$$

Key expansion:

$$
A \stackrel{t_{1}}{\Longleftrightarrow} B
$$

$$
\left\{\begin{array}{lll}
A & \stackrel{t_{1}}{\rightleftarrows} & B \\
A & \stackrel{t_{1}}{\rightleftharpoons} & B
\end{array}\right.
$$

Encrypt-then-MAC:

$$
\begin{array}{lll}
\left.\begin{array}{c}
A \xrightarrow{A \xrightarrow{t_{1}}} B \\
t_{2} \geq t_{1}
\end{array}\right\} & & \xrightarrow{\text { MAC }} \\
\left.\begin{array}{c}
t_{2} t_{3} \\
A \xrightarrow{t_{1}} B \\
A \bullet \xrightarrow{t_{2} t_{3}} B \\
t_{2} \geq t_{1}
\end{array}\right\} & A \stackrel{t_{2} t_{3}}{ } B \\
& \xrightarrow{\text { SYM }} & A \bullet \xrightarrow{t_{2} t_{3}} B
\end{array}
$$

Combining Encryption and MAC

Goal:

$$
\left.\begin{array}{c}
A \xrightarrow{t_{1}} B \xrightarrow[\longrightarrow]{t_{2} t_{3}} B \\
t_{2} \geq t_{1}
\end{array}\right\} \quad \xrightarrow{? ? ?} \quad A \bullet \xrightarrow{t_{2} t_{3}} \bullet B
$$

Key expansion:

$$
A \stackrel{t_{1}}{\Longleftrightarrow} B
$$

$$
\xrightarrow{\mathrm{PRG}}\left\{\begin{array}{lll}
A \stackrel{t_{1}}{t_{1}} & B \\
A \stackrel{t_{1}}{\rightleftarrows} & B
\end{array}\right.
$$

MAC-then-encrypt:

$$
\begin{aligned}
& \begin{array}{c}
A \xrightarrow{t_{1}} \begin{array}{l}
t_{2} t_{3} \\
t_{2} \geq t_{1}
\end{array} \\
t_{2} \\
t_{1}
\end{array} \quad A \xrightarrow{\text { tYM }_{2} t_{3}} B \\
& \left.\begin{array}{c}
A \underset{\longrightarrow}{A \xrightarrow{t_{1}}} B \\
t_{2} \geq t_{1}
\end{array}\right\} \quad \xrightarrow{t_{2} t_{3}} B \quad A \bullet \xrightarrow{\text { 2 }_{2} t_{3}} \bullet B
\end{aligned}
$$

Public-key cryptosystems in CC

$$
\left.\begin{array}{c}
A \stackrel{t_{1} t_{2}}{\stackrel{t_{4} t_{3}}{\leftrightarrows}} B \\
t_{3}>t_{2}
\end{array}\right\} \quad \xrightarrow{\mathrm{PKC}_{3}} \quad A \bullet \stackrel{t_{4} t_{3}}{\longleftarrow} B
$$

Public-key cryptosystems in CC

$$
\begin{aligned}
& \left.\begin{array}{c}
A \stackrel{t_{1} t_{2}}{A \stackrel{t_{4} t_{3}}{\leftrightarrows}} B \\
t_{3}>t_{2}
\end{array}\right\} \quad \xrightarrow{\mathrm{PKC}_{3}} \quad A \bullet \stackrel{t_{4} t_{3}}{\leftrightarrows} B \\
& \left.\begin{array}{c}
A \stackrel{t_{1} t_{2}}{\substack{t_{1} t_{3}}} B \\
t_{3}>t_{2}
\end{array}\right\} \quad \xrightarrow{\text { PKC }} \quad A \bullet \stackrel{t_{4} t_{3}}{\leftrightarrows} B
\end{aligned}
$$

Diffie-Hellman key agreement in CC

$$
\left.\begin{array}{l}
A \bullet B \\
A \longleftrightarrow B
\end{array}\right\} \quad \stackrel{\mathrm{DH}}{\longrightarrow} \quad A \longmapsto B
$$

Diffie-Hellman key agreement in CC

Digital signature schemes in CC

$$
\left.\begin{array}{c}
A \xrightarrow{A \xrightarrow{t_{1} t_{2}} B} B \\
t_{4} \geq t_{2}
\end{array}\right\} \quad \xrightarrow{t_{3} t_{4}} B+\xrightarrow{t_{3} t_{4}} B
$$

Digital signature schemes in CC

$$
\begin{aligned}
& \left.\begin{array}{c}
A \xrightarrow{\bullet} \begin{array}{c}
t_{1} t_{2} \\
A \xrightarrow{t_{3} t_{4}} \\
t_{4} \geq t_{2}
\end{array}
\end{array}\right\} \\
& \xrightarrow{\text { DSS }} A \bullet \xrightarrow{t_{3} t_{4}} B \\
& \left.\begin{array}{c}
\substack{A \xrightarrow[\longrightarrow]{t_{1} t_{2}} \\
A \xrightarrow{t_{3} t_{4}} \bullet \\
t_{4} \geq t_{2}}
\end{array}\right\} \quad \xrightarrow{\mathrm{DSS}} \quad A \bullet \xrightarrow{t_{3} t_{4}} \bullet B
\end{aligned}
$$

Digital signature schemes in CC

$$
\begin{aligned}
& \underset{\substack{A \xrightarrow{A} \xrightarrow{t_{3} t_{4}} \\
t_{4} \geq t_{2}}}{t_{1} t_{2}} B \quad \xrightarrow{\mathrm{DSS}} \quad A \bullet \xrightarrow{t_{3} t_{4}} B \\
& \left.\begin{array}{l}
\substack{A \xrightarrow{t_{1} t_{2}} \\
A \xrightarrow{t_{3} t_{4}} \bullet \\
t_{4} \geq t_{2}}
\end{array}\right\} \quad \xrightarrow{\mathrm{DSS}} \quad A \bullet \xrightarrow{t_{3} t_{4}} \bullet B
\end{aligned}
$$

Note: Conservation law of the •-calculus.

Digital signature schemes in CC

$$
\begin{aligned}
& \underset{\substack{A \\
A \xrightarrow{t_{3} t_{4}}}}{t_{4} \geq t_{2}} \boldsymbol{t _ { 1 } t _ { 2 }} B \quad \xrightarrow{\mathrm{DSS}} \quad A \bullet \xrightarrow{t_{3} t_{4}} B \\
& \left.\begin{array}{c}
\substack{A \xrightarrow{t_{1} t_{2}} \\
A \xrightarrow{t_{3} t_{4}}} \\
t_{4} \geq t_{2}
\end{array}\right\} \quad \xrightarrow{\mathrm{DSS}} \quad A \bullet \xrightarrow{t_{3} t_{4}} B
\end{aligned}
$$

Note: Conservation law of the •-calculus.
Are there any other cryptographic transformations?

