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Algebraic abstraction:

e Qgroup <G7 x €7A>
o field (F,4,-,0,1)
e vector space, graph, data structures, OSI layers, ...

Levels of abstraction:
1. Abstract group: (G, *,e,”)
2. Instantiations: Integers, real number, elliptic curves

3. Representations: e.g. projective coordinates for ECs



Abstraction

Algebraic abstraction:

e Qgroup <G7 x €7A>
o field (F,4,-,0,1)
e vector space, graph, data structures, OSI layers, ...

What is the abstraction of:

e cryptosystem ?

e digital signature scheme ?

e MPC protocol ?

e zero-knowledge proof ?

e algorithm, distinguisher, hybrid argument, ...?



Abstraction

Algebraic abstraction:

e Qgroup <G7 x €7A>
o field (F,4,-,0,1)
e vector space, graph, data structures, OSI layers, ...

Goals of abstraction:

eliminate irrelevant detalls, minimality
simpler definitions

generality of results

simpler proofs

elegance

didactic suitability, understanding



Levels of abstraction in AC

4

main concept

concepts treated at this level

0.

0.

Constructions

Games

Abstract systems
Discrete systems

System implem.

composability, construction trees

Isomorphism

cryptographic algebras
iIndistinguishability proofs

complexity, efficiency, asymptotics
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Notation: R =38

Examples:

e A (k,n)-error-correcting code constructs a reliable channel
from a noisy channel:
(enc,dec)

e An extractor constructs a uniform m-bit string U,
from any RV X with min-entropy > m + c and U:

X.Us) = U
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The construction paradigm

Many scientific disciplines can be seen as being constructive.

Construct an object S from another object R via construction «.

Notation: R =38

Examples:

o A (k,m)-PRG constructs a uniform m-bit string
from a uniform k-bit string:

U, 2%y,

e A key agreement protocol (KAP) constructs a shared

secret n-bit key from ?77?:

297 XN KEY,
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The construction paradigm

Many scientific disciplines can be seen as being constructive.

Construct an object S from another object R via construction «.

Notation: R —5 S
Involved types:

e resource

e constructor

e construction notion

e metric on space of resources

dR,S) < ¢ <«— R=¢S
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The construction paradigm

Many scientific disciplines can be seen as being constructive.

Construct an object S from another object R via construction «.

Notation: R % S

Examples:

e A (k,n)-error-correcting code constructs a reliable channel
from a noisy channel:
(enc,dec)

R M’ES «— S =B8R~

(enc,dec),e
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#+  main concept concepts treated at this level

0. | Constructions composability, construction trees
0’. | Games isomorphism

1. | Abstract systems | cryptographic algebras

2. | Discrete systems | indistinguishability proofs

3. | System implem. | complexity, efficiency, asymptotics
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Constructions and composability

resource set (<2, ||), constructorset (", o, | ,id)

Construction = subsetof 2 x [ x O

Possible notation: R -3 8

Definition: A construction is serially composable if

. R3S ASs 25T =R 217

and generally composable if also:
2. R -4 R
id
3. R S = R|T — S|T

id| o
ATIR — T[S
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One-time pad: A constructive perspective

addition modulo 2

ciphertext G, C,, ...

plaintext plaintext
M1,M2,... ........................ »Q . M1,M2,...

key K,K, .. key K,K, ..

Perfect secrecy (Shannon):
C and M are statistically independent.
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otp-enc” [KEY,AUT]
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otp-decB otp-encA [KEY,AUT] simE SEC



One-time pad in constructive cryptography
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One-time pad in constructive cryptography

otp-decB otp-enc? [KEY,AUT] = simE SEC



One-time pad in constructive cryptography

simE SEC

_ _ OTP
written as a construction: [KEY,AUT] ———> SEC

otp-decB otp-encA [KEY,AUT]



Symmetric encryption in CC
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Constructive cryptography

Resource S is constructed from R by protocol 77:

R — S

Example: Alice-Bob-Eve setting, 77 = (771, 79)

R— S & 3J0: 7ff7PR ~ S
and

{78 1FR ~ IFS
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Cryptographic algebra (®,3")

(DRI~

Resource set © (here for interface set Z = {1,2,3,4})
Converter set 2_

Algebraic laws:
e ’'Red foralRe P, ac,iecl

e o'8/R = BJa*!R foralli # j
e 'R = R forall
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Theorem: R is isomorphic to S via 77, denoted R =" S, if

JovPCZI: mwpR= afS
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} = Ty & So501S = S

~ 01502

Special case: R = channel (neutral element, e.g. 71R = )

Theorem: A resource S such that SaS % S for all o cannot
be constructed from a communication channel.
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Example: 2-party resources

R S e |

(7'('1 o S
1 ~ So»
o 013

} = T & S0201S = S

~ 01905

Special case: R = channel (neutral element, e.g. 71R = )

Theorem: A resource S such that SaS % S for all o cannot
be constructed from a communication channel.

Corollary [CFO1]: Commitment cannot be constructed (from

a communication channel).
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Example: 2-party resources

(7'('1 o S
™ ~ SJQ

R2T g e |
7T2%O‘13

} = T & S0201S = S

~ 01502

Special case: R = channel (neutral element, e.g. 71R = )

Theorem: A resource S such that SaS % S for all o cannot
be constructed from a communication channel.

Corollary [CFO1]: Commitment cannot be constructed (from
a communication channel).

Corollary: A delayed communication channel cannot be
constructed (from a communication channel).
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Abstraction by sets of resources

Definition: A specification is a set /X of resources.

Of special interest: Specifications with (for each party)
e a guaranteed choice space
e a possible choice space

Definition: &S is an abstraction of < via 7:
RLC™S «— VReR 3ISeS: R="S

Theorem: R L™ &S is generally composable.
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Example: Encryption, capturing coercibility

} $
A B
II< i
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oo e e T *E _______
»E ES|m_B L
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$
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Theorem: An unleakable (uncoercible) secure
communication channel cannot be constructed from an
authenticated channel and a secret key.
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Some Features of Abstract Cryptography

e top-down abstraction
e isomorphism: exact relation between ideal and real
e no central adversary; local simulators

e all resources captured
— communication model not hard-wired into the model

— absence can be modeled
o feasibility/efficiency notions free; not hard-wired
e specifications: guaranteed/possible choice domains

e existing frameworks can be captured as special cases

— universal composability (UC) by Canetti

— reactive simulatability by Pfitzmann/Waidner/Backes
— Indifferentiability [MRHO04]

— collusion-preserving computation [AKMZ12]



Thank you!



Constructing channels and keys: e-calculus

A — B (insecure) channel from Ato B

The symbol “e” stands for exclusive access to the channel.

o’ at output: receiver is exclusive — confidentiality

o’ at input: sender is exclusive — authenticity

A—e B secret channel from Ato B
Ae— B authentic channel from Ato B
A e—e B secure channel from A to B (secret and authentic)

A e——w B secret key shared by A and B

A — B one-sided key: A knows that at most B knows
the key, but B does not know who holds the key.
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Key transport in CC
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Attention: Ae—— B
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Symmetric cryptosystem in CC
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Symmetric cryptosystem in CC
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MACs in CC
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MACs in CC

A‘:B\ MAC
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Combining Encryption and MAC
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Combining Encryption and MAC
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Combining Encryption and MAC

Goal: A Qtzlo B \
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Key expansion:
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Combining Encryption and MAC

Goal: A e B

tot
A 23 B

to > 11
Key expansion:

N~

J

t
A e——=» B

MAC-then-encrypt:
t1
A p— ) B

tot
A3 B
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AﬁnB

to > 11

~

J
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Public-key cryptosystems in CC
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Public-key cryptosystems in CC
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Diffie-Hellman key agreement in CC
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Diffie-Hellman key agreement in CC




Digital sighature schemes in CC
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Digital sighature schemes in CC

Note:

t1t
Ao—1—2>B

tat
A=24 B

tg 2>t

t1t
Ao—1—2>B

2t
AﬁMB

tg 2t

)

\

~~

/

~~

DSS

—— 424 p
DSS

—> A 0%0 B

Conservation law of the e-calculus.



Digital sighature schemes in CC

Ael2 B

¢ DSS tat
bt \ 3t4

A34;B > A.—>B
tg 2>t

Ael2 B

¢ DSS tat
tat 34

A34}0B> H Ae—>e B
tg 2t

Note: Conservation law of the e-calculus.

Are there any other cryptographic transformations?



